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ABSTRACT
Classically, planning tasks are studied as a two-step process: plan

creation and plan execution. In situations where plan creation is

slow (for example, due to expensive information access or complex

constraints), a natural speed-up tactic is interleaving planning and

execution. We implement such an approach with an enumeration

algorithm that, after little preprocessing time, outputs parts of a

plan one by one with little delay in-between consecutive outputs.

As concrete planning task, we consider efficient connectivity in

a network formalized as the minimum spanning tree problem in

all four standard variants: (un)weighted (un)directed graphs. Solu-

tion parts to be emitted one by one for this concrete task are the

individual edges that form the final tree.

We show with algorithmic upper bounds and matching uncondi-

tional adversary lower bounds that efficient enumeration is possible

for three of four problem variants; specifically for undirected un-

weighted graphs (delay in the order of the average degree), as well

as graphs with either weights (delay in the order of the maximum

degree and the average runtime per emitted edge of a total-time

algorithm) or directions (delay in the order of the maximum degree).

For graphs with both weighted and directed edges, we show that

no meaningful enumeration is possible.

Finally, with experiments on random undirected unweighted

graphs, we show that the theoretical advantage of little preprocess-

ing and delay carries over to practice.
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1 INTRODUCTION
In many complex planning settings, such as path finding for robots

in a storage facility, the combined time of planning and execution

determines the overall efficiency. A natural way of optimizing this

is to start execution before fully finishing planning [33, 45]. This

approach generalizes to all kinds of multi-step processes, in which
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Figure 1: Time to first output and total time of MST enumer-
ation (e) compared to the runtime of Prim’s MST algorithm.

the output of an early step is needed to start working on a later

one. In fact, with large input instances it can even be beneficial

to employ an algorithm with worse total-time, if that algorithm

produces the solution in the form of many solution parts and (while

still running) emits them for following steps to process [28].

But how much speedup can actually be gained by this approach?

We tackle this question for one of the most fundamental problems

on networks: cost-efficient connectivity. Be it networks for commu-

nication, electricity, transport or water supply – both for planning

problems and for the analysis of existing infrastructure it is a cen-

tral task to connect every node to all other nodes by a Minimum

Spanning Tree (MST). Besides being useful as output on their own,

MSTs are also used as input for many complex algorithmic tasks,

e. g. for Coverage Path Planning [40], or in data analytics for graph-

based clustering [19, 44], and for image segmentation [15]. In this

work, we consider MSTs in general and discuss in Section 5 next

steps to bringing our results closer to the motivating applications.

Naturally, there is an extensive history of research on the com-

plexity of computing a (minimum) spanning tree for (un)directed

and (un)weighted graphs – that is if by complexity one refers to the

total-time complexity of the problem: How many computation steps

does it take in total to produce a complete solution as output? With

the above motivation of starting next steps early, recently several

core algorithmic problems have been analyzed using terminology

from enumeration complexity [39]: How much preprocessing time

does it take at most to produce a first part of the solution, and what

is the worst case delay in-between two consecutive solution parts

that are emitted? (Note that in contrast to classical enumeration

this question does not ask to enumerate all solutions to an input

instance, but to enumerate all parts of a single solution.) Ideally,

an algorithm does not need to spend any time on preprocessing

but is able to immediately emit solution parts with little delay. On

the other end of the spectrum are problems for which the time to

compute even the first few parts of a solution is in the same order

as the time required to solve the problem completely. The goal
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therefore is to understand possible tradeoffs between preprocessing

time and delay.

Among the problems studied with this perspective are incremen-

tal sorting [31, 35], shuffling [6], computation of all pairs shortest

distances in a graph [7] and finding a topological ordering in a

directed acyclic graph for solving scheduling problems [33]. Inter-

estingly, one of the applications of incremental sorting is speed-

ing up total-time MST algorithms; improved also as Filter Kruskal

in [34]. While these algorithms employ the incremental idea for sub

problems, we go one step further and discuss MST itself in terms

of enumerating solution parts.

Our Contribution. We present a family of efficient algorithms

that enumerate edges of a spanning tree for a given input graph. For

MSTs of weighted undirected graphs, we experimentally confirm in

Section 4 that our enumeration approach leads to a smaller time to

a first emitted solution part and small delay in practice, with only

a constant overhead in the total time (see Figure 1).

We complement the algorithmic results with lower bounds to

almost completely characterize the complexity of enumerating the

edges of a spanning tree for a connected graph with 𝑛 vertices and

𝑚 edges. Table 1 summarizes our results for all typical edge types:

• Undirected unweighted edges allow for a delay in the order

of the average degree Δ; we derive a matching lower bound

from the best possible total-time algorithm (Section 3.1).

• For undirected weighted edges we show a lower bound in

the order of the maximum degree Δ on either preprocessing

time or delay. We also present algorithms that, for small Δ
or with 𝑂 (𝑛) preprocessing time, homogeneously spread

out the computation time T of a total-time algorithm for

minimum spanning trees and emit the 𝑛 − 1 solution parts

with delay in 𝑂 ( T
𝑛
) (Section 3.2).

• Given a directed unweighted graph along with the root for

a spanning tree, computing a shortest path tree with delay

in the order of the maximum out-degree Δ+
[7] solves the

problem with optimal delay, as we show with a matching

lower bound (Section 3.3)

• Without given root orwhen the graph has directedweighted
edges, no algorithm can emit any part of a solution after less

than Ω(𝑚) time. For unweighted edges this already matches

the total time needed to solve the instance. But also the

small remaining gap to existing total time algorithms for

the weighted case (see below for related work) rules out any

meaningful enumeration (Section 3.4).

