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ABSTRACT
Explainable AI (XAI) methods are generally seen as tools that allow

users a greater level of visibility into why certain decisions were

made by an AI system or agent. However, by the very choice of

current works to focus on merely explaining why the AI system

chose to perform an action in their environment, the explanation is

withholding any information about the role played by the designer
of said system and environment in determining the final behav-

ior. This information could be particularly significant when the

underlying designer objectives may differ from those of the user.

In this paper we propose a new explanation generation paradigm,

built on the concept of model reconciliation, and show how it can

support the generation of explanations that include the designer’s

goals. We define and study the formal properties of this new form

of explanation and introduce an algorithm to generate it over a

classical planning domain. We evaluate how this new explanation

influences user performance, understanding and trust in an AI agent

and further instantiate the new algorithm on standard planning

benchmarks to evaluate its computational characteristics.
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1 INTRODUCTION
Human agent collaboration enables a varied, distributed set of ac-

tors to work together to address problems of greater complexity

than those able to be addressed by each actor alone. However, the

field of user-agent interaction presents several challenges, including

issues related to trust, utilization, and varying degrees of reliance,

which can hinder effective collaborations [8, 24, 25]. The problem of

eXplanaining AI (XAI), often equated with interpretable AI [11], has

been developed to address these challenges by enhancing users’ un-

derstanding of AI systems and fostering more optimal interactions

[2, 19]. XAI approaches have aimed to improve people’s understand-

ing of the agent model, help people recognize model uncertainty,

and support people’s calibrated trust in the agent [15, 27].

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.
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Figure 1: An overview of the interactions captured in our
framework. The designer tries to modify the environment
so that the robot’s behavior achieves its underlying goal GD .

One XAI approach that aims to bridge this gap is through apply-

ing model-reconciliation, ascribing the agents with an approxima-

tion of the human’s task and goal models [21]. In this approach, the

agent explains its actions by leveraging the differences between its

own model and the human’s mental model of the agent. By recon-

ciling the differences between the agent’s model and the human’s

perception of that model, this method aims to align the human’s

expectation with the outcomes of the agent’s behavior.

However, we posit that focusing on explaining the agent model,
be it through model reconciliation or otherwise, should not be

the goal and may even (unintentionally) create user deception.

There is a third actor about whose intentions the user needs to

reason. That is the designer, the actor who created the AI agent and
made key choices about it’s design and performance (Figure 1). It

is rare for AI agents to be deployed and operate in a completely

uncontrolled environment. In most cases, at least some aspects

of the environment would have been controlled or designed to

promote certain forms of agent behavior. Obviously, such a design

process would also be applied to the agent itself. When an end-

user comes in contact with an AI agent and asks it to achieve

certain objectives, the responding agent actions would be heavily

dependent on these prior design choices.

For the most part the user is oblivious to the design decisions

taking place behind the scenes. And while the designer’s intentions

may overlap with the agent’s professed intentions (for example a

search and rescue robot’s intention is the same as the designers’

intention for it - finding the human), they also may not. Consider

recommendation systems: the agent’s professed intention is to

recommend a product that is similar to other products that the user

likes and would therefore enjoy. On the other hand the designer’s

intention is for the user to ultimately spend more money, thereby
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increasing its utility. It is these goals that are often consciously or

unconsciously hidden from the user through the mask of the agent.

Same as in deception by misdirection, in which a person is deceived

by focusing their attention in the wrong place - when explaining

the robot’s actions rather than the designer’s, these explanations

mask the true intention by shifting the user attention to reason

about the acting agent [18]. In effect, the explanations people are

receiving are not the explanations they need.

To bridge this gap we propose a new explanation framework

which explains both designer intentions and acting agent actions.

We begin by formalising a multi-actor explanation framework, this

time considering the additional aspect of the designer/stakeholder

(Section 4). We then instantiate our framework on the classical

planning Sokoban environment and empirically evaluate the expla-

nation generation performance and efficiency (Section 5). Finally,

we conduct a proof-of-concept user study in which users are pre-

sented with designer explanations (Section 6).We discuss the results

and propose ideas for future work.

2 BACKGROUND AND RELATEDWORK
As AI applications become more widespread and even deployed in

safety-critical settings, there is increasing recognition that these

systems need to be capable of explaining their decisions [12]. While

some of the early works in explanations go back to expert systems

[6, 22], the more recent interest has been particularly spurred by

the inscrutability of the state-of-the-art AI models [15]. Even in

a subfield of AI, like planning, we see a pretty large number of

works related to explanations (cf. [1, 4]). However, recent works

have also highlighted how explanations could lead to misuse of the

system. This includes how even simple explanations could cause

people to place unwarranted trust in the system [23] and even

accept system decisions against their best interest [16]. Despite the

rapid advancements in the field, most explanation efforts remain

focused on a straightforward dyadic settings [21]. To the best of

our knowledge, no other works in XAI has looked at incorporating

the influence the designer has on the final behavior.

2.1 Background
We consider a setting where the decision-making problem can be

best represented as a classical planning problem. While the problem

of designer goals and explanations pertains to all representations,

we found the classical planning domain as the most adapt at pro-

viding a clear, relatable proof-of-concept. Equivalently we rely on

the classical STRIPS [9] planning model ofM = ⟨𝐹,𝐴, 𝐼,𝐺⟩, where
𝐹 represents the set of propositional fluents, 𝐴 the set of actions,

𝐼 ⊆ 𝐹 the initial state, and 𝐺 the goal specification.The state space

corresponding to the planning problem is defined using the fluent

set, such that, each state 𝑠 can be uniquely identified by the set

of fluents that are true in that state, 𝑠 ⊆ 𝐹 . Each action 𝑎 ∈ 𝐴, is
further defined by a set of preconditions (pre (𝑎) ⊆ 𝐹 ), add effects

