
Game-Theoretically Secure Distributed Protocols for Fair
Allocation in Coalitional Games

T-H. Hubert Chan

The University of Hong Kong

Hong Kong, China

hubert@cs.hku.hk

Qipeng Kuang

The University of Hong Kong

Hong Kong, China

kuangqipeng@connect.hku.hk

Quan Xue

The University of Hong Kong

Hong Kong, China

csxuequan@connect.hku.hk

ABSTRACT
We consider game-theoretically secure distributed protocols for

coalition games that approximate the Shapley value with small

multiplicative error. Since all known existing approximation algo-

rithms for the Shapley value are randomized, it is a challenge to

design efficient distributed protocols among mutually distrusted

players when there is no central authority to generate unbiased

randomness. The game-theoretic notion of maximin security has

been proposed to offer guarantees to an honest player’s reward

even if all other players are susceptible to an adversary.

Permutation sampling is often used in approximation algorithms

for the Shapley value. A previous work in 1994 by Zlotkin et al.

proposed a simple constant-round distributed permutation genera-

tion protocol based on commitment scheme, but it is vulnerable to

rushing attacks. The protocol, however, can detect such attacks.

In this work, we model the limited resources of an adversary by

a violation budget that determines how many times it can perform

such detectable attacks. Therefore, by repeating the number of

permutation samples, an honest player’s reward can be guaranteed

to be close to its Shapley value. We explore both high probability

and expected maximin security. We obtain an upper bound on

the number of permutation samples for high probability maximin

security, even with an unknown violation budget. Furthermore, we

establish a matching lower bound for the weaker notion of expected

maximin security in specific permutation generation protocols. We

have also performed experiments on both synthetic and real data

to empirically verify our results.

KEYWORDS
Secure distributed protocols; Coalitional games; Shapley value

ACM Reference Format:
T-H. Hubert Chan, Qipeng Kuang, and Quan Xue. 2025. Game-Theoretically

Secure Distributed Protocols for Fair Allocation in Coalitional Games. In

Proc. of the 24th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025,
IFAAMAS, 9 pages.

1 INTRODUCTION
A coalitional game (aka cooperative game) involves 𝑛 players in

the set N , and the utility function 𝑣 : 2
N → R+ determines the

reward 𝑣 (𝑆) obtained by a coalition 𝑆 ⊆ N when players cooperate

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

together. An extensively researched problem in this context is the

fair allocation of the reward among the 𝑛 players.

The Shapley value is an allocation concept in coalitional games,

which has many applications and can provide a fair and consistent

framework to assess and distribute rewards among different agents,

leading to a more equitable, sustainable, and inclusive system. For

instance, it can be used to develop an axiomatic framework for

attribution in online advertising [3], measure the significance of

nodes in the context of network centrality [9] and develop a pricing

scheme of personal recommendations [14]. Computing the exact

Shapley value is #P-hard [12], so approximations are used in prac-

tice. We focus on the notion of 𝜖-multiplicative error, where each
player receives at least (1 − 𝜖) fraction of its Shapley value, with

𝜖 > 0 as a constant.

All known efficient algorithms for approximating the Shapley

value require randomness, and one approach involves generating

uniformly random permutations of all players. However, this study

focuses on the distributed setting where no trusted authority pro-

vides randomness. Each player has its own local source of random-

ness. The objective is to design an efficient protocol for allocating
rewards close to the Shapley value with a small multiplicative error,

while accounting for players’ incentives to deviate.

For distributed protocols, the game-theoretic concept of max-
imin security [11] is introduced to offer security guarantees from

the perspective of an honest player, where all other players may

be susceptible to an adversary. For coalitional games, the security

guarantee can be (i) the expected reward received by a player has

𝜖-multiplicative error, or (ii) the reward achieves this multiplicative

error with high probability.

One previous attempt has been made to design a secure dis-

tributed protocol for returning an allocation in a coalitional game.

Zlotkin et al. [28] proposed NaivePerm, in which players commit

to uniformly random permutations of all players in the first round,

opening the commitments in the second round. The composition

of all the opened permutations determines each player’s marginal

contribution. Provided that all players must send their messages in

each round at the same time, the expected reward of a player is its

Shapley value.