We build upon the model and techniques introduced in [7]. We

formalize these in Section 2 where we also describe the general

form of the algorithms we develop. For some theorems (marked

with *) we only present proof ideas due to space constraints. The

omitted proofs along with all experiment code can be found in the

full version of the paper [8].

Our algorithms usually start with a targeted search for a set of

easy-to-find solution parts. As this is then extended to a full solution

by tailored versions of existing algorithms for finding spanning

trees, it makes sense to summarize the previous work in this field:

A spanning tree for an unweighted graph can be computed in

𝑂 (𝑚 + 𝑛), e. g. with a depth first search from a given root [11]; we

show in Theorem 3.9 how to cover the case without given root.

There are numerous approaches to solve the minimum weight

spanning tree problem for undirected edge-weighted graphs (and

the equivalent problem of maximizing the tree’s total edge weight).

While we refer to [14, 22, 32] for a comprehensive account of

the many (re)discoveries, we want to mention the approaches

for the comparison-based computation model coined by Borůvka

([4]; 𝑂 (𝑚 log(𝑛))), Jarník, Prim, and Dijkstra ([12, 25, 37]; 𝑂 (𝑚 +
𝑛 log(𝑛)) with Fibonacci heaps [16]), Kruskal ([27]; 𝑂 (𝑚 log(𝑛))),
Chazelle ([9]; 𝑂 (𝑚𝛼 (𝑚,𝑛))), and Pettie and Ramachandran ([36];

unknown, but optimal complexity). For the RAM model, Fredman

and Willard [17] developed a linear-time algorithm.

Previous work on directed minimum spanning trees (sometimes

called “branchings” or “arborescences”), centers around the so-

called Edmonds’ algorithm, its (re)discoveries and a series of im-

plementation improvements with a complexity of 𝑂 (𝑚 + 𝑛 log(𝑛))
in the comparison-based model and 𝑂 (𝑚 log log(𝑛)) in the RAM

model [3, 5, 10, 13, 18, 26, 30, 41].

While the majority of the research has concentrated on the total-

time model, there are several other takes on how to provide input

data, expect output data, and measure complexity for computing

spanning trees. Dynamic algorithms have to maintain a (minimum)

spanning tree for a graph undergoing edge insertions and dele-

tions [23]. Such algorithms have to make changes to the existing

output, meaning they cannot be used for the problem of enumer-

ating spanning tree edges of a static graph. The same applies to

the reconfiguration model, where an algorithm has to transform

one spanning tree into another while preserving the spanning tree

properties [24]. Closer to our setting is a formalization as online

problem (e. g. [2, 29]). There, same as for enumeration, algorithms

have to produce the final solution piece by piece. In the online

setting, however, also the input arrives in pieces which only allows

for approximate solutions or requires recourse actions. In contrast

to this, enumeration algorithms have access to the complete input

and are able to produce an exact solution.

2 PRELIMINARIES AND TECHNIQUES
We start by introducing graph notation, defining spanning tree

problems and the enumeration framework, and explaining the tech-

niques we use for proving upper and lower bounds.

2.1 Graph Notation and Data Structure
Let 𝐺 = (𝑉 , 𝐸) be a (directed or undirected) graph with vertices

𝑉 = {1, . . . , 𝑛} and |𝐸 | = 𝑚 edges. We will in this work assume

that input graphs are connected, as spanning trees only exist for

connected graphs. Note that this implies𝑚 ≥ 𝑛 − 1 and allows us

to shorten 𝑂 (𝑚 + 𝑛) to 𝑂 (𝑚) in asymptotic complexity analysis.

Besides the unweighted case, we also consider graphs with edge

weights given as function𝑤 : 𝐸 → R.
We denote the degree of a vertex 𝑣 by deg(𝑣), the average degree

in the graph by Δ = 1

𝑛
·∑𝑣∈𝑉 deg(𝑣), and the maximum degree by Δ.

In case 𝐺 is directed, we write deg
+ (𝑣) and deg

− (𝑣) for the out-
and in-degree of 𝑣 , Δ+

and Δ−
for the maximum out- and in-degree,

and Δ+
and Δ−

for the average out- and in-degree.

Graphs are always given in the form of adjacency lists. For a

graph 𝐺 and a vertex 𝑣 we denote the adjacency list of 𝑣 as 𝐺 [𝑣].
We assume that the length of each adjacency list (thus: the degree
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Table 1: Our results for different problem variants. We abbreviate preprocessing with prep. The symbol T represents the runtime
of an (optimal) MST total-time algorithm. An ✗ marks variants where lower bounds rule out any meaningful enumeration.

Problem Variant Lower Bounds Upper Bounds

Undirected Unweighted Ω(𝑚) prep. or Ω(Δ) delay 𝑂 (Δ) delay w/o prep.

Undirected Weighted Ω(Δ) prep. or Ω(Δ) delay
Ω(T ) prep. or Ω( T

𝑛
) delay

𝑂 (max(Δ, T
𝑛
)) delay w/o prep.

𝑂 ( T
𝑛
) delay w/ 𝑂 (𝑛) prep.

Directed Unweighted

w/ given root Ω((Δ+)2) prep. or Ω(Δ+) delay 𝑂 (Δ+) delay w/o prep.

w/o given root Ω(𝑚) prep. or delay ✗ 𝑂 (𝑚) total time

Directed Weighted Ω(𝑚) prep. or delay ✗ 𝑂 (𝑚 + 𝑛 log(𝑛)) total time [18]

of each vertex) can be queried in constant time, and that edge

weights (if present) are stored alongside the respective entry in the

adjacency lists.

