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ABSTRACT
Allocating indivisible goods is a ubiquitous task in fair division.

We study additive welfarist rules, an important class of rules which

choose an allocation that maximizes the sum of some function

of the agents’ utilities. Prior work has shown that the maximum

Nash welfare (MNW) rule is the unique additive welfarist rule that

guarantees envy-freeness up to one good (EF1). We strengthen this

result by showing that MNW remains the only additive welfarist

rule that ensures EF1 for identical-good instances, two-value in-

stances, as well as normalized instances with three or more agents.

On the other hand, if the agents’ utilities are integers, we demon-

strate that several other rules offer the EF1 guarantee, and provide

characterizations of these rules for various classes of instances.
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1 INTRODUCTION
The distribution of limited resources to interested agents is a fun-

damental problem in society. Fairness often plays a key role in the

distribution process—whether it be dividing inheritance between

family members, allocating the national budget across competing

sectors, or sharing credit and responsibility amongst participants

in collaborative efforts. The complexity of this problem has led

to the research area of fair division, which develops methods and

algorithms to ensure that all agents feel fairly treated [4, 17, 18].

What does it mean for an allocation of the resources to be “fair”?

The answer depends on the context and the specific fairness bench-

mark applied. One of the most prominent fairness criteria is envy-
freeness, which states that no agent should prefer another agent’s

share to her own. In the ubiquitous setting of allocating indivisible
goods—such as houses, cars, jewelry, and artwork—it is sometimes

infeasible to attain envy-freeness. For example, if a single valuable

good is to be allocated between two or more agents, only one of

the agents can receive the good, thereby incurring envy from the

remaining agents. In light of this, envy-freeness is often relaxed to

envy-freeness up to one good (EF1). The EF1 criterion allows an agent
to envy another agent provided that the removal of some good in
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the latter agent’s bundle would eliminate the former agent’s envy.

It is known that an EF1 allocation always exists, and that such an

allocation can be computed in polynomial time [5, 15].

In addition to fairness, another important property of allocations

is efficiency. A well-known efficiency notion is Pareto optimality
(PO), which stipulates that no other allocation makes some agent

better off and no agent worse off. Caragiannis et al. [6] proved

that a maximum Nash welfare (MNW) allocation, which maximizes

the product of the agents’ utilities across all possible allocations,
1

satisfies both EF1 and PO, thereby offering fairness and efficiency

simultaneously. In spite of this, the MNW rule does have limitations.

For example, it avoids giving an agent zero utility at all costs—an

allocation that gives most agents a tiny positive utility is preferred

to another allocation that gives one agent zero utility and every

other agent a large utility, as illustrated in the following example.

Example 1.1. Consider an instance with𝑛 ≥ 4 agents and𝑛 goods

𝑔1, . . . , 𝑔𝑛 such that the utilities of the goods are as follows.

• 𝑢1 (𝑔1) = 𝑛.

• For 𝑖 ∈ {2, . . . , 𝑛}, 𝑢𝑖 (𝑔𝑖−1) = 𝑛 − 1 and 𝑢𝑖 (𝑔𝑖 ) = 1.

• 𝑢𝑖 (𝑔) = 0 for all other pairs (𝑖, 𝑔).
The only allocation A that gives positive utility to every agent is

the one that assigns good 𝑔𝑖 to agent 𝑖 for all 𝑖 ∈ {1, . . . , 𝑛}—this is
also the MNW allocation. The sum of the agents’ utilities in this

allocation is 𝑛 + (𝑛 − 1) = 2𝑛 − 1. On the other hand, consider the

allocation B that gives good 𝑔1 to agent 1, 𝑔𝑖 to agent 𝑖 + 1 for

𝑖 ∈ {2, . . . , 𝑛 − 1}, and 𝑔𝑛 to agent 𝑛. The sum of the agents’ utilities

in this allocation is 𝑛2 − 2𝑛 + 3, which is much larger than that in

A. Not only is B also EF1 and PO, but one agent receives the same

utility, all remaining agents except one receive much higher utility,

while the exceptional agent receives only marginally lower utility.

The MNW rule belongs to the class of additive welfarist rules—
rules that choose an allocation that maximizes the sum of some

function of the agents’ utilities for their bundles [17, p. 67]. Ad-

ditive welfarist rules have the advantage that they satisfy PO by

definition. Suksompong [19] showed that MNW is the only additive

welfarist rule
2
that guarantees EF1 for all instances. Nevertheless,

there exist other additive welfarist rules that guarantee EF1 for

restricted classes of instances. For example, Montanari et al. [16,

Appendix C] proved that the maximum harmonic welfare (MHW)
rule ensures EF1 for the class of integer-valued instances. Note that

this is an important class of instances in practice—for example, the

popular fair division website Spliddit [11] only allows each user

to specify integer values for goods summing up to 1000. In Exam-

ple 1.1, allocation B is the MHW allocation, and we saw earlier

that B has certain advantages compared to the MNW allocation

1
This is equivalent to maximizing the sum of the logarithm of the agents’ utilities.

2
Yuen and Suksompong [20] extended this result by showing that MNW is the only

(not necessarily additive) welfarist rule that guarantees EF1 for all instances.
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Table 1: Conditions on the functions defining the additive welfarist rules that guarantee EF1 allocations for different classes
of instances (see Definition 2.1). The logarithmic function corresponds to the MNW rule. For normalized instances with two
agents (resp. integer-valued instances with no other restrictions), we give necessary and sufficient conditions in Propositions 3.8
and 3.9 (resp. Propositions 4.14 and 4.15).

No other restrictions Two-value Identical-good Binary Normalized
Real-valued Logarithmic [6, 19] Logarithmic (Th. 3.5) Logarithmic (Th. 3.1) Condition 4 (Th. 4.7) 𝑛 ≥ 3: Logarithmic (Th. 3.6)

Integer-valued ? Condition 5 (Th. 4.11) Condition 3 (Th. 4.1) Condition 4 (Th. 4.7) ?

Logarithmic

Cond. 1 Cond. 1a

Cond. 2 Cond. 6b Cond. 6a Cond. 5 Cond. 3

Cond. 3a Cond. 3b

Cond. 4

by def.

Th. 3.1 &

Lem. 3.2, 3.3, 3.4

Prop.

4.17

Prop. 4.14 &

4.15

Prop.

4.16

Prop.

4.10

Prop.

4.4

Prop.

4.8

Figure 1: Relationships between the different conditions (see Definition 2.1).

A. Beyond integer-valued instances, Eckart et al. [10] showed that

certain additive welfarist rules based on 𝑝-mean functions, besides

the MNW rule, also yield EF1 for the class of normalized instances

with two agents—normalized instances have the property that the

utility for the entire set of goods is the same for every agent.

In this paper, we study the necessary and sufficient conditions

for additive welfarist rules to guarantee EF1 for different classes of

instances. These classes include integer-valued instances, identical-

good instances, two-value instances, normalized instances, as well

as some of their combinations. We also establish relationships be-

tween the conditions for different classes of instances.

1.1 Our Results
In our model, we assume that each agent has an additive utility func-

tion over a set of indivisible goods. We consider additive welfarist

rules, each of which is defined by a function 𝑓 ; the rule chooses

an allocation that maximizes the sum of the function 𝑓 applied to

the agents’ utilities for their own bundles. In order for the addi-

tive welfarist rules to ensure that agents receive as much utility as

possible, we assume that 𝑓 is strictly increasing.
3
For our charac-

terizations, we only consider instances that are positive-admitting,
i.e., instances in which there exists an allocation that gives positive

utility to every agent.
4
Our model is described formally in Section 2.

We then examine conditions for an additive welfarist rule to

always choose EF1 allocations, starting with general (real-valued)

instances. As mentioned earlier, the MNW rule is the unique addi-

tive welfarist rule that guarantees EF1 for all (positive-admitting)

instances [19]. In Section 3, we strengthen this result by showing

that, for identical-good instances as well as for two-value instances,

MNW remains the unique additive welfarist rule that ensures EF1.