However, if the adversary is rushing (i.e., in each round, it can

act after seeing an honest player’s message), then in some games,

by instructing at most one susceptible player to abort, it can create

a permutation such that the honest player get its smallest possible

reward. Nevertheless, such an attack is limited to detected violations.

This motivates the concept of violation budget that quantifies the
number of violations that the adversary can make.

We also adopt the random permutation approach, and analyze

the sampling complexity of random permutations, which we call P-
samples. Our idea is that the number of P-samples used in a protocol

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

463

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

should depend on two factors: (1) ensuring a small multiplicative

error with high probability and (2) mitigating bias from adversaries

due to detected violations.

In this paper, we design maximin secure distributed protocols

that return allocations that approximate the Shapley value. More-

over, we analyze upper and lower bounds on the sampling com-

plexity under different violation budget models. Furthermore, our

theoretical results are verified empirically by performing experi-

ments on both real and synthetic data.

Related Work. Shapley value [27] satisfies symmetry, group ratio-

nality and additivity, and has become the de facto fairness notion.
Shapley value also has applications areas such as evaluating the

importance of data sources in a learning model [20] and assessing

the contribution of data to database queries [13, 23, 26].

However, computing the Shapley value is intractable. Deng et

al. [12] proved that calculating the Shapley value for weighted

voting games is #P-complete. Elkind et al. [15] proved that it is

NP-hard to decide whether the Shapley value of a certain player

is 0 in the weighted voting game; hence, it is NP-hard to achieve

constant multiplicative error for general games. Bachrach et al. [1]

proved the impossibility of achieving super-polynomially small

additive error with high probability if the randomized algorithm

only samples the utility function for a polynomial number of times.

Supermodular coalitional game models the situation in which it

is more beneficial for players to collaborate together, an example of

which is multicast cost sharing [16]. Games not having supermod-

ular utility functions may still be reduced to supermodular games;

see [12, 18, 19] for instances. However, computing the Shapley value

exactly is still hard for supermodular games. In fact, Liben-Nowell

et al. [21, Theorem 6] showed that any randomized approach will

still need at least Ω(1𝑛𝜖) oracle accesses to the utility function

to achieve 𝜖-multiplicative error. Similar to the result in [1], this

means that a super-polynomially small 𝜖 would require a super-

polynomially number of accesses to the utility function. Moreover,

they also showed [21, Theorem 5] that any deterministic algorithm

that achieves a multiplicative error of at most 𝜖 = 1

2𝑛 must make at

least a super-polynomial number of samples on the utility function.

In contrast, for this value of 𝜖 , a polynomial number of samples is

sufficient for randomized algorithms.

Approximation approaches by sampling random permutations

have been well studied, which is known as simple random sam-
pling [5, 28]. More refined analysis with respect to the ranks in ran-

dom permutations, which is known as stratified sampling [17, 24],

has also been studied. Finally, by re-interpreting the Shapley value

as the expectation of a process that randomly samples subsets of

players, multilinear sampling methods [25] have also been investi-

gated. Other heuristic algorithms can be found in [8].

The sampling complexity of algorithms has also been extensively

studied. For general games, a simple application of the Hoeffding

inequality can give a sufficient number of permutation samples.

However, note that each permutation sample involves Θ(𝑛) oracle
accesses to the utility function, but only two of which are relevant

to a single player. To avoid this extra factor of Ω(𝑛) in the sampling

complexity on the utility function, Jia et al. [20] has considered a

different sampling procedure that first approximates the differences

of Shapley values between all pairs of players.

For the special case of supermodular games, Liben-Nowell et

al. [21] used the Chebyshev’s inequality to give an upper bound

of the permutation sampling complexity to achieve multiplicative

approximation. We show that this can be easily improved by using

the stronger Chernoff Bound.

Zlotkin et al. [28] proposed a distributed protocol (which we call

NaivePerm) that samples one random permutation, from which an

allocation is derived. As shown in Section 3, just using one sample

is not sufficient under our adversarial model.

The game-theoretic notion ofmaximin security has been first pro-
posed by Chung et al. [11] to analyze how the reward for an honest

player in a distributed protocol can be protected in an environment

where other players may behave adversarially. Subsequently, this

notion has been applied to distributed protocols for other well-

known problems such as leader election [10] and ordinal random
assignment problem [6]. Both upper and lower bounds on the round

complexity have been analyzed in [10].