Our analyses assume the word RAM model with word size in

Ω(log(𝑛)); enough to store a reference to any vertex or edge in a

constant number of cells that can be read and written in constant

time. For edgeweights we only assume that they can be compared in

constant time. Note that we use existing algorithms for computing

minimum spanning trees as black-boxes; your choice of algorithm

there might imply additional requirements on the machine model.

2.2 Spanning Trees
A forest of an undirected graph𝐺 = (𝑉 , 𝐸) is a subgraph 𝐹 = (𝑉 , 𝐸′)
of 𝐺 with 𝐸′ ⊆ 𝐸 that is acyclic. A spanning tree (ST) of 𝐺 is a

connected forest𝑇 = (𝑉 , 𝐸′) of𝐺 with |𝐸′ | = 𝑛 − 1. With additional

edge weights𝑤 a minimum spanning tree (MST) of𝐺 is a spanning

tree that minimizes

∑
𝑒∈𝐸′ 𝑤 (𝑒).

An out-branching of a directed graph 𝐺 = (𝑉 , 𝐸) is an acyclic

subgraph 𝐵 = (𝑉 , 𝐸′) of 𝐺 with 𝐸′ ⊆ 𝐸 in which each vertex 𝑣 has

deg
− (𝑣) ≤ 1. If an out-branching is weakly connected (thus: it is

connected if one ignores edge directions), we have |𝐸′ | = 𝑛 − 1 and

thus there is exactly one vertex 𝑟 with deg
− (𝑟 ) = 0. We call such

an out-branching 𝑇 a directed spanning tree (DST) of 𝐺 rooted in 𝑟 .

With additional edge weights𝑤 a minimum directed spanning tree

(MDST) of𝐺 is a directed spanning tree that minimizes

∑
𝑒∈𝐸′ 𝑤 (𝑒).

2.3 Enumeration of Solution Parts
Given an (un)directed (un)weighted input graph𝐺 , an enumeration

algorithm has to, for some (minimum) (directed) spanning tree𝑇 of

𝐺 , emit each edge of𝑇 exactly once.We analyze the time complexity

of such an enumeration algorithm in terms of its worst case delay,

that is the maximum time the algorithm needs to emit the respective

next edge, and additional preprocessing time the algorithm can

spend before emitting the first edge. The tradeoff between little

preprocessing time and small delay is the core of our analyses.

For sufficiently small preprocessing time, an enumeration algo-

rithm might not be able to initialize complex data structures before

having to emit the first solution parts. We follow the approach

presented in [7] to allow for lazy-initialized memory that can be

reserved within constant time and specify for all our results how

much lazy-initialized memory an algorithm needs along with its

total space complexity.

2.4 Amortized Analysis for Upper Bounds
When designing and analyzing an enumeration algorithm it is

important to separate computing solution parts from emitting them.

While an algorithm might fix parts of the solution after irregular

time intervals, it can possibly shrink the maximum output delay by

holding back some solution parts to emit later. This transformation

was first described in [21] and comes with the downside of having to

store the held-back data. However, with the spanning tree problems

at hand, an algorithm has to store at most 𝑛 − 1 edge references,

which does not increase its asymptotic space complexity.

Our algorithms hold back solution parts for later emission by

storing them in a linked list called solution queue. The key aspect of

an algorithm’s description is how this queue is filled with solution

parts; complemented by an analysis showing that the solution queue

never runs empty when a solution part has to be emitted. Note that

we expect an algorithm to actively emit held-back solution parts.

While we do not explicitly write out the instructions on when to

dequeue and emit a solution part from the solution queue, we do

have to explain how an algorithm is able to compute a lower bound

on the aspired preprocessing and delay in order to be able to emit

the next solution part after a suitable number of computation steps.

We analyze the time complexity of our algorithms with the

banker’s view on amortization [42]: An algorithm holds a number

of credits. Assume we claim that an algorithm solves a spanning tree

enumeration problemwith preprocessing in𝑂 (𝑝) and delay in𝑂 (𝑑).
Initially, for some implementation-specific constant 𝑐 , the algorithm

starts with 𝑐 · (𝑝 + 𝑑) credits. For every solution part it emits after

Θ(𝑑 ′) ⊆ 𝑂 (𝑑) computation steps, it receives additional 𝑐 ·𝑑 ′ credits.
Each credit pays for a fixed constant number of computation steps,

and every step has to be paid for. To prove our claim we thus have to

show that the algorithm’s account balance cannot become negative.

With this technique in mind, our algorithms and their proofs are

roughly structured in three phases as follows:

1. Credit Accumulation Fix simple initial parts of the solu-

tion within little computation time and compute a lower

bound on the aspired delay. Emit only enough solution parts

to pay for this initial effort and hold back the rest to save

credits for the next step.

2. Extension Extend the set of initial solution parts to a com-

plete solution. Pay for the required computation with held-

back solution parts from the credit accumulation phase.

3. Output Finalization Emit the remaining solution parts from

phases 1 and 2 without repeating a solution part.
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2.5 Proof Techniques for Lower Bounds
For proving lower bounds on the time complexity of enumerating a

spanning tree we analyze how evenly the computational effort for

a set of solution parts could possibly be spread over corresponding

delays. These kinds of lower bounds come in two different flavors:

Any algorithm enumerating all 𝑛 − 1 edges of a spanning tree

with preprocessing in 𝑂 (𝑝) and delay in 𝑂 (𝑑) yields a total-time

algorithm with time complexity in 𝑂 (𝑝 + 𝑛 · 𝑑). Assume it takes

Ω(T ) to produce all 𝑛 − 1 edges of a spanning tree (either by

an unconditional lower bound or by comparing to an algorithm

with runtime in Θ(T ) as benchmark). Then every enumeration

algorithm has to have preprocessing in Ω(T ) or delay in Ω( T
𝑛
) or

it would beat the total-time bound.