(add (𝑎) ⊆ 𝐹 ), delete effects (del (𝑎) ⊆ 𝐹 ), and a cost 𝑐𝑎 . The result

of executing action 𝑎 in state 𝑠 is given by the transition function

𝛿M : 𝑆 ×𝐴→ 2
𝐹
, such that:

𝛿M (𝑠, 𝑎) =
{
(𝑠 \ del (𝑎)) ∪ add (𝑎) if pre (𝑎) ⊆ 𝑠

Undefined Otherwise

A solution to a planning problem is a plan, a sequence of actions,

whose execution satisfies 𝐺 . More formally, an action sequence

𝜋 = ⟨𝑎1, ..., 𝑎𝑘 ⟩ is said to be a plan, if 𝛿M (𝐼 , 𝜋) |= 𝐺 . The cost of

a plan 𝜋 = ⟨𝑎1, ..., 𝑎𝑘 ⟩ for a modelM, is given as the accumaltive

sum of the cost of all actions in that plan, 𝐶M (𝜋) = 𝑐𝑎1
+ ... + 𝑐𝑎𝑘 .

And a plan is said to be optimal if no other plan exists at a lower

cost. We will represent the cost of the optimal plan for a modelM
as 𝐶∗M .

Since our solution approaches leverage model space search, we

will further represent models using a set of propositional model

parameters. The space of all parameters needed to capture models

that use fluents 𝐹 , action labels 𝐴 and cost set C is given as

F = {init-has-f | 𝑓 ∈ 𝐹 } ∪ {goal-has-f | 𝑓 ∈ 𝐹 } ∪⋃
𝑎∈𝐴
{a-has-cost-c | 𝑐 ∈ C} ∪ {𝑎-has-prec-𝑓 ,

𝑎-has-add-𝑓 , 𝑎-has-del-𝑓 | 𝑓 ∈ 𝐹 }.
We will use the parameterization function Γ to convert a given

model to its parameterized form,mapping eachmodel component to

its corresponding proposition in F . We will use the function Γ−1
to

obtain the model corresponding to a given set of model parameters.

In this context, a model update takes the form E = ⟨E+, E−⟩, where
E+ ⊆ F are the set of model parameters to be turned true and

E− ⊆ F are the ones to be turned false. Now the model obtained

by applying this model update onM, is given as

M + E = Γ−1 ((Γ(M) \ E−) ∪ E+)
Where ‘+’ is the model update operator.

3 RUNNING EXAMPLE
To illustrate our approach consider Figure 2. In this scenario, there

are three actors; (1) the operator who is tasked with helping robots

navigate from a start position to a goal location by choosing one

of several possible routes; (2) the robot whose goal is to reach the

flag safely and with the least possible actions. The robot can move

one square at a time, but only in the direction its tires are facing. It

can rotate by changing its facing direction 90 degrees at a time and

each action has a uniform cost; and (3) the designer of the robot and

environment. The designer’s goal is for the robot (and therefore,

operator) to view the ads. To achieve this, the designer positioned

the robot facing left and placed the boxes to make the passage too

narrow, rendering the purple path invalid. Note that the operator

does not know that the robot is too wide to safely pass through

narrow passages.

Ads

Ads

Ads

1

23

Figure 2: Example of decision making task
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4 ENVIRONMENT DESIGN PROBLEM AND
EXPLANATIONS

To solve the problem of designer explanations we adopt a two-level

explanation strategy. First we explain why, given the current agent

model and environment state, the current plan is the right course of

action. Then, we explain how aspects of the current model which

were under the designer’s control, gave rise to agent behavior that

helped achieve the designer’s goal.

We begin by formally defining the underlying design problem

that influenced the environment and gave rise to the particular

agent behavior.We define the underlying designer goal as (GD ), the
goal the designer wants the AI agent (henceforth referred to as the

robot
1
) to achieve in the course of its operation (defined by a set of

goalsGR ). The designer has access to a set of actions (AD ) that they
can employ to change both the environment and the robot. In our

running example, GR ensures that the robot pass near ’Ads,’ while

AD includes placing boxes action (changing the environment) and

rotating the robot’s facing direction action (changing the robot).

The solution to the design problem is a sequence of designer

actions that results in an environment where the behavior selected

by the robot will satisfy the designer’s goal. For convenience, we

assume that the designer’s actions only change the initial state

of the robot and that the robot is an autonomous agent, using

an independent optimal decision-making process to identify the

optimal course of action to achieve its goal, given the environment.

Note that the influence that the designer asserts on the agent is

an indirect one, where they set up the environment so that the

autonomous agent ends up also achieving the designer’s hidden

intent. This is a special case of mechanism design, which is an

important topic within game theory.

We define the design problem, and solution, as follows:

Definition 1. An environment design problem is characterized
by the tuple, DP = ⟨𝐹,𝐴𝑅, 𝐼0,GD ,AD ,GR ,Λ⟩, where:
• 𝐹,𝐴𝑅,GR - Fluents used in the robot model, robot actions, and
potential goals the robot might come across, respectively.
• 𝐼0 - Initial, unedited, state.
• GD ,AD - Designer goal and actions.
• Λ - Transition function related to the application of designer
action in the initial state such that, Λ : 2

𝐹 × AD → 2
𝐹 .

Definition 2. A solution to the environment design problem is
a designer plan, which consists of a sequence of designer actions
𝜋D = ⟨𝑎D

1
, ..., 𝑎D

𝑘
⟩, such that the resultant initial state is 𝐼D =

Λ(𝐼0, 𝜋D ), and allows that for every 𝐺 ′ ∈ GR , the resultant robot
modelM′ = ⟨𝐹,𝐴𝑅, 𝐼D ,𝐺 ′⟩ is of the form that every plan 𝜋 ′ optimal
inM′ satisfies GD , i.e, 𝛿M′ (𝐼D , 𝜋 ′) |= GD .