Additional Material. Some technical proofs are deferred to the

full version [7]. Experiment results are given in Section 6.

2 PRELIMINARIES
2.1 Coalitional Game
A coalitional game is characterized by (N , 𝑣), where N is a set of

𝑛 = |N | players and 𝑣 : 2
N → R+ is a utility function indicating

that a coalition 𝑆 of players can obtain a revenue of 𝑣 (𝑆).
Marginal Contribution. The marginal contribution of player 𝑖

joining a subset 𝑆 ∌ 𝑖 is: 𝜇𝑖 (𝑆) := 𝑣 (𝑆 ∪ {𝑖}) − 𝑣 (𝑆). Observe that 𝜇𝑖
is defined with respect to 𝑣 . In this work, we assume that the utility

function 𝑣 is monotone, i.e., the marginal contribution 𝜇𝑖 is always

non-negative.

Dividing Up the Reward in the Grand Coalition. From mono-

tonicity, we have for all 𝑆 ⊆ N , 𝑣 (𝑆) ≤ 𝑣 (N). An interesting

question is how to divide up the received reward 𝑣 (N) among the

players. Given a game (N , 𝑣), an allocation is a (non-negative) vec-

tor 𝑥 ∈ RN+ such that

∑
𝑖∈N 𝑥𝑖 = 𝑣 (N), i.e., 𝑥𝑖 represents the profit

allocated to player 𝑖 .

Shapley Value [27]. This is an allocation vector whose definition

is recalled as follows. For player 𝑖 , its Shapley value is:

𝜙𝑖 =
1

𝑛

∑︁
𝑆⊆N\{𝑖 }

(
𝑛 − 1
|𝑆 |

)−1
𝜇𝑖 (𝑆) =

1

𝑛!

∑︁
𝜎

𝜇𝑖 (𝑃𝑖 (𝜎)), (1)

where the last summation is over all 𝑛! permutations 𝜎 : [𝑛] → N
of players, and 𝑃𝑖 (𝜎) is the set of predecessors of player 𝑖 in the

permutation 𝜎 .

Random Permutation Interpretation. One way to interpret

Equation (1) is to distribute the total reward 𝑣 (N) through a ran-

dom process. This process involves sampling a uniformly random

permutation (aka P-sample) that determines the order in which

players join the coalition one by one. The reward of a player is its

marginal contribution when joining existing players already in the

coalition. The Shapley value 𝜙𝑖 is exactly the expected reward of

player 𝑖 in this random process. The following parameter will be

used to analyze the number of P-samples used in our protocols.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

464

Max-to-Mean Ratio Γ. This parameter is determined by the utility

function 𝑣 . For player 𝑖 , let𝑈max,𝑖 := max𝑆⊆N\{𝑖 } 𝜇𝑖 (𝑆) be its max-

imum marginal contribution; its max-to-mean ratio is Γ𝑖 =
𝑈max,𝑖

𝜙𝑖
,

where we use the convention
0

0
= 1. We denote Γ := max𝑖∈N Γ𝑖 .

Expectation vs High Probability. Typical measure concentration

results, such as Chernoff Bound (Fact 4.1), show that the number of

samples needed to accurately estimate the mean increases linearly

with the max-to-mean ratio Γ.
Source of Randomness. The above sampling methods assume

that there is an unbiased source of randomness. In this work, we

are interested in the scenario where there is no central authority to

generate the randomness. Instead, randomness needs to be jointly

generated from the players via distributed protocols.

2.2 Distributed and Security Model
We clarify the model of distributed protocols that we will employ.

Communication Model.We consider a synchronized communi-

cation model, in which each player can post messages to some

broadcast channel (such as a ledger [2]) in rounds. We assume that

the Byzantine broadcast problem has already been solved, i.e., a

message posted by any player (even adversarial) in a round will be

seen by all players at the end of that round.

Distributed Protocol Model. A distributed protocol specifies the

behavior of each player inN , each of which has its own independent

source of randomness. In the context of a coalitional game, we

assume oracle access to the utility function 𝑣 .