For a more fine-grained analysis we observe that we do not need

to have a lower bound on the total time to compute all solution

parts, but can also make use of a lower bound of Ω(T𝑘 ) on the

required computational effort for finding any first 𝑘 solution edges.

Similarly to before, this yields a lower bound of either Ω(T𝑘 ) on
preprocessing or Ω( T𝑘

𝑘
) on delay. For this kind of lower bound we

construct adversary arguments: We formalize an algorithm’s read

access to the input data as queries to an adversary. This adversary

can freely choose how to answer the queries as long as all answers

combined are consistent with at least one actual possible input

graph. The adversary uses this freedom to hide essential informa-

tion on the instance from the algorithm (usually inside densely

connected subgraphs) and thereby forces the algorithm to use a lot

of queries to fix the first set of 𝑘 solution parts.

The interface of our adversary mimics providing the input in

the form of adjacency lists. Usually, an algorithm has constant time

random access to the degree of any vertex and to the head of its

adjacency list. It can then iterate through the list to determine the

neighbors of this vertex. Accordingly, our adversaries allow for the

following queries for any vertex 𝑣 :

degree query Returns the out-degree of 𝑣 .

neighbor query Returns the next out-adjacency of 𝑣 ; along

with its edge weight if present.

3 THEORETICAL RESULTS
We now apply the introduced techniques to computing (minimum)

spanning trees for graphs with and without directions or edge

weights.

3.1 Undirected Unweighted Spanning Trees
For connected input graphs with neither edge directions nor edge

weights we derive an enumeration lower bound from an uncon-

ditional lower bound on the total time required for computing a

spanning tree. Recall for the following theorem that𝑚 is the number

of edges and Δ is the average degree of the graph.

Theorem 3.1. No algorithm can compute a spanning tree of an

unweighted, undirected, connected graph in 𝑜 (𝑚). No algorithm can

enumerate the edges of such a spanning tree with preprocessing in

𝑜 (𝑚) and delay in 𝑜 (Δ).

Proof. Consider a graph with two almost-clique components

with sizes ⌈𝑛
2
⌉ and ⌊ 𝑛

2
⌋ connected by a bridge of two edges as shown

in Figure 2. In both components all vertices are connected to all

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

· · ·
𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

· · ·

Figure 2: The adversarial graph for Theorem 3.1. An algo-
rithm can be trapped in the cliques before being able to detect
one of the two connecting edges; one of which must be part
of the tree.

others except for two vertices which do not share a common edge

but are endpoints to the bridge connecting to the other component.

We use the adversarial setup described in Section 2.5. Observe

that within each component all vertices have the same degree, thus

an algorithm cannot identify the bridge endpoints with degree

queries. Also, as long as the algorithm has not queried the complete

neighborhood of at least all but 2 vertices in one component, the ad-

versary is free to, for neighbor queries, always return an edge from

the queried vertex to an adjacent vertex in the same component.

Assume, an algorithm were to return a spanning tree of the input

graph after𝑜 (𝑚) queries to the adversary. Clearly, this spanning tree
has to connect the two components, so let, w. l. o. g., edge {𝑎2, 𝑏2}
be part of the output. But as the algorithm has not yet queried at

least ⌊ 𝑛
2
⌋ − 2 complete neighborhoods of size at least ⌊ 𝑛

2
⌋ − 1, it has

not seen {𝑎2, 𝑏2} and the adversary can swap the bridge endpoints

in one clique such that the edge does not actually exist (and the

algorithm should have returned {𝑎2, 𝑏3} or {𝑎3, 𝑏2} instead).
Thus, no algorithm can compute a complete spanning tree for a

graph in 𝑜 (𝑚). This implies a lower bound of Ω(𝑚) on the total time

of an enumeration algorithm for the same problem. It follows that

no algorithm can enumerate the 𝑛 − 1 solution edges of a spanning

tree with preprocessing in 𝑜 (𝑚) and delay in 𝑜 ( 𝑚
𝑛−1 ) = 𝑜 (Δ). □

A simple depth first search (DFS) started on any vertex produces

in 𝑂 (𝑚) a spanning tree in the form of a DFS-tree, matching the

lower bound in the total-time setting. The lower bound is tight for

the enumeration variant as well, as we now design an algorithm that

enumerates a spanning tree without preprocessing and with delay

in𝑂 (Δ). Roughly, the three phases of this algorithmwork as follows.

In the credit accumulation phase, it collects
𝑛
2
≤ 𝑘 ≤ 𝑛 − 1 edges

with constant delay that form a forest. These edges give enough

head start to, in the extension phase, run a modified version of

Prim’s MST algorithm in 𝑂 (𝑚) that selects additional 𝑛 − 1 − 𝑘

edges to extend the forest to a spanning tree. The output finalization

phase emits the remaining edges from the first two phases.

Phase 1: Credit Accumulation. All undirected edges selected in

the first phase as part of the final spanning tree are stored in a

graph data structure 𝐹 in adjacency lists representation; initially 𝐹

is a graph with 𝑛 isolated vertices. For each vertex 𝑢 with empty

𝐹 [𝑢], the algorithm selects the first edge {𝑢, 𝑣} in the adjacency

list 𝐺 [𝑢] and adds the edge to 𝐹 (both 𝑢 to 𝐹 [𝑣] and 𝑣 to 𝐹 [𝑢] are
added). Simultaneously, the algorithm computes the average degree

Δ by summing up all vertex degrees and dividing by 𝑛.
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Recall from Section 2.4 that, in addition to storing edges in 𝐹 ,

our algorithm appends all edges selected for emission to a solution

queue from which the algorithm has to emit edges with delay in

𝑂 (Δ). The first 𝑛
4
selected edges from the credit accumulation phase

are emitted with constant delay (as the algorithm needs time to

compute Δ). All following edges are emitted with delay in Θ(Δ).