Following this definition, we can define the form of explanations

we would want for this setting. We refer to these explanations as the

robot-designer explanations. We use model reconciliation [3, 5, 20] as

our base explanatory framework and extend it to support explaining

the role of design choices. One aspect to remember here is that, as

discussed before, the designermaywant to hide the design influence

from the user. Therefore an objective explainer can rarely be the

1
Even though we refer to the AI agent as a robot, no part of this approach is limited to

physically embodied agents.

designer or a system sanctioned or built by the designer. A more

plausible role these systems could take would be that of an external,

post-hoc system being employed by the user to make sense of the

decision of an automated system. This necessarily restricts the

information the explanation generation system might have access

to. We generally adhere to information that can either be learned

(possibly through observation of the robot and environment) or

can be hypothesized directly from observed behavior.

The robot-designer explanations are based on the robot model

(M𝑅
), the user’s mental model of the robot (M𝐻

), the plan to be

explained (𝜋𝑅 ), the set of fluents whose values the designer could

potentially influence (F D ⊆ 𝐹 ), and the potential designer goal

(GD ). As this is the first work considering designer intentions,

we will focus on cases where a single fluent set and an individual

hypothesis for the designer’s goal are provided initially.

As discussed, our final explanation consists of two parts. (1) Ex-

plaining the robot behavior given the current environment, lever-

aging model reconciliation explanations [20]. Here, the explanation

consists of information about the robot model,M𝑅
, which, when

incorporated into the human model,M𝐻
, will allow the user to

correctly evaluate the robot plan against the robot goal. (2) Model

updates and counterfactual explanation [26]. The model updates

will establish the fact that in the current model, the optimal plan

always includes achieving the designer’s goal, GD . The counter-
factual explanation will point out a set of initial state fluent values

whose value change could result in an optimal plan for the robot

goal that no longer achieves GD . More formally, we define the

explanation problem as follows:

Definition 3. A robot-designer explanation problem is repre-
sented as a tuple DEP = ⟨M𝑅,M𝐻 , 𝜋𝑅, F D ,GD⟩. Here, the pri-
mary components for the robot explanation include the robot model
M𝑅 , the human modelM𝐻 , and the robot plan 𝜋𝑅 . The designer
information being used includes the fluents that can be changed by
the designer (F D ) and the designer goal (GD ). TheM𝑅 used here is
assumed to be a result of an environment design process.

This defines a robot-designer explanation problem, and now

we can formally define what a solution to this problem, i.e., an

explanation, looks like.

Definition 4. For a given robot-designer explanation problem
DEP = ⟨M𝑅,M𝐻 , 𝜋𝑅, F D ,GD⟩, a valid explanation consists of
tuple of the form E = ⟨E𝑅, 𝐸D⟩, where E𝑅 is the robot explanation
and 𝐸D is the designer explanation of the form 𝐸D = ⟨E𝜇 , E𝜅 ⟩, such
that the following conditions are met

C1- For E𝑅 = ⟨E+
𝑅
, E−

𝑅
⟩, E𝜇 = ⟨E+𝜇 , E−𝜇 ⟩ and E𝜅 = ⟨E+𝜅 , E−𝜅 ⟩, are

such that,
(1) E+

𝑅
⊆ Γ(M𝑅) \ Γ(M𝐻 ) and E−

𝑅
⊆ Γ(M𝐻 )

(2) E+𝜇 ⊆ Γ(M𝑅) \ Γ(M𝐻 ) and E−𝜇 ⊆ Γ(M𝐻 )
(3) E+𝜅 ∪ E−𝜅 ⊆ F D .

C2- The plan 𝜋𝑅 is optimal for modelM𝐻 + E𝑅 .
C3- For the modelM𝐻 +E𝑅 +E𝜇 there exists no optimal plan such

that it doesn’t satisfy GD and 𝜋𝑅 is still optimal.
C4- for modelM′ = M𝐻 + E𝑅 + E𝜇 + E𝜅 , there exists an opti-

mal plan 𝜋 ′, such that 𝛿M
′ (𝐼 ′ , 𝜋 ′) ̸|= GD and 𝐶M

′ (𝜋 ′) ≤
𝐶M

′ (𝜋 ′).
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In the case of the designer’s explanation E𝜇 captures the model

update part, and E𝜅 the counterfactual part. Condition C1 sets

the requirements for the model updates provided as part of the

robot explanation to be consistent withM𝑅
. Similarly, it states

that the designer explanation component should only consider

changing fluents that are under the designer’s control. The next

three conditions, C2-C4, ensure that each explanation component

meets its required purpose. The robot’s explanation on its own

shows why the current plan is optimal in the given environment.

Returning to Figure 2, the robot’s explanation would be: ’The robot

is wide. The robot can only move through spaces that are wide.’

This would help the user understand why the red path is optimal

rather than the green path.

The first part of the designer’s explanation will establish the

fact that achieving the designer’s goal will always be part of any

optimal strategy in the given environment. The second part of the

designer’s explanation identifies some initial state fluents that the

designer could influence. If changed, these fluents’ values could

allow for optimal plans that might not have met the designer’s goals.

This communicates the counterfactual cases where the designer’s

goals could have been avoided. Consider Figure 2, if the designer

only changed the robot’s facing direction from right to left without

placing boxes on the left side of the green path, the robot would

follow the green path which would be optimal.

Note that not all valid explanations may be equally effective or

preferred by the user. After all, selectivity has been widely recog-

nized as one of the central characteristics of preferred explanations

[15]. As such, we need to minimize the amount of information

passed to the user. Rather than optimizing the two components

separately, we aim to minimize the total amount of information

passed to the user.