Adversarial Model.We analyze the protocol from the perspective

of some honest player 𝑖∗, where all other players in N \ {𝑖∗} may

be susceptible to the adversary. Specifically, for a susceptible player,

the adversary can control its randomness, observe its internal state,

and dictate its actions. We assume that the adversary is rushing, i.e.,
it can wait and see the messages from player 𝑖∗ in a round before it

decides the actions of the susceptible players in that round.

Commitment Scheme. Assuming the existence of one-way func-

tions/permutations, there is a constant-round publicly verifiable

commitment scheme [22] that is perfectly correct, perfectly bind-

ing, and concurrent non-malleable. The commit operation allows a

player to construct a commitment 𝑐 of some secret message𝑚. The

open operation allows the player to reveal the secret message𝑚

from previously committed 𝑐 , where perfectly binding means that it

is impossible to open the commitment to any other message differ-

ent from𝑚. For simplicity, we assume that each of the commitment

operation and the open operation can be performed in a single

round.

Ideal Commitment Scheme. For ease of presentation, we assume

that the commitment scheme is also perfectly hiding. This means

that the adversary cannot learn anything about the secret message

from the commitment 𝑐 . Other than this restriction, we allow the

adversary to perform any other computation (even exponential

in 𝑛).

In a real-world scheme, the commitment is only computationally
hiding. Formally, for some security parameter 𝜆, this would intro-

duce an extra multiplicative factor (1 − negl(𝜆)) in the reward of

the honest player for some negligible function negl(·). However,
since we will be considering (1 − 𝜖)-approximation for constant

𝜖 > 0, this extra factor of (1 − negl(𝜆)) may be absorbed into 𝜖 .

Protocol Violation.We shall see that because of the ideal commit-

ment scheme, the only way an adversary can harm an honest player

is to instruct a susceptible player to refuse opening some previously

committed message, where such a violation can be detected. On the

other hand, deviating from the protocol’s description in sampling

randomness cannot be detected in our model and is therefore not

considered a violation. Below are violation models that we consider.

• Violation Budget. The violation budget 𝐶 is the maximum

number of violations that the adversary can make through-

out the protocol, where 𝐶 can either be known or unknown

to the protocol.

• Violation Rate. The violation rate 𝑓 ∈ [0, 1] means that for

every 𝑇 > 0, during the generation of the first 𝑇 number of

P-samples, there can be at most 𝑓 𝑇 violations.

We will investigate the following notions of security for our

protocols.

Definition 2.1 (Maximin Security for Shapley Value). Suppose Π
is a (randomized) distributed protocol between players N in some

coalitional game (N , 𝑣), where there is at least one honest user. The
purpose of Π is to return an allocation that is close to the Shapley

vector 𝜙 . Suppose that when Π is run against some adversary Adv,
it always terminates with some output allocation vector 𝑥 ∈ RN+ ,
i.e.,

∑
𝑖∈N 𝑥𝑖 = 𝑣 (N).
• Expectation. We say that Π is 𝜖-expected maximin secure

against Adv if, for any honest player 𝑖∗, its expected alloca-

tion satisfies E[𝑥𝑖∗] ≥ (1 − 𝜖) · 𝜙𝑖∗ .
• High probability. We say that Π is (𝜖, 𝛿)-maximin secure

against Adv, if, for any honest player 𝑖∗, with probability at

least 1 − 𝛿 , its allocation is 𝑥𝑖∗ ≥ (1 − 𝜖) · 𝜙𝑖∗ .
Adaptive Security. In this case, the protocol Π returns an

allocation 𝑥 and also a parameter 𝜖 ∈ [0, 1]. We say that it

is 𝛿-adaptively maximin secure, if, with probability at least

1 − 𝛿 , 𝑥𝑖∗ ≥ (1 − 𝜖) · 𝜙𝑖∗

2.3 Max-to-Mean Ratio Γ in Special Games
Lemma 2.2 (Γ Ratio forMonotoneGames). In a gamewhere the

marginal contribution of every player is non-negative, Γ ≤ 𝑛 ·
(𝑛−1
⌊ 𝑛−1

2
⌋
)
.

In the full version [7], we give an example that attains the upper

bound. Games with special utility functions have been studied.