Phase 2: Extension. The algorithm runs a modified version of

Prim’s algorithm [12, 25, 37]: Starting from an arbitrary vertex, an

MST is constructed by repeatedly selecting from a priority queue an

edge of minimum weight that connects a previously unconnected

vertex to the growing spanning tree. In our unweighted case we

prioritize pre-selected edges over all other edges to make sure all

edges from phase 1 are picked by the algorithm. We give a complete

pseudo-code description of our modifications in Algorithm 1.

The algorithm stores the tree in the form of predecessor at-

tributes in an array 𝑇 of length 𝑛, where a vertex 𝑣 connected to

the tree via an edge {𝑢, 𝑣} has𝑇 [𝑣] = 𝑢. Additionally, the algorithm

maintains two queues of directed edges that are to be used next

to connect vertices to the growing tree; one list for pre-selected

edges and one list for all edges, where the former is prioritized in

edge selection over the later. Pre-selected edges are added to both

queues as filtering all adjacent edges according to whether they are

part of 𝐹 or not is too expensive. Skipping unneeded edges later on

the other hand is cheap by checking 𝑇 in line 8.

Algorithm 1: Extension-Prim
Input: undirected graph 𝐺 = (𝑉 , 𝐸), corresponding forest 𝐹

from phase 1

Output: spanning tree encoded as predecessor links in

array 𝑇 of length |𝑉 |
1 preSelectedEdges = ∅, allEdges = ∅;
2 foreach 𝑣 ∈ 𝑉 do 𝑇 [𝑣] = nil;

3 Enqeue(allEdges, (1, 1)); // fictitious start edge

4 while preSelectedEdges ≠ ∅ or allEdges ≠ ∅ do
5 if preSelectedEdges ≠ ∅ then
6 (𝑢, 𝑣) = Deqeue(preSelectedEdges);

7 else (𝑢, 𝑣) = Deqeue(allEdges);

8 if 𝑇 [𝑣] == nil then
9 𝑇 [𝑣] = 𝑢;

10 foreach𝑤 ∈ 𝐹 [𝑣] do
11 Enqeue(preSelectedEdges, (𝑣,𝑤));
12 foreach𝑤 ∈ 𝐺 [𝑣] do Enqeue(allEdges, (𝑣,𝑤));

13 𝑇 [1] = nil; // remove fictitious start edge

14 return T ;

Phase 3: Output Finalization. The algorithm iterates over all edges

in the forest 𝐹 from the first phase, sets the corresponding entries in

the tree 𝑇 from the second phase to nil and adds for all remaining

non-nil-entries 𝑇 [𝑣] = 𝑢 the edge {𝑢, 𝑣} to the solution queue.

Theorem 3.2. Enumerating the edges of a spanning tree of an

unweighted, undirected, connected graph 𝐺 can be done without pre-

processing, with delay in 𝑂 (Δ), with Θ(𝑛) lazy-initialized memory

and with space complexity in Θ(𝑛).

Proof. We first prove that the presented algorithm produces

a valid spanning tree and emits each edge exactly once, before

analyzing the algorithm’s time and space complexity.

Correctness. In the credit accumulation phase each vertex is ad-

jacent to at least one selected edge, thus 𝑘 ≥ 𝑛
2
edges are selected.

If edge {𝑢, 𝑣} was selected from 𝐺 [𝑢], we call 𝑢 the origin of this

edge. If there were a cycle of length 𝑐 in 𝐹 , each of the 𝑐 vertices in

the cycle would have to be the origin of one of the 𝑐 cycle edges.

However, after selecting the first cycle edge {𝑢, 𝑣} with origin𝑢, the

adjacency list 𝐹 [𝑣] is non-empty and thus 𝑣 cannot be the origin of

any edge selected in this phase. Therefore 𝐹 is acyclic and consists

of 𝑘 ≤ 𝑛 − 1 edges which are all enqueued for later output.

Assume for the extension phase, that pre-selected edges in 𝐹

have weight 0 and all other edges in 𝐺 have weight 1. Then, using

the two queues and skipping edges to vertices already connected

to the growing tree as shown in Algorithm 1 effectively mimics

a priority queue over vertices with the priority of a vertex being

the minimum weight of an edge that connects the vertex to the

growing tree. Thus, correctness of Prim’s algorithm implies that

Algorithm 1 indeed produces a spanning tree𝑇 . As 𝐹 is a forest and

can be extended to a spanning tree, every min-weight spanning tree

(with weights defined as assumed above) must include all edges

from 𝐹 , which proves 𝐹 ⊆ 𝑇 .

As the output finalization phase appends the missing edges𝑇 \ 𝐹
to the solution queue, each edge of the spanning tree 𝑇 is emitted

exactly once by the enumeration algorithm.

Time Complexity. We apply the accounting method to analyze

the algorithm’s time complexity. Each credit can be used to perform

a constant number of steps. The initial balance is Δ > 0, as we are

aiming for a delay of 𝑂 (Δ) without preprocessing time.

Note that initially the algorithm does not know Δ, so it cannot

assume a higher lower bound on the delay than Δ ∈ Ω(1). The
first

𝑛
4
edges selected in the credit accumulation phase receive 6

credits each. One credit pays for the selection itself, one pays for

skipping the second edge endpoint in the iteration over 𝐹 . Thus,

selecting and emitting each edge takes amortized constant time.