Definition 5. A given explanation pair, E = ⟨E𝑅, 𝐸D⟩, is con-
sidered a minimal explanation for the robot-designer explanation
problem DEP, if (a) it is valid explanation for DEP, i.e., it meets
the conditions listed in Definition 4 with respect toDEP and (b) there
exists no other valid explanation 𝐸 = ⟨ ˆE𝑅, 𝐸D⟩, such that

| ˆE+𝑅 | + | ˆE
−
𝑅 | + | ˆE

+
𝜇 | + | ˆE−𝜇 | + | ˆE+𝜅 | + | ˆE−𝜅 | <

|E+𝑅 | + |E
−
𝑅 | + |E

+
𝜇 | + |E−𝜇 | + |E+𝜅 | + |E−𝜅 |

We measure the cost associated with each explanation by the

number of model updates it communicates. This measure was moti-

vated both by its intuitiveness and generality. However, it is worth

noting that we can easily associate an arbitrary cost function with

each model update with minimal changes to the formulation and

the explanation generation algorithm we will discuss next.

Before we discuss the algorithm we will first introduce some

important properties of the robot-designer explanation.

Proposition 1. For a given given robot-designer explanation prob-
lem DEP = ⟨M𝑅,M𝐻 , 𝜋𝑅, F D ,GD⟩:

(1) We can guarantee that a model update E𝑅 exists, such that,
both conditions C1 and C2 are met.

(2) We can guarantee that a set of model update E𝜇 exists, such
that, both conditions C1 and C3 are met.

(3) There might not exist a model update E𝜅 that meets C1, & C4.

The first property arises from the fact that one can guarantee to

meet 𝐶1 and 𝐶2, by just communicating the complete modelM𝑅
.

After all,M𝑅
identified 𝜋𝑅 as the optimal plan.

Similarly, since the current problem is the result of a design pro-

cess, communicating the entire model will ensure that all possible

optimal plans will satisfy the designer’s goal, thus guaranteeing

the existence of E𝜇 .
However, the counterfactual part of the designer explanation

isn’t guaranteed because the designer’s goal could have been of the

form that the initial state already guarantees its achievement (i.e.,

the solution to the original design problem was an empty sequence).

Additionally, F D could be empty or might not have influenced the

behavior of the plan.

The next property will deal with comparing robot explanations

found as part of the minimal robot-designer explanation and mini-

mally complete explanation (MCE) for the plan [20]:

Proposition 2. Let E𝑅 be part of a minimal robot-domain ex-
planation for a problem DEP = ⟨M𝑅,M𝐻 , 𝜋𝑅, F D ,GD⟩. We can
guarantee that |E𝑅 | ≥ |E𝑀𝐶𝐸 |, where E𝑀𝐶𝐸 is the MCE for 𝜋𝑅 given
the modelsM𝑅 andM𝐻 .

This property follows from the fact that any robot explanation

for DEP meets the criteria for an MCE and, as such, can be a

candidate for an MCE explanation. Note that the robot explanation

here is found as part of the overall minimal solution toDEP. Since
these are not required for MCE, it is possible to find smaller model

updates set that meets the requirement for MCE but not those for

the minimal explanation for DEP.
Finally, another explanation property in the model reconciliation

framework is that of monotonicity [20]. Namely, an explanation

is non-monotonic if additional model updates can invalidate it. In

our case, it means adding new model updates to the robot explana-

tion and/or designer explanation component, causing it to violate

conditions C2 and or C3.

Proposition 3. A minimal robot-designer explanation 𝐸∗ for a
problem DEP need not be monotonic.

The non-monotonicity of the robot explanation component di-

rectly follows the argument proposed through the concept of model

reconciliation. New information about new preconditions (while

missing information about other actions add effects), might cause

one to think a plan previously thought to be optimal is now invalid

(thus violating C2). Similar arguments can also be made for the

model update part of the designer explanation. For the counter-

factual component, C4 might have been satisfied by initial state

changes because it now made new plans possible. However, ad-

ditional changes to the initial state could invalidate those plans,

hence violating C4.

4.1 Identifying Minimal Robot-Designer
Explanation Set

To identify the minimal robot-designer explanation we will use

model space search which has been used previously for both model

reconciliation [20] and design [14]. We will start by focusing on

a breadth-first search. However, one could convert it into an in-

formed search by incorporating various model-space search heuris-

tics considered in the literature (cf. [20]). Algorithm 1 provides
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the pseudo-code for our method. Note that the goal of the robot-

designer explanation is not the same as other model reconciliation

explanations, such as MCE. Here, we are tracking three sets of

model updates, one of which is counterfactual changes. Here, the

successor generator corresponding to the last explanation compo-

nent is only considered in states where the first two components

are found. Finally, unlike the MCE, we can’t guarantee that an

explanation always exists.

We start by initializing the search queuewith empty explanations.

At each node expansion step, we test for conditions C2, C3 and

C4 from Definition 4: Test_for_C2(M𝐻 + 𝐸𝑅 ) checks to see if 𝜋𝑅

is optimal in the resultant model; Test_for_C3(M𝐻 + ˆE𝑅 + ˆE𝜇 )
tests if in the model resulting from applying

ˆE𝑅 + ˆE𝜇 all optimal

plans here would satisfy GD ; Finally, Test_for_C4(M𝐻 + ˆE𝑅 +
ˆE𝜇 + ˆE𝜅 ) checks if the introduction of

ˆE𝜅 , results in at least one

optimal plan that doesn’t satisfy GD . We don’t need to test for

C1 explicitly because our successor function guarantees that any

model updates considered will satisfy it. At the end of the search,

if no robot-designer explanation was identified, a minimal robot

explanation will be returned and the model update component

of the designer explanation that it came across during the search

(which are guaranteed to exist).

Proposition 4. Algorithm 1 is guaranteed to return the optimal
robot-designer explanation, if one exists.