Furthermore, we prove that the same holds for normalized instances

3
If 𝑓 is not strictly increasing, then the allocation chosen by the additive welfarist

rule may not even be PO. In fact, we show in our full paper [8] that even if 𝑓 is non-
decreasing but not strictly increasing, then there exists an identical-good normalized

instance such that the additive welfarist rule with function 𝑓 does not always choose
an EF1 allocation. This means that it is desirable for 𝑓 to be strictly increasing.

4
Even the MNW rule does not always return EF1 for instances that are not positive-

admitting, unless there are additional tie-breaking mechanisms [6].

with three or more agents—this extends a result of Eckart et al. [10,

Theorem 6], which only handles additive welfarist rules defined

by 𝑝-mean functions. For normalized instances with two agents,

however, this characterization ceases to hold, and we provide a

necessary condition and a sufficient condition for additive welfarist

rules to guarantee EF1.

In Section 4, we consider integer-valued instances. For such in-

stances, not only the MNW rule but also the MHW rule guarantees

EF1 [16]. We shall attempt to characterize rules with this property.

We show that for identical-good, binary, and two-value instances

(which are also integer-valued), the respective functions defining

the additive welfarist rules are characterized by Conditions 3, 4, and

5 respectively (see Definition 2.1). This allows much larger classes

of functions beyond the MNW rule or the MHW rule. We provide

examples and non-examples of modified logarithmic functions and

modified harmonic functions defining the additive welfarist rules

that guarantee EF1 in these classes of instances. For the larger class

of all integer-valued instances, we give a necessary condition and

a sufficient condition for such additive welfarist rules.

For all of our characterization results (Theorems 3.1, 3.5, 3.6,

4.1, 4.7, and 4.11), we show that if a function defining an additive

welfarist rule guarantees EF1 for that particular class of instance

for some number of agents 𝑛, then it also guarantees EF1 for that

class for every number of agents 𝑛.

Our results are summarized in Table 1. The relationships be-

tween the different conditions are summarized in Figure 1, and

the relationships between additive welfarist rules that guarantee

EF1 for different classes of instances are illustrated in Figure 2. All

omitted proofs can be found in the full version of our paper [8].

2 PRELIMINARIES
Let 𝑁 = {1, . . . , 𝑛} be a set of 𝑛 ≥ 2 agents and 𝑀 = {𝑔1, . . . , 𝑔𝑚}
be a set of goods. Each agent 𝑖 ∈ 𝑁 has a utility function 𝑢𝑖 : 2𝑀 →
R≥0 such that 𝑢𝑖 (𝑆) is 𝑖’s utility for a subset 𝑆 of goods; we write

𝑢𝑖 (𝑔) instead of𝑢𝑖 ({𝑔}) for a single good𝑔 ∈ 𝑀 . The utility function

is additive, i.e., for each 𝑆 ⊆ 𝑀 , 𝑢𝑖 (𝑆) =
∑
𝑔∈𝑆 𝑢𝑖 (𝑔). An instance

consists of 𝑁 ,𝑀 , and (𝑢𝑖 )𝑖∈𝑁 .
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An allocationA = (𝐴1, . . . , 𝐴𝑛) is an ordered partition of𝑀 into

𝑛 bundles 𝐴1, . . . , 𝐴𝑛 such that 𝐴𝑖 is allocated to agent 𝑖 ∈ 𝑁 . An

allocation is envy-free up to one good (EF1) if for all 𝑖, 𝑗 ∈ 𝑁 with

𝐴 𝑗 ≠ ∅, there exists a good 𝑔 ∈ 𝐴 𝑗 such that 𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝐴 𝑗 \ {𝑔}).
We say that an instance is

• integer-valued if 𝑢𝑖 (𝑔) ∈ Z≥0 for all 𝑖 ∈ 𝑁 and 𝑔 ∈ 𝑀 ;

• identical-good if for each 𝑖 ∈ 𝑁 , there exists 𝑎𝑖 ∈ R>0 such
that 𝑢𝑖 (𝑔) = 𝑎𝑖 for all 𝑔 ∈ 𝑀 ;

• binary if 𝑢𝑖 (𝑔) ∈ {0, 1} for all 𝑖 ∈ 𝑁 and 𝑔 ∈ 𝑀 ;

• two-value if there exist distinct𝑎1, 𝑎2 ∈ R≥0 such that𝑢𝑖 (𝑔) ∈
{𝑎1, 𝑎2} for all 𝑖 ∈ 𝑁 and 𝑔 ∈ 𝑀 ;

5

• normalized if 𝑢𝑖 (𝑀) = 𝑢 𝑗 (𝑀) for all 𝑖, 𝑗 ∈ 𝑁 ;

• positive-admitting if there exists an allocation (𝐴1, . . . , 𝐴𝑛)
such that 𝑢𝑖 (𝐴𝑖 ) > 0 for all 𝑖 ∈ 𝑁 .

Let an instance be given. An additive welfarist rule is defined
by a strictly increasing function 𝑓 : R≥0 → R ∪ {−∞} such that

the rule chooses an allocation A = (𝐴1, . . . , 𝐴𝑛) that maximizes∑
𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐴𝑖 )); if there are multiple such allocations, the rule

chooses one arbitrarily. Since 𝑓 is strictly increasing, 𝑓 (𝑥) = −∞
implies that 𝑥 = 0, which means that 𝑓 (𝑥) ∈ R for all 𝑥 ∈ R>0.

A function 𝑓 is strictly concave if for any distinct 𝑥,𝑦 ∈ R≥0 and
𝛼 ∈ (0, 1), we have 𝑓 (𝛼𝑥 + (1 − 𝛼)𝑦) > 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦). We

use log to denote the natural logarithm, and define log 0 as −∞.

Definition 2.1. Let 𝑓 : R≥0 → R ∪ {−∞} be a strictly increasing

function. For each 𝑘 ∈ Z≥0, define Δ𝑓 ,𝑘 : R>0 → R ∪ {∞} such
that Δ𝑓 ,𝑘 (𝑥) = 𝑓 ((𝑘 +1)𝑥) − 𝑓 (𝑘𝑥). The function 𝑓 is said to satisfy

• Condition 1 if Δ𝑓 ,𝑘 (𝑏) > Δ𝑓 ,𝑘+1 (𝑎) for all 𝑘 ∈ Z≥0 and

𝑎, 𝑏 ∈ R>0;
• Condition 1a if Δ𝑓 ,𝑘 is a constant function (on domain R>0)
for every 𝑘 ∈ Z>0;

• Condition 2 if 𝑓 (𝑎)+ 𝑓 (𝑏) < 𝑓 (𝑐)+ 𝑓 (𝑑) for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ R≥0
such that min{𝑎, 𝑏} ≤ min{𝑐, 𝑑} and 𝑎𝑏 < 𝑐𝑑 ;

• Condition 3 if Δ𝑓 ,𝑘 (𝑏) > Δ𝑓 ,𝑘+1 (𝑎) for all 𝑘 ∈ Z≥0 and

𝑎, 𝑏 ∈ Z>0;
• Condition 3a if Δ𝑓 ,ℓ (𝑏) > Δ𝑓 ,𝑘 (𝑎) for all 𝑘, ℓ ∈ Z≥0 and

𝑎, 𝑏 ∈ Z>0 such that ℓ < 𝑘 ;

• Condition 3b if Δ𝑓 ,𝑘 (1) > Δ𝑓 ,𝑘+1 (𝑎) > Δ𝑓 ,𝑘+2 (1) for all
𝑘 ∈ Z≥0 and 𝑎 ∈ Z>0;

• Condition 4 if Δ𝑓 ,𝑘 (1) > Δ𝑓 ,𝑘+1 (1) for all 𝑘 ∈ Z≥0;
• Condition 5 if 𝑓 ((ℓ + 1)𝑏 + 𝑟𝑎) − 𝑓 (ℓ𝑏 + 𝑟𝑎) > Δ𝑓 ,𝑘+1 (𝑎) >
Δ𝑓 ,𝑘+2 (1) for all 𝑎, 𝑏 ∈ Z>0 and 𝑘, ℓ, 𝑟 ∈ Z≥0 such that 𝑎 ≥ 𝑏

and (𝑘 + 1)𝑏 > ℓ𝑏 + 𝑟𝑎;
• Condition 6a if 𝑓 ((𝑘 + 1)𝑏 − 1) − 𝑓 (𝑘𝑏 − 1) > Δ𝑓 ,𝑘 (𝑎) for all
𝑘, 𝑎, 𝑏 ∈ Z>0;

• Condition 6b if 𝑓 (𝑦 + 𝑏) − 𝑓 (𝑦) > 𝑓 (𝑥 + 𝑎) − 𝑓 (𝑥) for all
𝑎, 𝑏 ∈ Z>0 and 𝑥,𝑦 ∈ Z≥0 such that 𝑥/𝑎 ≥ (𝑦 + 1)/𝑏.