The remaining 4 credits per edge accumulate to 𝑛 credits that are

used to compute Δ. Now that the algorithm knows a proper lower

bound on the delay, the next
𝑛
4
edges receive 2 + 8Δ credits each.

Again two credits pay for the selection and for skipping the second

endpoint. The remaining 8Δ credits per edge accumulate to 2𝑚

credits that pay for all computation in phases 2 and 3 which each

run in 𝑂 (𝑚) total time:

In the extension phase, each undirected edge of the graph is

appended to each queue at most twice (once per direction), so the

loop in line 4 of Algorithm 1 runs 𝑂 (𝑚) times and the queue sizes

cannot exceed 𝑂 (𝑚). The if-block in line 8 runs once per vertex,

so the algorithm iterates over each vertex neighborhood at most

twice, resulting in 𝑂 (𝑚) steps.
The output finalization phase iterates over 𝐹 once which takes

𝑂 (𝑛) time. The additional edges appended to the solution queue in

this phase receive no credit.

As every edge appended to the solution queue receives credit in

𝑂 (Δ) and all computation steps are paid for by credit accumulated

before, the delay is in 𝑂 (Δ) as claimed.
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Space Complexity. The credit accumulation phase usesΘ(𝑛) lazy-
initialized memory for 𝐹 and puts 𝑂 (𝑛) edges into the solution

queue. Algorithm 1 in the extension phase uses up toΘ(𝑚) memory

for the queue of all edges. Note however that, instead of expanding

the neighborhood of vertex 𝑣 in lines 10ff. into the two queues

immediately, we can append only the vertex to the respective list.

By expanding the vertex to the edges in its neighborhood lazily

in lines 5f., we thereby shrink the length of both queues and thus

the overall space complexity of Algorithm 1 to 𝑂 (𝑛). The output
finalization phase does not require additional memory on top of the

provided 𝐹 and𝑇 and the solution queue of at most 𝑛− 1 edges. □

The analysis of the space complexity also shows why the exten-

sion phase does not simply contract all pre-selected edges to find

the remaining tree via a depth first search: Storing the contracted

graph needs Θ(𝑚) space in the worst case, while our Prim-based

extension can be easily implemented to only use Θ(𝑛) memory.

3.2 Undirected Minimum Spanning Trees
Any minimum weight spanning tree for an edge-weighted graph is

also an unweighted spanning tree for the same graph. Therefore

the bound from Theorem 3.1 carries over.

Corollary 3.3. No algorithm can enumerate a minimum span-

ning tree of an edge-weighted connected graph with preprocessing in

𝑜 (𝑚) and delay in 𝑜 (Δ).
Given that no deterministic comparison-based MST algorithm

with complexity in𝑂 (𝑚) is known, we can formulate a higher lower

bound conditioned on the runtime of total-time MST algorithms,

that generically applies to different machine models:

Corollary 3.4. Let T be the runtime of an optimal MST algo-

rithm. No algorithm can enumerate an MST of an edge-weighted

connected graph with preprocessing in 𝑜 (T ) and delay in 𝑜 ( T
𝑛
).

For smaller preprocessing time, we can use an adversary argu-

ment to give an unconditional and even higher lower bound on

the delay: As illustrated in Figure 3, an adversary can force any

algorithm to inspect either the degree of many vertices in a clique or

the complete neighborhood of a single clique vertex before finding

the first solution edge.

Theorem 3.5 (*). No algorithm can enumerate a minimum span-

ning tree of an edge-weighted connected graph with at least two differ-

ent edge weights, maximum degree Δ and average degree Δ ∈ 𝑜 (Δ)
with both preprocessing and delay in 𝑜 (Δ).

Without preprocessing, we can match the combination of the

delay lower bounds of Theorem 3.5 and Corollary 3.4 with a corre-

sponding upper bound; assuming the upper bound on the total time

of the referenced algorithm in Corollary 3.4 is computable. Our

enumeration algorithm essentially runs one iteration of Borůvka’s

algorithm [4] in the credit accumulation phase, which yields at least

𝑛
2
solution edges. These initial solution edges give enough head

start to, in the extension phase, run a total-time MST algorithm

of our choice as black box to complete the tree. As we have to

make sure, that the black box algorithm produces a minimum span-

ning tree that includes the pre-selected edges, we set their weight

to a new minimum weight (or answer edge weight comparisons

accordingly in the comparison model).

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

· · ·
𝑝1 𝑝2 · · · 𝑝ℓ

Figure 3: The adversarial input for the proof of Theorem 3.5
to trap an algorithm in the clique (many edges, no solution
parts) before it can process the path (few edges, all are solu-
tion parts).

Theorem 3.6 (*). Let T be an upper bound on the runtime of an

MST algorithm such that T is computable in 𝑂 (Δ𝑛) steps and let

S be its space complexity. Enumerating the edges of an MST of an

edge-weighted connected graph 𝐺 can be done without preprocessing,

with delay in𝑂 (max(Δ, T
𝑛
)), and with space complexity in Θ(𝑛+S).

For graphs with large Δ one can trade inΘ(𝑛) preprocessing time

to match the smaller delay lower bound of 𝑂 ( T
𝑛
): The algorithm

goes through the vertices in order of increasing degree to build

enough head start before dealing with high-degree vertices later.

Theorem 3.7 (*). Let T be an upper bound on the runtime of an

MST algorithm such that T is computable in 𝑂 (Δ𝑛) steps and let

S be its space complexity. Enumerating the edges of an MST of an

edge-weighted connected graph 𝐺 can be done with preprocessing in

Θ(𝑛), with delay in 𝑂 ( T
𝑛
), and with space complexity in Θ(𝑛 + S).