Supermodular Games. In additional to non-negativitiy and mono-

tonicity of 𝑣 , a supermodular (or convex) game is associated with a

supermodular utility function 𝑣 : 2
N → R+. In other words, for all

𝑆,𝑇 ⊆ N , 𝑣 (𝑆) + 𝑣 (𝑇) ≤ 𝑣 (𝑆 ∪𝑇) + 𝑣 (𝑆 ∩𝑇).
Rank Preference. For 𝑗 ∈ [𝑛], define𝑈 𝑗 := E[𝜇𝑖∗ (𝑃𝑖∗ (𝜎)) |𝜎 (𝑖∗) = 𝑗],
which is the expected reward of player 𝑖∗ conditioning on it having

rank 𝑗 in 𝜎 . The following lemma justifies why rank 1 is the least

preferable in supermodular games.

Lemma 2.3 (Monotonicity of Ranks). For 1 ≤ 𝑗 < 𝑛, 𝑈 𝑗 ≤
𝑈 𝑗+1.

Fact 2.4 (Γ Ratio for Supermodular Games). For supermodu-
lar games, Γ ≤ 𝑛.

Proof. Since player 𝑖∗ is in the most preferable rank𝑛 with prob-

ability
1

𝑛 , we have 𝜙𝑖∗ = E[𝑈] ≥ 1

𝑛 ·𝑈max,𝑖∗ , where the inequality

holds because 𝑈 ≥ 0. □

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

465

Example: Edge Synergy Game. The edge synergy game [12]

was defined on a simple undirected graph, but we extend it to a

weighted hypergraph 𝐺 = (N , 𝐸,𝑤), where each vertex in N is

a player, 𝐸 ⊆ 2
N

and 𝑤 : 𝐸 → R+ gives the hyperedge weights.
The utility function 𝑣 is defined as 𝑣 (𝑆) := ∑

𝑒∈𝐸:𝑒⊆𝑆 𝑤 (𝑒), which
is the sum of edge weights in the induced subgraph𝐺 [𝑆]. See more

details in the full version [7].

Fact 2.5. The edge synergy game is supermodular and has max-
to-mean ratio Γ ≤ max𝑒∈𝐸 |𝑒 |.

3 DISTRIBUTED PROTOCOLS BASED ON
PERMUTATION SAMPLING

High Level Approach. Based on the random permutation ap-

proach in equation (1), we give an abstract protocol in Algorithm 1.

It uses a sub-protocol GenPerm that returns a random permutation

𝜎 of N , which we shall call a P-sample. Given a P-sample 𝜎 , we

indicate the player at rank 𝑗 by 𝜎 𝑗 , and 𝜎< 𝑗 represents the set of

players ranked lower than 𝜎 𝑗 . In other words, 𝜎< 𝑗 can be defined

as {𝜎𝑖 |𝑖 < 𝑗}.
The sub-protocol GenPerm also returns other auxiliary informa-

tion aux such as whether any player has been detected for violation.

Stopping Condition. To decrease the variance of the output and

mitigate the effect of the adversary, we may use multiple numbers

of P-samples and take the average allocation over all samples. The

stopping condition stopcond specifies when the whole protocol

should terminate.

Algorithm 1: Abstract Protocol to Return an Allocation

Input: A game (N , 𝑣), a stopping condition stopcond.
Output: An allocation 𝑥 ∈ RN+ .

1 𝑧 ← ®0 ∈ RN+ , 𝑅 ← 0

2 while stopcond = false do
3 (𝜎, aux) ← GenPerm(N)

//Marginal contribution of rank 𝑗 player in 𝜎

4 for every 𝑗 ∈ [𝑛], 𝑧𝜎 𝑗
← 𝑧𝜎 𝑗

+ 𝜇𝜎 𝑗
(𝜎< 𝑗)

5 𝑅 ← 𝑅 + 1
//May update other variables according to aux

6 return 𝑥 := 1

𝑅
· 𝑧 ∈ RN+

Remark 3.1 (Reward Decomposition). In our analysis of Algo-
rithm 1, it will be convenient to decompose the reward received by the
honest player 𝑖∗ in each P-sample as follows.