The proof is pretty straightforward. Even though, the successor

function skips certain possible successors, the completeness or

optimality of the search algorithm is not affected. This is due to the

fact that model updates are inherently captured as set operations;

as such it is commutable. The search still covers all unique model

update sets, in the order of the total size of model updates.

5 COMPUTATIONAL EXPERIMENTS ON IPC
DOMAINS

5.1 Evaluation Setting
We implemented our proposed framework to evaluate the compu-

tational constraints of our approach over different baselines. In our

experiments, we assign uniform unit costs for all model updates

and utilize Fast Downward with landmark-cut heuristic for model-

space searches. The robot model is derived from the original IPC

domains and problem instances, while the human model is gener-

ated by randomly removing preconditions or delete effects from

the original domain. We evaluate five classical planning domains

from the planning literature
2
, each with four problem instances,

and three human domains. All evaluations were conducted on a

system equipped with 16GB RAM and an Apple M1 3.2GHz CPU.

To create the designer goals, we first obtain the robot’s optimal

plan for each domain problem instance pair and identify the final

predicates available after iterating the robot’s optimal plan to the

goal state. We then randomly select one predicate that is not part

of the initial state to serve as the designer goal.

2
http://ipc.icaps-conference.org

Algorithm 1 Find the minimal explanation for a robot-designer

explanation problem EP.
Input: EP = ⟨M𝑅,M𝐻 , 𝜋𝑅, FD , GD ⟩
Output: An explanation 𝐸.

Fringe← 𝑄𝑢𝑒𝑢𝑒 ( )
ˆE𝑅 ← ⟨{}, {}⟩, ˆE𝜇 ← ⟨{}, {}⟩, ˆE𝜅 ← ⟨{}, {}⟩
Fringe.add(⟨𝐸𝑅, ˆE𝜇 , ˆE𝜅 ⟩)
while Fringe not empty do

ˆE𝑅, ˆE𝜇 , ˆE𝜅 ← Fringe.pop()

C2_condition_met← Test_for_C2(M𝐻 + ˆE𝑅 )
C3_condition_met← Test_for_C3(M𝐻 + ˆE𝑅 + ˆE𝜇 )
C4_condition_met← Test_for_C4(M𝐻 + ˆE𝑅 + ˆE𝜇 + ˆE𝜅 )
if All three conditions met then

return ⟨ ˆE𝑅, ˆE𝜇 , ˆE𝜅 ⟩
else

for 𝑓 ∈ Γ (M𝑅 ) \ Γ (M𝐻 ) do
ˆE+
𝑅
, ˆE−

𝑅
← ˆE𝑅 ; ˆE+𝜇 , ˆE−𝜇 ← ˆE𝜇

¯E+
𝑅
← ˆE+

𝑅
∪ { 𝑓 }; ¯E+𝜇 ← ˆE+𝜇 ∪ { 𝑓 }

¯E𝑅 ← ⟨ ¯E+
𝑅
, ˆE−

𝑅
⟩; ¯E𝜇 ← ⟨ ¯E+𝜇 , ˆE−𝜇 ⟩

Fringe.push(⟨ ¯E𝑅, ˆE𝜇 , ˆE+𝜅 ⟩)
Fringe.push(⟨ ˆE𝑅, ¯E𝜇 , ˆE+𝜅 ⟩)

end for
for 𝑓 ∈ Γ (M𝐻 ) \ Γ (M𝑅 ) do

ˆE+
𝑅
, ˆE−

𝑅
← ˆE𝑅 ; ˆE+𝜇 , ˆE−𝜇 ← ˆE𝜇

ˆE−
𝑅
← ˆE−

𝑅
∪ { 𝑓 }; ˆE−𝜇 ← ˆE−𝜇 ∪ { 𝑓 }

¯E𝑅 ← ⟨ ˆE+
𝑅
, ¯E−

𝑅
⟩; ¯E𝜇 ← ⟨ ˆE+𝜇 , ¯E−𝜇 ⟩

Fringe.push(⟨ ¯E𝑅, ˆE𝜇 , ˆE+𝜅 ⟩)
Fringe.push(⟨ ˆE𝑅, ¯E𝜇 , ˆE+𝜅 ⟩)

end for
if C2 and C3 met then

for 𝑓 ∈ FD do
ˆE+𝜅 , ˆE−𝜅 ← ˆE𝜅
if 𝑓 ∈ 𝐼𝑅 then

ˆE+𝜅 ← ˆE+𝜅 ∪ { 𝑓 }
else

ˆE−D ← ˆE−D ∪ { 𝑓 }
end if
ˆE+𝜅 ← ⟨ ˆE+𝜅 , ˆE−𝜅 ⟩
Fringe.push(⟨ ˆE𝑅, ˆE𝜇 , ˆE𝜅 ⟩)

end for
end if

end if
end while
return Minimal

ˆE𝑅 and
ˆE𝜇 that satisfies C2 and C3.

5.2 Results
Our primary goal with these experiments was to both evaluate

the computational characteristics of our proposed algorithm over

different baselines, and also to compare it against the standard

model-reconciliation problem implementation. Table 1 compares

the time taken to find minimal complete explanations (MCE) [5]

with the time taken to compute minimal explanations for a robot-

designer explanation using our proposed algorithm. The results

presented are averaged across the different human models. Note

that the use of different humanmodels means that we have different

human plans, and explanations. One of the reasons MCEs makes

for a useful point of comparison is because, similar to our approach,
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Table 1: Performance metrics across IPC domains, averaged across human-domains. |𝜋𝑅 | and |𝜋𝐻 | denote the lengths of robot
and human plans, respectively. The table has two main columns: the first presents |E |, the minimal complete explanation
(MCE) length, and its computation time (seconds). The second shows metrics for our algorithm, including |E𝑅 | and |E𝐷 |, the
lengths of robot and designer explanation parts, along with their computation time (seconds).