Figure 4 summarizes the tradeoff between preprocessing time

and delay for the enumeration of edges of a minimum spanning

tree for an edge-weighted graph. The figure highlights a gap for

preprocessing in Ω(Δ) ∩𝑜 (𝑛) and delay in Ω( T
𝑛
) ∩𝑜 (Δ+ T

𝑛
), where

we do not yet know whether enumeration is possible or not.

3.3 Directed Unweighted Spanning Trees
We analyze two variants of computing a directed spanning tree

(DST) for a graph that is guaranteed to have one: First, if a suitable

root vertex 𝑟 for such a DST is given, second without given root.

Given 𝑟 , the search tree of a depth first search started in 𝑟 is a

directed spanning tree [11].

Corollary 3.8. Given an unweighted directed graph 𝐺 that has

a directed spanning tree rooted in a given vertex 𝑟 , such a DST can be

computed in 𝑂 (𝑚) by a DFS.

Without given root this runtime is still achievable, as one can find

a suitable root in𝑂 (𝑚): Build the acyclic graph𝐺SCC
in which each

strongly connected component is contracted to a single node [11].

Pick any vertex in the unique source of 𝐺SCC
as root.

Theorem 3.9 (*). Given an unweighted directed graph 𝐺 that has

a directed spanning tree, such a DST can be computed in 𝑂 (𝑚).

The lower bound from Theorem 3.1 for undirected graphs ex-

tends to the directed case:

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

450



Ω(Δ + T
𝑛
) ✓ ✓ ✓ ✓

Ω( T
𝑛
) ∩ 𝑜 (Δ + T

𝑛
) ✗ ? ✓ ✓

𝑜 ( T
𝑛
) ✗ ✗ ✗ ✓

𝑜 (Δ) Ω(Δ) ∩ 𝑜 (𝑛) Ω(𝑛) ∩ 𝑜 (T ) Ω(T )
preprocessing

delay

Figure 4: Tradeoff between preprocessing and delay for MST enumeration with a black-box MST algorithm with total time T .

𝑣

𝑢

· · ·

𝑡

𝑠 · · ·

Figure 5: The prototype graph for the adversary for the proof
of Theorem 3.11. A DST enumeration algorithm cannot emit
an edge (𝑢, 𝑣) before having found the crossing edges.

Corollary 3.10. Given is an unweighted directed graph 𝐺 that

has a DST. No algorithm can compute a DST in 𝑜 (𝑚). No algorithm
can enumerate a DST with preprocessing in 𝑜 (𝑚) and delay in 𝑜 (Δ+).

For the total-time variant this is already a tight bound. We can,

however, prove a stronger lower bound for the enumeration of di-

rected spanning trees without given root, that rules out any mean-

ingful enumeration even for dense graphs. The core idea of the

proof is that any vertex in a DST is the endpoint of at most one

edge. Were an algorithm to emit an edge (𝑢, 𝑣) early, the adver-

sary could point key edges (in Figure 5 these are crossing edges

between two cliques), to vertex 𝑣 ; and one of these key edges has

to be included in any DST, making (𝑢, 𝑣) wrong.
Theorem 3.11 (*). Given is an unweighted directed graph that has

a DST. Without given root, no algorithm can enumerate such a DST

with both preprocessing and delay in 𝑜 (𝑚).
Corollary 3.8 and Theorem 3.9 show that providing a DST root

or not does not change the time complexity in the total-time model.

This is different in the enumeration variant, as with given root, one

can enumerate the edges of a DST with delay in𝑂 (Δ+) by adjusting
the BFS variation given in the proof of Theorem 1 in [7]. Starting

this shortest distance enumeration with root 𝑠 , we also store and

then emit the edges used to reach a vertex on a shortest path from 𝑠 .

This adjustment outputs a shortest distances tree, thus in particular

a DST, and immediately yields the following result.

Corollary 3.12. Given an unweighted directed graph 𝐺 that has

a directed spanning tree rooted in a given vertex 𝑟 , such a DST can be

enumerated with delay in 𝑂 (Δ+), without preprocessing, with Θ(𝑛)
lazy-initialized memory and space complexity in Θ(𝑛).

Note that this leaves a gap to the Ω(Δ+) delay lower bound

from Corollary 3.10. While the Ω(Δ) delay lower bound for single

source shortest distances from [7] does not transfer to the DST

problem, we can use a similar technique to also show a matching

lower bound for directed spanning tree enumeration: An adversary

can hide the entrance to a bi-directed path behind many edges in a

clique. For suitable clique- and path sizes this forces an algorithm

to essentially fully explore the clique with many edges and few

solution parts before being able to emit one of the many solution

parts in the path.

Theorem 3.13. Given is an unweighted directed graph𝐺 that has

a directed spanning tree rooted in a given vertex 𝑟 . No algorithm can

enumerate such a DST with preprocessing in 𝑜 ((Δ+)2) and delay in

𝑜 (Δ+), even if Δ+ ∈ 𝑜 (Δ+).

Proof. We use the adversarial setup from Section 2.5 with 𝑘 to

be chosen later. Consider a graph consisting of a bi-directed clique

of 𝑘 vertices and a bi-directed path of 𝑛 −𝑘 vertices. The given root

𝑟 lies in the clique. One other clique vertex 𝑐 has no edge to 𝑟 and

instead an edge to one of the two end-vertices 𝑝 or 𝑞 of the path.

(See Figure 6 for an illustration.) Note that this graph has maximum

degree Δ+ = 𝑘 − 1.

The adversary places each edge to 𝑟 and also the edge from 𝑐 to

𝑝 or 𝑞 last in the respective adjacency lists. Further, observe that

for any degree query in the clique, the adversary answers 𝑘 − 1, so

no algorithm can identify 𝑐 with degree queries.