Specifically, in the 𝑗-th P-sample, the reward received can be ex-
pressed as 𝑋 𝑗 := 𝑌𝑗 −𝑍 𝑗 , where 𝑌𝑗 is the reward received by player 𝑖∗

had the adversary not caused any violation (if any), and 𝑍 𝑗 can be
interpreted as the amount of damage due to the adversary’s violation
in the 𝑗-th P-sample.

This allows us to analyze 𝑌𝑗 and 𝑍 𝑗 separately. For instance, be-
cause there is at least one honest player, we can assume that the 𝑌𝑗 ’s
are independent among themselves, and E[𝑌𝑗] = 𝜙𝑖∗ .

On the other hand, the random variables 𝑍 𝑗 ’s can interact with
the 𝑌𝑗 ’s and behave in a very complicated way. However, if we know
that the adversary has a violation budget of 𝐶 , then we can conclude
that with probability 1,

∑
𝑗 𝑍 𝑗 ≤ 𝐶𝑈max,𝑖∗ = 𝐶Γ · 𝜙𝑖∗ .

3.1 “Secure” Permutation Generation
We revisit a simple permutation generation protocol that was pro-

posed by [28].We paraphrase it in Algorithm 2, and call itNaivePerm,

because it can easily be attacked by a rushing adversary in super-

modular games(see Lemma 3.3). However, as we shall later see in

Sections 4 and 5, the security property in Lemma 3.2 turns out to

be sufficient for us to design good protocols.

Algorithm 2: NaivePerm
Input: Player set 𝑁 .

Output: A random permutation 𝜎 of 𝑁 , together with a

collection Dev of detected violating players.

//Commit phase:

1 foreach player 𝑖 ∈ 𝑁 do
2 Uniformly sample a permutation 𝜎 (𝑖) of 𝑁 .

3 Commit 𝜎 (𝑖) and broadcast the commitment.

//Open phase:

4 foreach player 𝑖 ∈ 𝑁 do
5 Broadcast the opening for its previously committed 𝜎 (𝑖) .

6 Denote 𝑆 as the collection of players 𝑖 that have followed

the commit and the open phases, i.e., its commitment and

opened 𝜎 (𝑖) have been verified.

7 Using the permutations generated by players in 𝑆 , compute

the composed permutation 𝜎 ← ◦𝑖∈𝑆 𝜎 (𝑖) , using the
predetermined composition order (such as the

lexicographical order of players).

8 Dev← 𝑁 \ 𝑆
9 return (𝜎,Dev)

Lemma 3.2 (Security of NaivePerm). Suppose in Algorithm 2,
the strategy of an adversary Adv never causes violation. Then, assum-
ing an ideal commitment scheme, Algorithm 2 returns a uniformly
random permutation of players if there exists at least one honest
player.

Proof. Because of the ideal commitment scheme assumption,

all players must follow the commit and the open phases to avoid

violation being detected. Since there exists an honest player 𝑖 , its

sampled permutation 𝜎 (𝑖) is uniformly random, whose commit-

ment is assumed to leak no information. Therefore, other players’

sampled permutations are independent of 𝜎 (𝑖) , and so, the resulting
composed permutation is uniformly random. □

3.2 Attack NaivePerm in Supermodular Games
Recall that by Lemma 2.3, in supermodular games, the expected

reward of a player is monotone to its rank in 𝜎 . The following

Lemma shows NaivePerm can be attacked by a rushing adversary

so that the honest player is always at the least favorable position.

Lemma 3.3 (Attacking NaivePerm Using at Most One Abort

in Supermodular Games). Suppose the game is supermodular and
a rushing adversary controls 𝑛 − 1 players. Then, by instructing at
most 1 player to abort, it can always cause NaivePerm to return a
permutation such that the remaining honest player 𝑖∗ is at the least
preferable position with probability 1.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

466

Proof. For simplicity, consider the case that the players are in-

dexed by [𝑛], where 𝑖∗ = 𝑛 is the only honest player. The adversary

adopts the following strategy. Pick any cycle permutation 𝜏 , i.e., the

permutation corresponds to a cyclic shift of the players N . Note

that by applying the shift 𝑛 times, we have 𝜏𝑛 equal to the identity

permutation.