Note that for 𝑘 ∈ Z≥0 and 𝑥 ∈ R>0, we have 𝑓 ((𝑘+1)𝑥) > 𝑓 (𝑘𝑥)
since 𝑓 is strictly increasing, so Δ𝑓 ,𝑘 is well-defined and positive.

Moreover, we have Δ𝑓 ,𝑘 (𝑥) = ∞ if and only if 𝑘 = 0 and 𝑓 (0) = −∞.

2.1 Examples of Additive Welfarist Rules
The maximum Nash welfare (MNW) rule is the additive welfarist
rule defined by the function log. We consider variations of this rule

5
Two-value instances have received attention in fair division, particularly in relation

to the MNW rule [1, 2].

𝐹real = 𝐹real, 2-value
= 𝐹real, identical

log

𝐹int

log(𝑥 + 𝑐)
with

𝑐 ∈ (0, 1]

ℎ0

𝐹int, 2-value

ℎ𝑐 with

𝑐 ∈[
−1,− 1

2

)

𝐹int, identical

𝐹binary

𝑝-mean with

𝑝 ∈ (−∞, 0)
∪ (0, 1)

Figure 2: Venn diagram showing the relationships between
additive welfarist rules that guarantee EF1 for different
classes of instances. Each region, labeled by 𝐹 with a sub-
script, represents the set of functions defining the additive
welfarist rules that guarantee EF1 for the class of instances
corresponding to the subscript. Some examples of these func-
tions are given in the respective regions.

by defining, for each 𝑐 ∈ R≥0, the modified logarithmic function
𝜆𝑐 : R≥0 → R ∪ {−∞} such that 𝜆𝑐 (𝑥) = log(𝑥 + 𝑐).

The maximum harmonic welfare (MHW) rule is the additive wel-
farist rule defined by the function ℎ0 (𝑥) =

∑𝑥
𝑡=1 1/𝑡 . Note that

this definition only makes sense when 𝑥 is a non-negative integer;

hence, we extend its definition to the non-negative real domain

using the function ℎ0 (𝑥) =
∫
1

0

1−𝑡𝑥
1−𝑡 d𝑡 [12]. We also consider varia-

tions of this rule. We define, for each 𝑐 ≥ −1, themodified harmonic
number ℎ𝑐 : R≥0 → R ∪ {−∞} such that

6

ℎ−1 (𝑥) =
∫

1

0

1 − 𝑡𝑥−1

1 − 𝑡
d𝑡 and ℎ𝑐 (𝑥) =

∫
1

0

𝑡𝑐 − 𝑡𝑥+𝑐

1 − 𝑡
d𝑡

for 𝑐 > −1. When the domain of ℎ𝑐 is restricted to the set of non-

negative integers, we can rewrite
7
the values as

ℎ−1 (𝑥) =
{∑𝑥−1

𝑡=1
1

𝑡 if 𝑥 ≥ 1;

−∞ if 𝑥 = 0

and ℎ𝑐 (𝑥) =
𝑥∑︁
𝑡=1

1

𝑡 + 𝑐

for 𝑐 > −1 and all 𝑥 ∈ Z≥0.
An MNW allocation (resp. MHW allocation) is an allocation cho-

sen by the MNW rule (resp. MHW rule).

For 𝑝 ∈ R, the (generalized) 𝑝-mean rule is an additive welfarist

rule defined by the function 𝜑𝑝 , where

𝜑𝑝 (𝑥) =


𝑥𝑝 if 𝑝 > 0;

log𝑥 if 𝑝 = 0;

−𝑥𝑝 if 𝑝 < 0.

Hence, the MNW rule is also the 0-mean rule.

3 REAL-VALUED INSTANCES
We start with the general case where the utility of a good can be

any (non-negative) real number. As mentioned earlier, the only

6
This family of functions is defined for 𝑐 ∈ [−1, 0] in the domain of non-negative

integers in previous work [16].

7
We prove this equivalence in the full version of our paper [8].
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additive welfarist rule that guarantees EF1 for all such instances

is the MNW rule [19]. In this section, we consider the subclasses

of identical-good instances (Section 3.1), two-value instances (Sec-
tion 3.2), and normalized instances (Section 3.3). We demonstrate

that the characterization of MNW continues to hold for the first

two classes, as well as for the third class when there are three or

more agents. To this end, we show that the only additive welfarist

rule that ensures EF1 for these classes of instances is defined by the

logarithmic function, which is equivalent to Conditions 1 and 1a.

3.1 Identical-Good Instances
Recall that identical-good instances have the property that each

agent assigns the same utility to every good, although the utilities

may be different for different agents. We state the characterization

for such instances.

Theorem 3.1. Let 𝑛 ≥ 2 be given, and let 𝑓 : R≥0 → R∪{−∞} be
a strictly increasing function continuous on R>0. Then, the following
statements are equivalent:

(a) For every positive-admitting identical-good instance with 𝑛

agents, every allocation chosen by the additive welfarist rule
with 𝑓 is EF1.

(b) There exist constants 𝛼 ∈ R>0 and 𝛽 ∈ R such that 𝑓 (𝑥) =
𝛼 log𝑥 + 𝛽 for all 𝑥 ∈ R≥0.

Note that the MNW rule is equivalent to the additive welfarist

rule with a function that satisfies Theorem 3.1(b); therefore, the

theorem essentially says that the only additive welfarist rule that

guarantees EF1 for identical-good instances is the MNW rule.

We shall prove the theorem via a series of lemmas. We begin by

showing that Condition 1 is a necessary condition for a function 𝑓

that satisfies the statement in Theorem 3.1(a).

Lemma 3.2. Let 𝑛 ≥ 2 be given, and let 𝑓 : R≥0 → R∪ {−∞} be a
strictly increasing function such that the statement in Theorem 3.1(a)
holds. Then, 𝑓 satisfies Condition 1.

Proof. Let 𝑘 ∈ Z≥0 and 𝑎, 𝑏 ∈ R>0 be given. Consider an in-

stance with 𝑛 agents and (𝑘 +1)𝑛 goods such that the utility of each

good is 𝑎 for agent 1 and 𝑏 for the remaining agents. This instance is

an identical-good instance; moreover, it is positive-admitting since

the allocation where every agent receives 𝑘 + 1 goods gives positive
utility to every agent.