Assume, after less than (𝑘 − 1)2 queries to the adversary, an

algorithm emits an edge (𝑢, 𝑣) among two path vertices or an edge

that connects the clique to the path. Even if all the algorithm’s

queries are adjacency queries on clique vertices, the adversary can

up to this point only answer with edges within the clique. Further,

there is at least one vertex in the clique where the algorithm has not

seen the whole neighborhood. The adversary chooses this vertex

as 𝑐 and connects it either to 𝑝 or 𝑞, picking the endpoint of the

path that makes the emitted edge wrong.

Thus, any algorithm has to make at least (𝑘 − 1)2 queries before
emitting a solution edge outside of the clique. As there can only

be 𝑘 − 1 tree edges inside the clique, the adversarial setup shows

a lower bound on emitting the 𝑘-th edge of Ω(T𝑘 ) = Ω(𝑘2). With

Δ+ = 𝑘 − 1, this shows a lower bound of Ω(𝑘2) = Ω((Δ+)2) for
preprocessing or Ω(𝑘) = Ω(Δ+) for delay.

It remains to pick 𝑘 to show the desired low average degree. The

graph consists of 𝑘 · (𝑘 − 1) + 2 · (𝑛 − 𝑘 − 1) edges, so for 𝑘 ∈ 𝑜 (𝑛)
the average degree is Δ+ ∈ 𝑜 (Δ+). □

3.4 Directed Minimum Spanning Trees
Efficient implementations of Edmonds’ algorithm need little more

than linear time to solve any instance completely [18, 30]. A simple
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𝑟

𝑐· · ·

𝑝 𝑢 𝑣 𝑞· · · · · ·

Figure 6: The adversarial graph for Theorem 3.13. A DST enumeration algorithm cannot emit an edge from the bi-directed path
before having found the outgoing edge from the clique.

adversary construction rules out essentially any meaningful enu-

meration, as any algorithm has to inspect almost all of the input

graph as preprocessing: Before emitting a first edge (𝑢, 𝑣) as part of
an MDST for a bi-directed clique, an algorithm has to query Θ(𝑚)
adjacencies to find all edges incident to 𝑣 to make sure that the

single spanning tree edge incident to 𝑣 is one of minimum weight.

Theorem 3.14 (*). Minimum directed spanning tree enumeration

cannot be solved with both preprocessing and delay in 𝑜 (𝑚).

4 EXPERIMENTAL EVALUATION
We implemented MST algorithms in Rust and executed the experi-

ments on a compute server with 256 GB RAM and an Intel Xeon

Silver 4314 CPU with 2.40 GHz. More specifically, we compared the

total time MST algorithms by Prim [37] (with a binary heap [38]),

Kruskal [27] (with union-find with union-by-rank [11] and path-

halfing [43]), and Boruvka [4], with our enumeration approach of

Theorem 3.7 with each of the other three algorithms as black box.

Additionally, as Prim’s algorithm already fixes edges one at a time,

we re-interpreted it as enumeration algorithm; meaning that when-

ever the algorithm fixes an MST edge, the algorithm is interrupted

and the edge is immediately emitted as solution part. Note that

for the enumeration variants we did not implement holding back

solution parts in a queue, but instead emitted each solution edge as

soon as it was fixed.

For the evaluation we generated random graphs in the 𝐺 (𝑛, 𝑝)
model [20] with the number 𝑛 of vertices ranging from 100 to

200 000 and an edge probability 𝑝 between 𝑛−0.75 and 0.25. For each
input size we ran the algorithms on 10 random instances with 5 runs

each and took the average time in nanoseconds for, among others,

three values:

• The time until the algorithm produced a first solution part;

• the maximum so-called incremental delay, meaning the max-

imum of
elapsed time

number of emitted parts
;

• the total time of the run.

Note that while inspecting the worst case delay gives stronger

bounds in the theoretical analysis, looking at incremental delay is

the more reasonable measurement in practice. This avoids computa-

tional overhead for holding back solution parts and still guarantees

the availability of the 𝑘th part after 𝑘 · incremental delay time.

For the generated instances, Prim’s total-time algorithm and

its enumeration variant consistently performed best among their

respective algorithm categories. Figure 7 shows the direct compari-

son of (the re-interpreted) Prim’s algorithm with the enumeration

approach of Theorem 3.7 with Prim’s algorithm as black box. As
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Figure 7: Time to first output, incremental delay and total
time for (e) MST enumeration with Prim’s algorithm as black
box and (i) MST computation with Prim’s algorithm, inter-
rupted at each fixed solution part.

expected, the additional effort for enumerating solution parts early

leads to a larger total time. However, the enumeration algorithm

produces the first solution part one order of magnitude faster and

also has the benefit of a smaller incremental delay. This confirms

that the theoretical advantage of the enumeration variant transfers

to practice if the time to a first solution part and/or the delay are of

more importance than the total time.

5 CONCLUSIONS AND FUTUREWORK
In this work we proved upper and lower bounds on the required

preprocessing and delay for enumerating the edges of (minimum)

(directed) spanning trees. While several of our theoretical results

are already tight, there still are gaps to be closed (cf. Figure 4).

An important next step is to incorporate more real world re-

quirements in the model: Most networks admit for many different

MSTs, and for some problems, not all of them work equally well [1].

Also, the order in which tree edges are emitted can be relevant to

efficiently interleave MST computation with following processing

steps. Thus, to bring our theoretical results closer to practical appli-

cation, additional requirements on the produced output need to be

investigated with regard to the possibility of enumerating solution

parts with little preprocessing and delay.
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