Then, the 𝑗-th susceptible player will commit to 𝜏 𝑗 . The key

observation is that for 0 ≤ 𝑖 ≤ 𝑛 − 1, the 𝑛 numbers

∑𝑛−1
𝑗=1 𝑗 − 𝑖 are

distinct modulo 𝑛. This means that by omitting the permutation

from at most 1 susceptible player, the adversary can simulate a

cyclic shift for 𝑖 positions, for any 0 ≤ 𝑖 ≤ 𝑛 − 1.
Therefore, for a rushing adversary, after the honest player 𝑖∗

opens its committed permutation 𝜎 (𝑖
∗)
, the adversary can observe

the rank of 𝑖∗ in its permutation. Hence, the adversary can always

instruct at most 1 susceptible player to abort opening its committed

permutation such that the honest player is shifted to the least

preferable position. □

Remark 3.4. In Lemma 3.3, even if the single violating player is
punished by sending it to the least preferable position instead of 𝑖∗,
player 𝑖∗ is still at the second least preferable position.

More “Secure” Permutation Generation. Although NaivePerm
has veryweak security properties especially in supermodular games,

as discussed in Section 4, it is still useful because it can detect vio-

lations. This feature allows us to achieve high probability maximin

security even when the violation budget is unknown. In Section 5,

we will investigate a more secure P-sample protocol and analyze

its sampling complexity to achieve expected maximin secure for

supermodular games. However, we will find that, surprisingly, the

stronger security properties do not lead to a significant advantage

in terms of the sampling complexity.

4 SAMPLING COMPLEXITY TO ACHIEVE
HIGH PROBABILITY MAXIMIN SECURITY

In this section, we will use NaivePerm to generate P-samples in

Algorithm 1. Even though we see in Lemma 3.3 that one P-sample

from NaivePerm can easily be attacked, the fact that violation can

be detected means that repeating enough number of P-samples

can counter the effect of the adversary’s limited violation budget.

Another reason to have a larger number of P-samples is to achieve

high probability maximin security based on measure concentration

argument, such as the following variant of Chernoff Bound.

Fact 4.1 (Chernoff Bound). Suppose for each 𝑗 ∈ [𝑅],𝑌𝑗 is sam-
pled independently from the same distribution with support [0,𝑈max]
such that Γ =

𝑈max

E[𝑌𝑗] . Then, for any 0 < 𝜖 < 1,

Pr
[∑

𝑗∈[𝑅] 𝑌𝑗 ≤ (1 − 𝜖) · E[
∑

𝑗∈[𝑅] 𝑌𝑗]
]
≤ exp(−𝜖2𝑅

2Γ) .

This readily gives a guarantee on the reward of a player when

the adversary does not interfere.

Lemma 4.2 (Baseline Reward with No Adversary). Suppose
Algorithm 1 is run with NaivePerm and 𝑅 number of P-samples
such that there is no interference from the adversary. Then, for any
0 < 𝜖 < 1, the probability that player 𝑖∗ receives less than (1−𝜖) ·𝜙𝑖∗
is at most exp(−𝜖2𝑅

2Γ), which is at most 𝛿 when 𝑅 = 2Γ
𝜖2

log
1

𝛿
.

Recall that in a supermodular game, Γ ≤ 𝑛. By using this fact we

can obtain a sampling complexity 𝑂 (𝑛). We note that [21] has also

analyzed the sampling complexity with no adversary in supermod-

ular games. However, instead of using Chernoff Bound, they used

the weaker Chebyshev’s Inequality. As a result, their bound has a

factor of 𝑂 (𝑛2), as opposed to 𝑂 (𝑛) in our bound.

4.1 Warmup: Known Violation Budget
The simple case is that the violation budget 𝐶 is known in advance.

Because each violation can cause a damage of at most 𝑈max,𝑖∗ ≤
Γ · 𝜙𝑖∗ , it is straightforward to give a high probability statement.

Recall that under the violation model, each unit of the violation

budget can cause a susceptible player to violate the protocol once

in a round. (In this case, actually it is not important whether a

violation can be detected.)