MCE Robot-Designer

Domains Problem |𝜋𝑅 | |𝜋𝐻 | | E | Time(s) | E𝑅 | |𝐸𝐷 | | E𝑅 | + |𝐸𝐷 | Time(s)

Depots

prob1 10 5.3 ± 2.3 1.0 ± 0.0 0.3 ± 0.0 1.0 ± 0.0 1.0 2.0 ± 0.0 29.1 ± 26.5

prob2 5 2.7 ± 1.2 1.0 ± 0.0 0.3 ± 0.0 1.0 ± 0.0 1.0 2.0 ± 0.0 46.7 ± 19.9

prob3 10 5.0 ± 1.7 1.0 ± 0.0 0.3 ± 0.0 1.0 ± 0.0 1.0 2.0 ± 0.0 50.8 ± 28.3

prob4 5 2.3 ± 0.6 1.0 ± 0.0 0.3 ± 0.0 1.0 ± 0.0 1.0 2.0 ± 0.0 18.7 ± 10.7

Driverlog

prob1 7 3.3 ± 0.6 1.0 ± 0.0 0.2 ± 0.1 1.0 ± 0.0 2.0 3.0 ± 0.0 75.8 ± 10.1

prob2 9 7.0 ± 1 1.3 ± 0.6 0.2 ± 0.1 1.3 ± 0.6 1.0 2.3 ± 0.6 54.7 ± 17.5

prob3 7 5.7 ± 0.6 1.3 ± 0.6 0.2 ± 0.1 1.3 ± 0.6 1.0 2.3 ± 0.6 43.9 ± 36.9

prob4 8 5.0 ± 1.0 1.7 ± 0.6 0.3 ± 0.0 1.7 ± 0.6 1.0 2.7 ± 0.6 51.3 ± 21.0

Elevator

prob1 4 2.0 ± 0.0 1.3 ± 0.6 0.2 ± 0.1 1.3 ± 0.6 2.0 3.3 ± 0.6 33.7 ± 18.7

prob2 11 8 ± 1.7 1.3 ± 0.6 0.2 ± 0.1 1.3 ± 0.6 1.0 2.3 ± 0.6 29.5 ± 14.7

prob3 10 7.3 ± 1.2 1.3 ± 0.6 0.2 ± 0.1 1.3 ± 0.6 1.0 2.3 ± 0.6 39.6 ± 20.4

prob4 7 4.7 ± 0.6 1.3 ± 0.6 0.2 ± 0.1 1.3 ± 0.6 1.0 2.3 ± 0.6 38.7 ± 21.1

Logistics

prob1 5 3.3 ± 1.2 1.3 ± 0.6 0.3 ± 0.2 1.3 ± 0.6 1.0 2.3 ± 0.6 17.1 ± 16.7

prob2 8 4.0 ± 1.0 1.7 ± 0.6 0.4 ± 0.2 1.7 ± 0.6 1.0 2.7 ± 0.6 51.0 ± 24.3

prob3 3 1.7 ± 0.6 1.3 ± 0.6 0.4 ± 0.3 1.3 ± 0.6 1.0 2.3 ± 0.6 7.9 ± 7.4

prob4 7 5.0 ± 1.7 1.3 ± 0.6 0.3 ± 0.2 1.3 ± 0.6 1.0 2.3 ± 0.6 22.7 ± 22.9

Zenotravel

prob1 7 3.7 ± 1.2 1.7 ± 0.6 0.3 ± 0.1 1.7 ± 0.6 1.0 2.7 ± 0.6 23.3 ± 23.8

prob2 8 4.3 ± 1.5 1.3 ± 0.6 0.2 ± 0.1 1.3 ± 0.6 1.0 2.3 ± 0.6 9.0 ± 7.3

prob3 8 6.3 ± 0.6 1.7 ± 0.6 0.2 ± 0.1 1.7 ± 0.6 1.0 2.7 ± 0.6 30.9 ± 22.2

prob4 9 6.7 ± 0.6 1.3 ± 0.6 0.2 ± 0.1 1.3 ± 0.6 1.0 2.3 ± 0.6 16.2 ± 15.1

MCE algorithms also leverages model-space search. However, un-

like our approach, they search for potential explanations over a

much smaller space. As expected, the time taken to find MCE was

much smaller than the time required to find the robot-designer

explanation. It is worth noting that the robot explanations found

in these domains were exactly the same as the size of MCE. Addi-

tionally, the designer explanations found here consisted only of the

counterfactual component E𝜅 (i.e., |𝐸D | = |E𝜅 |). Even though the

time taken by our method was larger we did see that, across all the

domains, the time was small enough to be used effectively.

6 USER STUDY
To test the effects of designer explanations on user decision making

we designed a human-robot collaborative decision task. The user

was tasked with helping robots navigate from a start position to a

goal location by choosing one out of several possible routes (Fig-

ure 2), with different scenarios incorporating different robots. The

explicit aim of the task, as presented to the user, was to choose a

route that will get the robot there safely. The implicit aim, derived

from the nature of our participants being recruited through crowd-

sourcing, was to do so in minimum time. Participants received a

fixed payment regardless of how long they spend on each task. This

meant that the less time they spent on the task, the more money

they made per hour. This study design aimed to emphasises the

difference that can commonly be found between users’ implicit

goals and the professed task goal.

As is common in many decision making tasks there are 2 ad-

ditional actors in this environment, with different task goals; the

robot and the designer. The robot’s goals were explicit and known

to the user, and they were to achieve the task safely with minimum

steps taken. Note that less steps does not directly mean less time.

Hence, the robot’s explicit goal and the user’s implicit goal were

not directly aligned. The robot might also have some physical re-

strictions that the user does not know about (such as an inability

to go through water).