Let A = (𝐴1, . . . , 𝐴𝑛) be the allocation such that every agent

receives 𝑘 + 1 goods. We have

∑
𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐴𝑖 )) = 𝑓 ((𝑘 + 1)𝑎) + (𝑛 −

1) 𝑓 ((𝑘 + 1)𝑏). Note that A is the only EF1 allocation; indeed, if

some agent does not receive exactly 𝑘 + 1 goods, then some agent 𝑖

receives fewer than 𝑘 +1 goods while another agent 𝑗 receives more

than 𝑘 + 1 goods, so agent 𝑖 envies agent 𝑗 by at least two goods,

thereby violating EF1. Let B = (𝐵1, . . . , 𝐵𝑛) be the allocation such

that agent 1 receives 𝑘 + 2 goods, agent 2 receives 𝑘 goods, and

every other agent receives 𝑘 + 1 goods. We have

∑
𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐵𝑖 )) =

𝑓 ((𝑘 + 2)𝑎) + 𝑓 (𝑘𝑏) + (𝑛 − 2) 𝑓 ((𝑘 + 1)𝑏). Since A is the only EF1

allocation, the additive welfarist rule with 𝑓 chooses (only) A, and

it holds that

∑
𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐴𝑖 )) >

∑
𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐵𝑖 )). Rearranging the

terms, we get

𝑓 ((𝑘 + 1)𝑏) − 𝑓 (𝑘𝑏) > 𝑓 ((𝑘 + 2)𝑎) − 𝑓 ((𝑘 + 1)𝑎),

or equivalently, Δ𝑓 ,𝑘 (𝑏) > Δ𝑓 ,𝑘+1 (𝑎). Since 𝑘, 𝑎, 𝑏 were arbitrarily

chosen, Δ𝑓 ,𝑘 (𝑏) > Δ𝑓 ,𝑘+1 (𝑎) holds for all 𝑘 ∈ Z≥0 and 𝑎, 𝑏 ∈ R>0.
Therefore, 𝑓 satisfies Condition 1. □

Next, we show that Condition 1 is sufficient for the function 𝑓 to

satisfy Theorem 3.1(b). To this end, we prove in Lemmas 3.3 and 3.4

that Condition 1 implies Condition 1a, which in turn implies that

𝑓 satisfies the statement in Theorem 3.1(b). The proofs are rather

complex and involve careful analyses of functions; we outline their

main steps here and leave the details to our full version [8].

Lemma 3.3. Let 𝑓 : R≥0 → R ∪ {−∞} be a strictly increasing
function that satisfies Condition 1. Then, 𝑓 satisfies Condition 1a.

Proof sketch. Let 𝑘 ∈ Z>0 be given. We show that supΔ𝑓 ,𝑘

and inf Δ𝑓 ,𝑘 are both finite, and hence 𝑑𝑓 ,𝑘 := supΔ𝑓 ,𝑘 − inf Δ𝑓 ,𝑘

is well-defined and non-negative. We then prove that 𝑑𝑓 ,𝑘 = 0, so

Δ𝑓 ,𝑘 is a constant function, and 𝑓 satisfies Condition 1a. □

Lemma 3.4. Let 𝑓 : R≥0 → R ∪ {−∞} be a strictly increasing
function continuous on R>0 that satisfies Condition 1a. Then, there
exist constants 𝛼 ∈ R>0 and 𝛽 ∈ R such that 𝑓 (𝑥) = 𝛼 log𝑥 + 𝛽 for
all 𝑥 ∈ R≥0.

Proof sketch. Define 𝑓0 such that 𝑓0 (𝑥) = 𝛼 log𝑥 + 𝛽 where

𝛼 = (𝑓 (2) − 𝑓 (1))/log 2 ∈ R>0 and 𝛽 = 𝑓 (1) ∈ R. We show that 𝑓

and 𝑓0 coincide on the set {2𝑡 : 𝑡 is rational}. Since this set is dense
in R>0 and 𝑓 (and 𝑓0) is continuous, 𝑓 and 𝑓0 coincide on R≥0. □

We remark that Suksompong [19, Lemma 2] proved a result

similar to Lemma 3.4 but made the stronger assumption that the

function 𝑓 is differentiable. Our result only assumes continuity.
We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. The implication (a) ⇒ (b) follows from

Lemmas 3.2 to 3.4, while the implication (b)⇒ (a) follows from the

result of Caragiannis et al. [6]. □

Theorem 3.1 and Lemmas 3.2 to 3.4 imply that a continuous

function having the logarithmic property is equivalent to the func-

tion satisfying Conditions 1 and 1a (separately). We view this as an

interesting mathematical property in itself.

3.2 Two-Value Instances
We now consider two-value instances, which are instances with

only two possible utilities for the goods. Note that the classes of

identical-good instances and two-value instances do not contain

each other. Indeed, an identical-good instance with 𝑛 ≥ 3 agents

may be 𝑛-value rather than two-value since each of the 𝑛 agents

could assign a unique utility to the goods,
8
whereas a two-value

instance allows an agent to have varying utilities for different goods.

Despite this incomparability, we show that the same charac-

terization for identical-good instances also holds for two-value

instances.

Theorem 3.5. Let 𝑛 ≥ 2 be given, and let 𝑓 : R≥0 → R∪{−∞} be
a strictly increasing function continuous on R>0. Then, the following
statements are equivalent:

8
However, for two agents, an identical-good instance is necessarily two-value.
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(a) For every positive-admitting two-value instance with 𝑛 agents,
every allocation chosen by the additive welfarist rule with 𝑓 is
EF1.

(b) There exist constants 𝛼 ∈ R>0 and 𝛽 ∈ R such that 𝑓 (𝑥) =
𝛼 log𝑥 + 𝛽 for all 𝑥 ∈ R≥0.

3.3 Normalized Instances
Next, we consider normalized instances, where agents assign the

same utility to the entire set of goods𝑀 . We first consider the case

of three or more agents. We show that just like for the cases of

identical-good instances and two-value instances, the only additive

welfarist rule that yields EF1 for this case is the MNW rule. This

extends Theorem 6 of Eckart et al. [10], which only handles 𝑝-mean

rules (as opposed to all additive welfarist rules).

Theorem 3.6. Let 𝑛 ≥ 3 be given, and let 𝑓 : R≥0 → R∪{−∞} be
a strictly increasing function continuous on R>0. Then, the following
statements are equivalent:

(a) For every positive-admitting normalized instance with𝑛 agents,
every allocation chosen by the additive welfarist rule with 𝑓 is
EF1.

(b) There exist constants 𝛼 ∈ R>0 and 𝛽 ∈ R such that 𝑓 (𝑥) =
𝛼 log𝑥 + 𝛽 for all 𝑥 ∈ R≥0.

To prove Theorem 3.6, we cannot use the construction in the

proof of Lemma 3.2 since the instance in that construction is not

necessarily normalized. Instead, we show that the function defining

the additive welfarist rule must satisfy Condition 1a. To this end, we
augment the construction of Suksompong [19] by adding a highly

valuable good and an extra agent who only values that good, so

that the instance becomes normalized.

Lemma 3.7. Let 𝑛 ≥ 3 be given, and let 𝑓 : R≥0 → R ∪ {−∞}
be a strictly increasing function continuous on R>0 such that the
statement in Theorem 3.6(a) holds. Then, 𝑓 satisfies Condition 1a.

Proof. Assume, for the sake of contradiction, that 𝑓 does not

satisfy Condition 1a, i.e., there exist 𝑘 ∈ Z>0 and 𝑎, 𝑏 ∈ R>0 such
that 𝑓 ((𝑘 + 1)𝑎) − 𝑓 (𝑘𝑎) > 𝑓 ((𝑘 + 1)𝑏) − 𝑓 (𝑘𝑏). By the continuity

of 𝑓 , there exists 𝜖 ∈ (0, 𝑏) such that

𝑓 ((𝑘 + 1)𝑎) − 𝑓 (𝑘𝑎) > 𝑓 ((𝑘 + 1)𝑏 − 𝜖) − 𝑓 (𝑘𝑏 − 𝜖) . (1)

Consider an instance with 𝑛 agents and𝑚 = 𝑘 (𝑛 − 1) + 2 goods. For
ease of notation, let 𝑐 = max{𝑘𝑛𝑎, 𝑘𝑛𝑏}, 𝑁 ′ = 𝑁 \ {1, 𝑛}, 𝑔′ = 𝑔𝑚−1,
𝑔′′ = 𝑔𝑚 , and 𝑀′ = 𝑀 \ {𝑔′, 𝑔′′}. The utilities of the goods are as
follows.