The final actor is the designer. The designer (namely us) can

influence how the environment is designed as well as the robot’s

initial position and orientation and how the robot operates. The

designer’s aim in this task was for the user to view ads, strategically

spread out, in the environment. Note that viewing the ads was

costly to the user’s implicit goal, since each ad takes an additional

4 seconds to view before proceeding with the task.

The Designer could influence the outcome of the task in 2 ways.

The first includes changes made deliberately to the robot so as to

influence a certain type of behaviour. These include creating a robot

that cannot rotate, creating a wide robot, the initial orientation and

position of the robot and adding weights to one side of the robot

making turning to one side costlier than to another. The second way

the designer could influence task outcome was through changing

the environment by placing boxes as obstacles in certain, strategic,

locations or spilling water on the floor.

Participants were presented with 6 different scenarios (with

different robots), shown in random order. In 2 of them the designer

influenced the robot capabilities and/or start position, in another 2

the designer influenced the environment design and in the last 2

the designer influenced both robot and environment. Figure 2 is an

example in which the designer influenced both the environment,

by placing the boxes and ads strategically in the domain and the

robot, by making him too wide to pass safely in the middle path

and orienting him to the left. In each scenario, the robot had to

recommend one path out of the path options, and the participants

needed to either agree or select an alternative path. Three of the

scenarios (half) involved the participants selecting between 3 path

options (like in Figure 2), out of which one path featured ads, one

didn’t and the third was a path that the robot couldn’t traverse.
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And the other three scenarios involved selecting between 2 paths,

one with ads and one without.

We ran a between subject study in which we recruited 120 par-

ticipants through Prolific and divided them into 3 equal cohorts.

The cohorts differed by the type of explanations presented to the

users; 1) No explanations 2) Robot explanations and 3) Robot and

designer explanations. Consider the example in Figure 2. In this

scenario the robot recommends for the participant to take path

3. The user can either agree or select a different path. In the first

cohort no explanation of the robot recommendation is provided.

In the second cohort users are provided with a robot-based expla-

nation, i.e., "Robot SVY7 is wide. The space between the blocks is

narrow. The robot can only move through spaces that are wide.

The selected path is one of the shortest possible paths to the goal."

Choosing this path supports the robot’s explicit goal of getting to

the target safely but also with a minimum number of steps. In the

third cohort participants are provided with both the robot-based

explanation as well as the following explanation for the designer’s

choices: "The designer’s goal is for the robot to pass by the ads. To

achieve this, the designer positioned the robot facing to the left

and placed the boxes to make the passage not wide." Following the

choice the users made they were shown a brief video of the robot

navigating through the selected path. Paths with ads were, on aver-

age, about 37.3% longer than paths without ads, since videos were

relatively short this ranged in an increase of roughly an additional

3 seconds per ad.

After each scenario participants were asked to answer user-

reported trust and explanation satisfaction questionnaires. For trust,

we used the Muir questionnaire [17] to assess users’ trust in both

the robot and the designer. For explanation satisfaction, we used the

explanation satisfaction scale [13] to measure participants’ satisfac-

tion with robot explanations in the robot explanation cohort, and

with both robot and designer explanations in the robot-designer

explanation cohort.

6.1 Results
We conducted our experiment on Prolific with 120 participants who

had an approval rate of over 90% allocated randomly to the different

cohorts. Average study time was 18 minutes, and participants were

compensated with $. Of the 120 participants, 52.5% identified as

women, 45.0% as men, and 2.5% as non-binary. The majority of

participants (35.0%) were in the 25-34 age.

The results of our study were counter intuitive and we feel that

the source of the problem originates from two aspects; the first is

that the price participants had to pay, i.e. the extra time they had

to spend watching the ads, was not significant to influence their

decision making. The second is that gaining an understanding into

the designer’s goals also led to an increase in trust on behalf of

the participants. Let’s begin our result analysis by looking at the

results of the trust questionnaires.

6.1.1 Trust. As you recall, at the end of the study all cohorts were
asked to answer 4 questions about their trust in the robot and,

separately, their trust in the designer [17]. The results are presented

in Table 2.

Table 2: Mean trust in robot and designer, SD in parenthesis.

No Ex Robot Ex Designer Ex

Robot Trust 0.74 (0.28) 0.76 (0.24) 0.81 (0.22)

Designer Trust 0.65 (0.24) 0.71 (0.23) 0.77 (0.24)

Trust in Robot. Overall the average trust results in the robot were

highest for the designer explanation cohort. This was significantly

higher than the no explanation cohort (𝑝 = 0.003) and marginally

significant when compared to the robot explanation cohort (𝑝 =

0.07). Counter intuitively, understanding the designer’s intentions

has significantly increased user trust in the robot itself. In particular,

in answer to question 4 "How much do you trust the robot?" there

was a significant difference in favour of the designer explanation

when comparing against both the robot explanation cohort and the

cohort that received no explanation at all (𝑝 < 0.04 for both).

Trust in Designer. These results persisted when evaluating trust

in the designer. Overall, average trust results in the designer were

highest for the designer explanation cohort (𝑝 < 0.03 for both). In

particular, explaining the designer’s intentions gave participants a

higher sense of confidence in their understanding of the designer.

In answer to question 1 "To what extent can the designer’s choices

be predicted?" there was a significant difference in favour of the

designer explanation when comparing against both the robot ex-

planation cohort and the cohort that received no explanation at

all (𝑝 < 0.01 for both). Also, when considering question 4 "How

much do you trust the designer?" there was a significant differ-

ence in favour of the designer explanation when comparing against

both the robot explanation cohort and the cohort that received no

explanation at all (𝑝 < 0.02 for both).

6.1.2 User Performance. Given that the designer explanations in-

creased user trust in both designer and robot, how did this effect

overall user performance? We measured user success by consid-

ering both the achievement of the explicit goal (getting the robot

safely to the flag) as well as the implicit goal of reducing task time

by not viewing the ads. We therefore measured, in how many in-

stances did users choose the "correct" alternative path that would

both get the robot safely to the end goal but also get it there in

minimum time (for them) by not watching the ads?