• 𝑢1 (𝑔′) = 𝑏−𝜖 ,𝑢1 (𝑔′′) = 𝑐−𝑘 (𝑛−1)𝑏− (𝑏−𝜖), and𝑢1 (𝑔) = 𝑏

for 𝑔 ∈ 𝑀′
.

• For 𝑖 ∈ 𝑁 ′
, 𝑢𝑖 (𝑔′) = 0, 𝑢𝑖 (𝑔′′) = 𝑐 −𝑘 (𝑛 − 1)𝑎, and 𝑢𝑖 (𝑔) = 𝑎

for 𝑔 ∈ 𝑀′
.

• 𝑢𝑛 (𝑔′′) = 𝑐 , and 𝑢𝑛 (𝑔) = 𝑢𝑛 (𝑔′) = 0 for 𝑔 ∈ 𝑀′
.

Note that |𝑁 ′ | = 𝑛−2 ≥ 1, |𝑀′ | = 𝑘 (𝑛−1) ≥ |𝑁 ′ |, the utility of each
good is non-negative, and 𝑢𝑖 (𝑀) = 𝑐 for all 𝑖 ∈ 𝑁 . Therefore, this

is a valid normalized instance; moreover, it is positive-admitting

since the allocation where agent 1 receives 𝑔′, agent 𝑛 receives 𝑔′′,
and agent 𝑖 ∈ 𝑁 ′

each receives at least one good from 𝑀′
gives

positive utility to every agent.

Let A = (𝐴1, . . . , 𝐴𝑛) be an allocation chosen by the additive

welfarist rule with 𝑓 . We first show that 𝑔′ ∈ 𝐴1 and 𝐴𝑛 ⊆ {𝑔′′}. If
𝑔′ ∈ 𝐴 𝑗 for some 𝑗 ∈ 𝑁 \ {1}, then giving 𝑔′ to agent 1 increases

𝑢1 (𝐴1) and does not change 𝑢 𝑗 (𝐴 𝑗 ); the value of
∑
𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐴𝑖 ))

increases since 𝑓 is strictly increasing, which contradicts the as-

sumption that A is chosen by the additive welfarist rule with 𝑓 .

Likewise, if𝐴𝑛 \ {𝑔′′} ≠ ∅, then giving𝐴𝑛 \ {𝑔′′} to agent 1 results
in the same contradiction.

Next, we show that 𝐴𝑛 = {𝑔′′}. Suppose on the contrary that

𝑔′′ ∈ 𝐴 𝑗 for some agent 𝑗 ∈ 𝑁 \ {𝑛}. Let A′ = (𝐴′
1
, . . . , 𝐴′

𝑛) be
the allocation such that 𝑔′′ is given instead to agent 𝑛, i.e., 𝐴′

𝑗
=

𝐴 𝑗 \ {𝑔′′}, 𝐴′
𝑛 = {𝑔′′}, and 𝐴′

𝑖
= 𝐴𝑖 for all 𝑖 ∈ 𝑁 \ { 𝑗, 𝑛}. Then,∑︁

𝑖∈𝑁
𝑓 (𝑢𝑖 (𝐴′

𝑖 )) = 𝑓 (𝑢 𝑗 (𝐴′
𝑗 )) + 𝑓 (𝑢𝑛 (𝐴′

𝑛)) +
∑︁

𝑖∈𝑁 \{ 𝑗,𝑛}
𝑓 (𝑢𝑖 (𝐴′

𝑖 ))

≥ 𝑓 (0) + 𝑓 (𝑐) +
∑︁

𝑖∈𝑁 \{ 𝑗,𝑛}
𝑓 (𝑢𝑖 (𝐴′

𝑖 ))

= 𝑓 (𝑐) + 𝑓 (0) +
∑︁

𝑖∈𝑁 \{ 𝑗,𝑛}
𝑓 (𝑢𝑖 (𝐴𝑖 ))

≥ 𝑓 (𝑢 𝑗 (𝐴 𝑗 )) + 𝑓 (𝑢𝑛 (𝐴𝑛)) +
∑︁

𝑖∈𝑁 \{ 𝑗,𝑛}
𝑓 (𝑢𝑖 (𝐴𝑖 ))

=
∑︁
𝑖∈𝑁

𝑓 (𝑢𝑖 (𝐴𝑖 )),

where the inequalities hold because 𝑢𝑛 (𝐴′
𝑛) = 𝑐 and 𝑢𝑛 (𝐴𝑛) = 0.

Now, at least one of the two inequalities must be strict because 𝑓

is strictly increasing and we have 𝑢 𝑗 (𝐴′
𝑗
) > 0 or 𝑢 𝑗 (𝐴 𝑗 ) < 𝑐 . This

shows that

∑
𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐴′

𝑖
)) > ∑

𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐴𝑖 )). It follows thatA is

not chosen by the welfarist rule, a contradiction. Hence,𝐴𝑛 = {𝑔′′}.
Recall that A is EF1 since it is chosen by the additive welfarist

rule with 𝑓 . We show that every agent 𝑖 ∈ 𝑁 \ {𝑛} receives exactly
𝑘 goods from𝑀′

. If agent 1 receives at most 𝑘 − 1 goods from𝑀′
,

then some agent 𝑗 ∈ 𝑁 ′
receives at least 𝑘 + 1 goods from𝑀′

. Then,

𝑢1 (𝐴1) ≤ 𝑘𝑏 − 𝜖 and 𝑢1 (𝐴 𝑗 \ {𝑔}) ≥ 𝑘𝑏 > 𝑢1 (𝐴1) for all 𝑔 ∈ 𝐴 𝑗 ,

which shows that A is not EF1 for agent 1. Therefore, agent 1

receives at least 𝑘 goods from𝑀′
. Likewise, if some agent 𝑖 ∈ 𝑁 ′

receives at most 𝑘−1 goods from𝑀′
, then some agent 𝑗 ∈ 𝑁 \{𝑖, 𝑛}

receives at least 𝑘 + 1 goods from𝑀′
. Then, 𝑢𝑖 (𝐴𝑖 ) ≤ (𝑘 − 1)𝑎 and

𝑢𝑖 (𝐴 𝑗 \ {𝑔}) ≥ 𝑘𝑎 > 𝑢𝑖 (𝐴𝑖 ) for all 𝑔 ∈ 𝐴 𝑗 , which shows that A is

not EF1 for agent 𝑖 . Therefore, every agent 𝑖 ∈ 𝑁 ′
receives at least

𝑘 goods from𝑀′
as well. The only way for every agent in 𝑁 \ {𝑛}

to receive at least 𝑘 goods from𝑀′
is when every agent in 𝑁 \ {𝑛}

receives exactly 𝑘 goods from𝑀′
. Then, we have∑︁

𝑖∈𝑁
𝑓 (𝑢𝑖 (𝐴𝑖 )) = 𝑓 (𝑢1 (𝐴1)) +

∑︁
𝑖∈𝑁 ′

𝑓 (𝑢𝑖 (𝐴𝑖 )) + 𝑓 (𝑢𝑛 (𝐴𝑛))

= 𝑓 ((𝑘 + 1)𝑏 − 𝜖) + (𝑛 − 2) 𝑓 (𝑘𝑎) + 𝑓 (𝑐) .

Let B = (𝐵1, . . . , 𝐵𝑛) be the allocation such that agent 1 receives

𝑔′ and 𝑘 − 1 goods from𝑀′
, agent 2 receives 𝑘 + 1 goods from𝑀′

,

each agent 𝑖 ∈ 𝑁 ′ \ {2} receives 𝑘 goods from 𝑀′
, and agent 𝑛

receives 𝑔′′. We have∑︁
𝑖∈𝑁

𝑓 (𝑢𝑖 (𝐵𝑖 )) = 𝑓 (𝑢1 (𝐵1)) +
∑︁
𝑖∈𝑁 ′

𝑓 (𝑢𝑖 (𝐵𝑖 )) + 𝑓 (𝑢𝑛 (𝐵𝑛))

= 𝑓 (𝑘𝑏 − 𝜖) + 𝑓 ((𝑘 + 1)𝑎) + (𝑛 − 3) 𝑓 (𝑘𝑎) + 𝑓 (𝑐).
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Since A is chosen, we have

∑
𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐵𝑖 )) ≤ ∑

𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐴𝑖 )).
Rearranging the terms, we get

𝑓 ((𝑘 + 1)𝑎) − 𝑓 (𝑘𝑎) ≤ 𝑓 ((𝑘 + 1)𝑏 − 𝜖) − 𝑓 (𝑘𝑏 − 𝜖),
contradicting (1). Therefore, 𝑓 satisfies Condition 1a. □

With this lemma in hand, we are ready to prove Theorem 3.6.

Proof of Theorem 3.6. The implication (a) ⇒ (b) follows from

Lemmas 3.7 and 3.4, while the implication (b) ⇒ (a) follows from

the result of Caragiannis et al. [6]. □

We now address the case of two agents. Eckart et al. [10] showed

that in this case, the 𝑝-mean rule guarantees EF1 for all 𝑝 ≤ 0, which

implies that there is a larger class of additive welfarist rules that

guarantee EF1. Accordingly, our characterization in Theorem 3.6

does not work for two agents. The problem of finding a characteri-

zation for this case turns out to be rather challenging. We instead

provide a necessary condition and a sufficient condition for the

functions defining the additive welfarist rules that guarantee EF1

for normalized instances with two agents. Note that the sufficient

condition in Proposition 3.9 is a generalization of the condition

used by Eckart et al. [10, Lemma 3].

Proposition 3.8. Let 𝑓 : R≥0 → R ∪ {−∞} be a strictly increas-
ing function continuous on R>0 such that for every positive-admitting
normalized instance with two agents, every allocation chosen by the
additive welfarist rule with 𝑓 is EF1. Then, 𝑓 is strictly concave.

Proposition 3.9. Let 𝑓 : R≥0 → R ∪ {−∞} be a strictly in-
creasing function that satisfies Condition 2. Then, for every positive-
admitting normalized instance with two agents, every allocation cho-
sen by the additive welfarist rule with 𝑓 is EF1.

We show in our full version [8] that beyond the 𝑝-mean rules

for 𝑝 ≤ 0, there are (infinitely many) other additive welfarist rules

that guarantee EF1 for normalized instances with two agents, and

provide some insights on the extent to which the additive welfarist

rules with the modified logarithmic function 𝜆𝑐 and the modified

harmonic number ℎ𝑐 can ensure EF1 for such instances.

4 INTEGER-VALUED INSTANCES
In this section, we turn our attention to integer-valued instances,

where the utility of each agent for each good must be a (non-

negative) integer. For these instances, the MNW rule is no longer

the unique additive welfarist rule that guarantees EF1: the MHW

rule exhibits the same property [16]. We shall explore the condi-

tions for rules to satisfy this property, and provide several examples

of such rules.

4.1 Identical-Good Instances
We begin with the class of (integer-valued) identical-good instances.

We show that the functions defining the additive welfarist rules

that guarantee EF1 for such instances are precisely those that sat-

isfy Condition 3. Perhaps unsurprisingly, Condition 3 is similar to

Condition 1 (which is the condition corresponding to real-valued
identical-good instances), with the difference being that the values

of 𝑎 and 𝑏 in the conditions are positive real numbers in Condition 1

and positive integers in Condition 3.

Theorem 4.1. Let 𝑛 ≥ 2 be given, and let 𝑓 : R≥0 → R ∪ {−∞}
be a strictly increasing function. Then, the following statements are
equivalent:

(a) For every positive-admitting integer-valued identical-good in-
stance with 𝑛 agents, every allocation chosen by the additive
welfarist rule with 𝑓 is EF1.

(b) 𝑓 satisfies Condition 3.

Due to the similarity between Conditions 1 and 3, the proof for

(a)⇒ (b) in Theorem 4.1 follows similarly to that in the real-valued

case (Lemma 3.2). To prove (b) ⇒ (a), we show that Condition 3

implies Condition 3a, which in turn implies (a).

Lemma 4.2. Let 𝑓 : R≥0 → R ∪ {−∞} be a strictly increasing
function that satisfies Condition 3. Then, 𝑓 satisfies Condition 3a.

Proof. Let 𝑘, ℓ ∈ Z≥0 and 𝑎, 𝑏 ∈ Z>0 be given such that ℓ < 𝑘 .

By applying Condition 3 repeatedly, we haveΔ𝑓 ,ℓ (𝑏) > Δ𝑓 ,ℓ+1 (𝑎) >
· · · > Δ𝑓 ,𝑘 (𝑎), so 𝑓 indeed satisfies Condition 3a. □

Lemma 4.3. Let 𝑛 ≥ 2 be given, and let 𝑓 : R≥0 → R ∪ {−∞} be
a strictly increasing function that satisfies Condition 3a. Then, the
statement in Theorem 4.1(a) holds.

Proof of Theorem 4.1. The implication (a) ⇒ (b) follows simi-

larly as Lemma 3.2, while the implication (b) ⇒ (a) follows from

Lemmas 4.2 and 4.3. □

Since Conditions 1 and 1a are equivalent (see Theorem 3.1 and

Lemmas 3.2 to 3.4), one may be tempted to think that there is a

condition analogous to Condition 1a that Condition 3 is equivalent

to, perhaps “Δ𝑓 ,𝑘 is a constant function (on domain Z>0) for each
𝑘 ∈ Z>0”. However, this condition is too strong, and is not implied

by Condition 3.
9
Instead, we show that Condition 3 is equivalent

to Condition 3b.

Proposition 4.4. Let 𝑓 : R≥0 → R ∪ {−∞} be a strictly increas-
ing function. Then, the following statements are equivalent:

(a) 𝑓 satisfies Condition 3.
(b) 𝑓 satisfies Condition 3a.
(c) 𝑓 satisfies Condition 3b.

We next give examples of additive welfarist rules that guaran-

tee EF1 for all integer-valued identical-good instances. We study

two families of functions: modified logarithmic functions 𝜆𝑐 and

modified harmonic numbers ℎ𝑐 . By leveraging Proposition 4.4 and

Theorem 4.1, we can determine which of these additive welfarist

rules ensure EF1 for integer-valued identical-good instances.

Proposition 4.5. The function 𝜆𝑐 satisfies Condition 3b if and
only if 0 ≤ 𝑐 ≤ 1.

Proposition 4.6. The function ℎ𝑐 satisfies Condition 3b if and
only if −1 ≤ 𝑐 ≤ 1/log 2 − 1 (≈ 0.443).

Propositions 4.5 and 4.6 show that beyond the MNW rule and

the MHW rule, many other additive welfarist rules guarantee EF1

for integer-valued identical-good instances. We provide more dis-

cussion in the full version of our paper [8].

9
Indeed, the MHW rule—which corresponds to the function ℎ0—guarantees EF1 for

integer-valued instances [16], but Δℎ
0
,1 is not a constant function as Δℎ

0
,1 (1) =

ℎ0 (2) − ℎ0 (1) = 1/2 < 7/12 = ℎ0 (4) − ℎ0 (2) = Δℎ
0
,1 (2) .
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4.2 Binary Instances
Next, we consider binary instances, where each good is worth

either 0 or 1 to each agent. We show that the functions defining the

additive welfarist rules that guarantee EF1 for all binary instances

are those that satisfyCondition 4, which is equivalent to the function
being strictly concave in the domain of non-negative integers.