We separated the scenarios into two cases; 1) the three scenarios

in which there were only two options, the path recommended by the

robot and the alternative ’ad-free’ path, and 2) the three scenarios

in which there were three options, the path recommended by the

robot, the alternative ’ad-free’ path and a potentially shorter path

that the robot couldn’t traverse, which would result in a mission

fail. The results are presented separately in Figure 3.

Looking at the first set of scenarios, the highest success rate

(55.8%) was obtained by the robot explanations cohort and the low-

est by the designer explanations cohort (18.3%) (𝑝 < 0.001 according

to Chi-Squared Test). These results persisted in the second set of

scenarios, with the highest 35% success for the robot explanations

cohort and only 9.2% success for the designer explanation cohort.

The highest fail rate was obtained by the no explanation cohort,

with 45.8% and the lowest by the robot explanation cohort, with
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24.2%. The designer explanation cohort obtained a fail rate of 30.9%

(𝑝 < 0.001 according to Chi-Squared Test).

Ads path Alt. path

No Ex. Robot Ex. Designer Ex.
0.000 %

20.000 %

40.000 %

60.000 %

80.000 %

100.000 %
Fail path Ads path Alt. path

No Ex. Robot Ex. Designer Ex.
0.000 %

20.000 %

40.000 %

60.000 %

80.000 %

100.000 %

Figure 3: User performance as presented by path choice.

6.1.3 Explanation Satisfaction. In terms of explanation satisfaction,

no statistical significance was found between the robot explanation

and designer explanation cohorts, following a pairwise T-test be-

tween both cohorts (𝑝 > 0.2 for all tests). The average results are

presented in Table 3 with Standard Deviation in parenthesis.

Table 3: Mean explanation satisfaction in robot and designer
separately among the explanation cohorts, SD in parenthesis.

Robot Ex Cohort Designer Ex Cohort

Robot Exp Sat 0.61 (0.14) 0.62 (0.17)

Designer Exp Sat 0.61 (0.14) 0.58 (0.18)

7 DISCUSSION
So why did the designer explanations increase trust, both in the

designer and the robot? We believe this is the key question to

answer, the higher trust having a direct effect on user performance.

We can attempt to understand these results in the light of existing

research that suggests that any explanations can persuade people

to change their minds[10] or that people can be persuaded as much

by meaningless explanations as they are by meaningful ones [7].

There have also beenwarnings that there may be a problemwith the

common practice of measuring the effectiveness of an explanation

in XAI by its ability to persuade [16]. However, when reviewing the

themes emerging from the qualitative open-ended question "Which

part of the explanations did you find most useful and why?", we

see a different story.

Participants who were exposed to robot explanations hardly

addressed the ads at all in response to this question. When they did

it was generally expressed as confusion; "To me the explanations

were not very useful at all. I understood them but I didn’t understand

why the robots would always choose the way that had ads.", "I’m

confused by this activity! I’m not sure about the robot, I think he

should have been able to go through the green path. He wanted

me to watch ads! ", "There was no explanation of why the robot

chose the path with the ads when the distance was the same for

both paths."

On the other hand participants exposed to the designer expla-

nations evinced an actual understanding of the designer and robot

intentions and more frequently alluded to the ads in their response;

"the goals of the designer in making sure the ads get triggered", "it

seemed the designer always wanted to show the ads", "whether the

robot could turn or had to move a certain direction would make

it a lot easier for the designer to force it to go along the path that

contained the ads", "the designers (goal) was just to follow the ads",

"the robot and designer will always want it to pass by the Ads",

"The way the designer would always fit in the ads in the path of

the robot was pretty smart", "the robot was to take the shortest

route avoiding obstacles and pass by the ads due to the designers

choices".

From these responses we can determine that not only did partic-

ipants engage with the explanations but they also formed a more

accurate understanding of the different actors of the system. In

fact, we believe that the designer explanations worked so well that

participants not only understood what the designer goal was but

rather often strove to assist the designer in fulfilling it rather then

considering their own personal preferences. This was evident from

feedback such as "it was the designer’s wish that the robot passed

the ads so that was the choice to make otherwise you might be

failing the brief", "What I didn’t understand was whether I was

supposed to determine the robot’s path so that I avoided the ads

or whether I was supposed to see them". We conclude that the

differences in task time currently imposed, between watching and

not watching the ads, was not sufficient motivation for the designer

goal to contradict their own goals, hence it was easier to align with.

8 CONCLUSION AND LIMITATIONS
We have emphasized and formalized a crucial and, until now, over-

looked aspect of generating explanations for automated systems:

the presence of a hidden actor—the designer—whose goals and inten-
tions may not align with those of the user but should still be taken

into account. We have instantiated our explanation framework

on the classical planning Sokoban environment and performed a

proof-of-concept user study in which participants were exposed

to both agent and designer explanations. Our results have shown

that designer explanations can increase user trust in the system

and help users acquire a deeper level of task/actor understanding.

Our study should be viewed in light of the following limitations.

As a first study of this nature, introducing the concept of designer

explanations, we did not know to what extend users would engage

with and understand the concept of a designer. This led to potential

changes we hope to include in future. Possible experiment settings

could include increasing user cost to using the agent, monetary re-

wards to participants for quicker performance and imposing some

penalty for following a failed path. It is also possible that the man-

ner in which the explanations were presented had an effect on

user performance, which we hope to explore through a future user

study. And lastly, please note that the empirical experiments were

conducted with a single type of stakeholder (laypeople) and within

demographics which speak English as a primary language. Hence,

we don’t know how these explanations affect user understanding,

performance, trust and explanation satisfaction when tested on a

more multicultural and multilingual group.
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