Theorem 4.7. Let 𝑛 ≥ 2 be given, and let 𝑓 : R≥0 → R ∪ {−∞}
be a strictly increasing function. Then, the following statements are
equivalent:

(a) For every positive-admitting binary instance with 𝑛 agents,
every allocation chosen by the additive welfarist rule with 𝑓 is
EF1.

(b) 𝑓 satisfies Condition 4.

Proof. (a) ⇒ (b): Let 𝑘 ∈ Z≥0. Consider an instance with 𝑛

agents and 2𝑘 + 𝑛 goods, and let𝑀′ = {𝑔1, . . . , 𝑔2𝑘+2}. The utilities
of the goods are as follows.

• For 𝑖 ∈ {1, 2}, 𝑢𝑖 (𝑔) = 1 for 𝑔 ∈ 𝑀′
, and 𝑢𝑖 (𝑔) = 0 otherwise.

• For 𝑖 ∈ {3, . . . , 𝑛}, 𝑢𝑖 (𝑔2𝑘+𝑖 ) = 1, and 𝑢𝑖 (𝑔) = 0 for all other

𝑔 ∈ 𝑀 .

This instance is a binary instance; moreover, it is positive-admitting

since any allocation where each agent 𝑖 ∈ 𝑁 receives 𝑔
2𝑘+𝑖 gives

positive utility to every agent.

Let A = (𝐴1, . . . , 𝐴𝑛) be an allocation chosen by the additive

welfarist rule with 𝑓 . Each good must be allocated to an agent

who has utility 1 for the good; otherwise, transferring such a good

to an agent who has utility 1 for the good increases the value of∑
𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐴𝑖 )), contradicting the assumption that A is chosen by

the additive welfarist rule with 𝑓 . Accordingly, the goods in 𝑀′

are allocated to agent 1 and 2, and for each 𝑖 ∈ {3, . . . , 𝑛}, 𝑔
2𝑘+𝑖 is

allocated to agent 𝑖 .

Recall that A is EF1 since it is chosen by the additive welfarist

rule with 𝑓 . We claim that agent 1 and 2 each receives exactly

𝑘 + 1 goods from 𝑀′
. If not, then one of them receives at most 𝑘

goods from 𝑀′
, and will envy the other agent (who receives at

least 𝑘 + 2 goods from 𝑀′
) by more than one good, making the

allocation not EF1 and contradicting our assumption. Then, we

have

∑
𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐴𝑖 )) = 2𝑓 (𝑘 + 1) + (𝑛 − 2) 𝑓 (1).

Let B = (𝐵1, . . . , 𝐵𝑛) be the allocation such that agent 1 receives

𝑘 goods from𝑀′
, agent 2 receives 𝑘 +2 goods from𝑀′

, and for each

𝑖 ∈ {3, . . . , 𝑛}, agent 𝑖 receives 𝑔
2𝑘+𝑖 . We have

∑
𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐵𝑖 )) =

𝑓 (𝑘) + 𝑓 (𝑘 + 2) + (𝑛 − 2) 𝑓 (1). Note that B is not EF1, and cannot

be chosen by the additive welfarist rule with 𝑓 . Therefore, we have∑
𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐴𝑖 )) >

∑
𝑖∈𝑁 𝑓 (𝑢𝑖 (𝐵𝑖 )). Rearranging the terms, we get

𝑓 (𝑘 + 1) − 𝑓 (𝑘) > 𝑓 (𝑘 + 2) − 𝑓 (𝑘 + 1),

or equivalently, Δ𝑓 ,𝑘 (1) > Δ𝑓 ,𝑘+1 (1). Since 𝑘 ∈ Z≥0 was arbitrarily
chosen, Δ𝑓 ,𝑘 (1) > Δ𝑓 ,𝑘+1 (1) holds for all 𝑘 ∈ Z≥0. Therefore, 𝑓
satisfies Condition 4.

(b)⇒ (a): Let a positive-admitting binary instance with 𝑛 agents

be given, and let A = (𝐴1, . . . , 𝐴𝑛) be an allocation chosen by the

additive welfarist rule with 𝑓 . Assume, for the sake of contradiction,

thatA is not EF1. Then, there exist 𝑖, 𝑗 ∈ 𝑁 such that agent 𝑖 envies

agent 𝑗 by more than one good, i.e., 𝑢𝑖 (𝐴𝑖 ) < 𝑢𝑖 (𝐴 𝑗 \ {𝑔}) for all
𝑔 ∈ 𝐴 𝑗 . Note that we must have𝑢𝑖 (𝑔) ≤ 𝑢 𝑗 (𝑔) for all𝑔 ∈ 𝐴 𝑗 . Indeed,

otherwise we have𝑢𝑖 (𝑔) = 1 and𝑢 𝑗 (𝑔) = 0, and transferring 𝑔 from

agent 𝑗 ’s bundle to agent 𝑖’s bundle increases 𝑓 (𝑢𝑖 (𝐴𝑖 )) and does

not decrease 𝑓 (𝑢 𝑗 (𝐴 𝑗 )), thereby increasing

∑
𝑘∈𝑁 𝑓 (𝑢𝑘 (𝐴𝑘 )) and

contradicting the assumption that A is chosen by the additive

welfarist rule with 𝑓 . Moreover, since 𝑢𝑖 (𝐴 𝑗 ) > 0, there exists

𝑔′ ∈ 𝐴 𝑗 such that 𝑢𝑖 (𝑔′) = 1 (and hence 𝑢 𝑗 (𝑔′) = 1).

Let B = (𝐵1, . . . , 𝐵𝑛) be the same allocation as A except that

𝑔′ is transferred from agent 𝑗 ’s bundle to agent 𝑖’s bundle, i.e.,

𝐵𝑖 = 𝐴𝑖∪{𝑔′},𝐵 𝑗 = 𝐴 𝑗 \{𝑔′}, and 𝐵𝑘 = 𝐴𝑘 for all𝑘 ∈ 𝑁 \{𝑖, 𝑗}. Note
that 𝑢𝑖 (𝐴𝑖 ) < 𝑢𝑖 (𝐴 𝑗 \ {𝑔′}) = 𝑢𝑖 (𝐵 𝑗 ), and that 𝑢𝑖 (𝐵 𝑗 ) ≤ 𝑢 𝑗 (𝐵 𝑗 )
since 𝑢𝑖 (𝑔) ≤ 𝑢 𝑗 (𝑔) for all 𝑔 ∈ 𝐵 𝑗 . Therefore, 𝑢𝑖 (𝐴𝑖 ) < 𝑢 𝑗 (𝐵 𝑗 ). By
Condition 4, it holds that Δ𝑓 ,𝑢𝑖 (𝐴𝑖 ) (1) > · · · > Δ𝑓 ,𝑢 𝑗 (𝐵 𝑗 ) (1). On the
other hand, we have

∑
𝑘∈𝑁 𝑓 (𝑢𝑘 (𝐵𝑘 )) = 𝑓 (𝑢𝑖 (𝐵𝑖 )) + 𝑓 (𝑢 𝑗 (𝐵 𝑗 )) +∑

𝑘∈𝑁 \{𝑖, 𝑗 } 𝑓 (𝑢𝑘 (𝐴𝑘 )). Since A is chosen by the additive welfarist

rule with 𝑓 , we have
∑
𝑘∈𝑁 𝑓 (𝑢𝑘 (𝐵𝑘 )) ≤

∑
𝑘∈𝑁 𝑓 (𝑢𝑘 (𝐴𝑘 )). Rear-

ranging the terms, we get

𝑓 (𝑢𝑖 (𝐵𝑖 )) − 𝑓 (𝑢𝑖 (𝐴𝑖 )) ≤ 𝑓 (𝑢 𝑗 (𝐴 𝑗 )) − 𝑓 (𝑢 𝑗 (𝐵 𝑗 )),
or equivalently,Δ𝑓 ,𝑢𝑖 (𝐴𝑖 ) (1) ≤ Δ𝑓 ,𝑢 𝑗 (𝐵 𝑗 ) (1), a contradiction. There-
fore, A is EF1. □

Condition 4 is weaker than Condition 3. Indeed, if 𝑓 satisfies

Condition 3, then it satisfies Condition 4 by definition. However, the

converse is not true: the function 𝑓 (𝑥) =
√
𝑥 satisfies Condition 4,

but it does not satisfy Condition 3 since Δ𝑓 ,0 (1) = 1 is not greater

than Δ𝑓 ,1 (6) ≈ 1.01. This means that each additive welfarist rule

that guarantees EF1 for every positive-admitting integer-valued

identical-good instance also guarantees EF1 for every positive-

admitting binary instance, but the converse does not hold.

Proposition 4.8. Let 𝑓 : R≥0 → R ∪ {−∞} be a strictly increas-
ing function. If 𝑓 satisfies Condition 3, then it satisfies Condition 4.

We mentioned earlier that Condition 4 is equivalent to the func-

tion being strictly concave in the domain of non-negative integers.

On the other hand, the function 𝜑𝑝 defining the 𝑝-mean rule is

strictly concave if and only if 𝑝 < 1. We prove that, indeed, 𝜑𝑝
satisfies Condition 4 exactly when 𝑝 < 1.

Proposition 4.9. The function 𝜑𝑝 satisfies Condition 4 if and only
if 𝑝 < 1.

4.3 Two-Value Instances
We now consider integer-valued instances which are two-value, a

strict generalization of binary instances. Recall from Section 3.2

that the classes of identical-good instances and two-value instances

are not subclasses of each other (except when 𝑛 = 2). Therefore,

the techniques used in Section 4.1 cannot be used in this section.
10

We show that the characterization for integer-valued two-value

instances is given by Condition 5. Before we state the characteriza-
tion, we examine the relationship between Conditions 3 and 5.

Proposition 4.10. Let 𝑓 : R≥0 → R∪{−∞} be a strictly increas-
ing function.

(i) If 𝑓 satisfies Condition 5, then 𝑓 satisfies Condition 3.
(ii) If 𝑓 satisfies Condition 3 and the property that for each𝑘 ∈ Z>0,

the function Δ𝑓 ,𝑘 is either non-decreasing or non-increasing
on the domain of positive integers, then 𝑓 satisfies Condition 5.

10
In particular, the proof that Condition 3a is a sufficient condition for the identical-

good case (Lemma 4.3) does not apply to the two-value case.
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We now state the characterization for integer-valued two-value

instances.

Theorem 4.11. Let 𝑛 ≥ 2 be given, and let 𝑓 : R≥0 → R ∪ {−∞}
be a strictly increasing function. Then, the following statements are
equivalent:

(a) For every positive-admitting integer-valued two-value instance
with 𝑛 agents, every allocation chosen by the additive welfarist
rule with 𝑓 is EF1.

(b) 𝑓 satisfies Condition 5.

Proposition 4.10 says that Condition 5 is stronger than Condi-

tion 3. Therefore, Theorem 4.11 implies that every additive welfarist

rule that guarantees EF1 for every positive-admitting integer-valued

two-value instance also guarantees EF1 for every positive-admitting

integer-valued identical-good instance, even though these two

classes of instances are not subclasses of each other.

Next, we give examples of additive welfarist rules that ensure EF1

for all integer-valued two-value instances. We use Propositions 4.5,

4.6, and 4.10 to prove these results.

Proposition 4.12. The function 𝜆𝑐 satisfies Condition 5 if and
only if 0 ≤ 𝑐 ≤ 1.

Proposition 4.13. The function ℎ𝑐 satisfies Condition 5 if and
only if −1 ≤ 𝑐 ≤ 1/log 2 − 1 (≈ 0.443).

4.4 General Integer-Valued Instances
Finally, we consider the class of all integer-valued instances. It

turns out to be challenging to find an exact characterization for

this class of instances. Instead, we provide a necessary condition in

the form of Condition 6a and a sufficient condition in the form of

Condition 6b.

Proposition 4.14. Let 𝑛 ≥ 2 be given, and let 𝑓 : R≥0 → R ∪
{−∞} be a strictly increasing function such that for every positive-
admitting integer-valued instance with 𝑛 agents, every allocation
chosen by the additive welfarist rule with 𝑓 is EF1. Then, 𝑓 satisfies
Condition 6a.

Proposition 4.15. Let 𝑛 ≥ 2 be given, and let 𝑓 : R≥0 → R ∪
{−∞} be a strictly increasing function that satisfies Condition 6b.
Then, for every positive-admitting integer-valued instance with 𝑛

agents, every allocation chosen by the additive welfarist rule with 𝑓

is EF1.

We demonstrate that the necessary condition given as Condi-

tion 6a is fairly tight, in the sense that it is stronger than Condition 5,

which characterizes the functions defining the additive welfarist

rules that guarantee EF1 for integer-valued two-value instances.

Proposition 4.16. Let 𝑓 : R≥0 → R∪{−∞} be a strictly increas-
ing function. If 𝑓 satisfies Condition 6a, then it satisfies Condition 5.

We now present some examples. We show that just like for

the subclasses of integer-valued identical-good instances (Propo-

sition 4.5), binary instances (Proposition 4.8), and integer-valued

two-value instances (Proposition 4.12), the additive welfarist rule

with function 𝜆𝑐 for 0 ≤ 𝑐 ≤ 1 guarantees EF1 for all integer-valued

instances.

Proposition 4.17. The function 𝜆𝑐 satisfies Condition 6b if and
only if 0 ≤ 𝑐 ≤ 1.

On the other hand, leveraging Condition 6a, we show that the

additive welfarist rule with function ℎ𝑐 for −1 ≤ 𝑐 < −1/2 does
not guarantee EF1 for the class of all integer-valued instances. This

stands in contrast to integer-valued identical-good instances (Propo-

sition 4.6), binary instances (Proposition 4.8), and integer-valued

two-value instances (Proposition 4.13).

Proposition 4.18. The function ℎ𝑐 does not satisfy Condition 6a
when −1 ≤ 𝑐 < −1/2.

5 CONCLUSION
In this paper, we have characterized additive welfarist rules that

guarantee EF1 allocations for various classes of instances. In the

real-valued case, we strengthened the result of Suksompong [19] by

showing that only the maximum Nash welfare (MNW) rule ensures

EF1 even for the most restricted class of identical-good instances.

This indicates that the unique fairness of MNW stems from its

scale-invariance,11 since for normalized identical-good instances,

an additive welfarist rule with any strictly concave function 𝑓

guarantees EF1. On the other hand, in the practically important

case where all values are integers, we demonstrated that even for

the most general setting with no additional restrictions, there is

a wide range of additive welfarist rules that always return EF1

allocations.

Since we have established the existence of several alternatives

that perform as well as MNW in terms of guaranteeing EF1 alloca-

tions for integer-valued instances, a natural follow-up would be to

compare these rules with respect to other measures, both to MNW

and to one another. As illustrated in Example 1.1, some additive

welfarist rules may produce more preferable allocations for certain

instances than others. It would be interesting to formalize this ob-

servation, for example, by comparing their prices in terms of social

welfare, in the same vein as the “price of fairness” [3, 7, 14].

Other possible future directions include completely character-

izing additive welfarist rules for normalized instances with two

agents (Section 3.3) and for general integer-valued instances (Sec-

tion 4.4) by tightening their respective necessary and sufficient

conditions. Obtaining characterizations of welfarist rules that are

not necessarily additive is also a possible extension of our work.

Beyond EF1, one could consider other fairness notions from the

literature, such as proportionality up to one good (PROP1). Finally,

another intriguing avenue is to study the problem of computing (or

approximating) an allocation produced by various additive welfarist

rules, as has been done extensively for the MNW rule [1, 2, 9, 13].
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