Theorem 4.3 (Known Violation Budget). For any 0 < 𝜖, 𝛿 < 1,
when the violation budget 𝐶 is known, (𝜖, 𝛿)-maximin security can
be achieved by setting the stopping condition stopcond as having the
number of P-samples reaching: 𝑅 = max{ 8Γ

𝜖2
ln

1

𝛿
, 2𝐶Γ

𝜖 }.

Proof. For 𝑗 ∈ [𝑅], we decompose the reward received by

player 𝑖∗ in the 𝑗-th P-sample as 𝑋 𝑗 := 𝑌𝑗 − 𝑍 𝑗 , which is described

in Remark 3.1. Recall that 𝑌𝑗 is the reward received by player 𝑖∗

had the adversary not caused any violation (if any), and 𝑍 𝑗 can

be interpreted as the amount of damage due to the adversary’s

violation in the 𝑗-th P-sample.

By Lemma 4.2, (1−𝜖
2
)-approximation can be achieved by

∑
𝑗∈[𝑅] 𝑌𝑗

with probability at least 1− 𝛿 , if 𝑅 ≥ 8Γ
𝜖2

ln
1

𝛿
. In other words, under

this range of 𝑅, with probability at least 1 − 𝛿 , we have the lower
bound for the sum

∑
𝑗∈[𝑅] 𝑌𝑗 ≥ (1 − 𝜖

2
) · 𝑅𝜙𝑖∗ .

Now, the violation budget 𝐶 is known, which means that, with

probability 1, the adversary causes a total reward deduction

∑
𝑗∈[𝑅] 𝑍 𝑗

≤ 𝐶𝑈max,𝑖∗ ≤ 𝐶Γ𝜙𝑖∗ , which is at most
𝜖
2
·𝑅𝜙𝑖∗ if we choose 𝑅 ≥ 2𝐶Γ

𝜖 .

Therefore, if 𝑅 = max{ 8Γ
𝜖2

ln
1

𝛿
, 2𝐶Γ

𝜖 }, (𝜖, 𝛿)-maximin security is

achieved. □

4.2 Unknown Violation Budget
In the case where violation budget is unknown, the stopping con-

dition in Algorithm 1 may no longer specify the pre-determined

number of P-samples. However, one advantage of NaivePerm is

that it can detect whether a violation has occurred. Therefore, we

can use the fraction of P-samples in which violation has occurred

in the stopping condition.

Note that if the adversary has an unlimited violation budget, then

the protocol may never terminate. Hence, in the most general case,

the following lemma does not directly guarantee (𝜖, 𝛿)-maximin

security.

Lemma 4.4 (General Unknown Budget). Suppose the adver-
sary has some unknown violation budget (that may be unlimited).
Furthermore, for 0 < 𝜖, 𝛿 < 1, Algorithm 1 is run with NaivePerm
and the stopping condition stopcond is:
• the fraction of P-samples observed so far with detected viola-
tions is at most 𝜖

2Γ ; AND
• the number of P-samples has reached at least:
𝑅0 :=

8Γ
𝜖2
· (ln 16Γ

𝜖2
+ ln 1

𝛿
).

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

467

Then, the probability that the protocol terminates and player 𝑖∗

receives an outcome of less than (1 − 𝜖)𝜙𝑖∗ is at most 𝛿 .

Proof. For 𝑅 ≥ 𝑅0, let 𝛿𝑅 be the probability of the bad event E𝑅
that the protocol terminates after exactly 𝑅 number of P-samples

and the honest player 𝑖∗ receives an outcome of less than (1−𝜖)𝜙𝑖∗ .
Our final goal is to show that

∑
𝑅≥𝑅0

𝛿𝑅 ≤ 𝛿 .

Analyzing Fixed E𝑅 .We fix some 𝑅 and analyze 𝛿𝑅 . Recall that

for 𝑗 ∈ [𝑅], we consider the reward decomposition 𝑋 𝑗 := 𝑌𝑗 − 𝑍 𝑗

as described in Remark 3.1. Observe that the bad event E𝑅 implies

both of the following have occurred:

• The number of P-sampleswith detected violation is atmost
𝜖𝑅
2Γ .

Therefore,

∑
𝑗∈[𝑅] 𝑍 𝑗 ≤ 𝜖𝑅

2Γ ·𝑈max,𝑖∗ ≤ 𝜖
2
· 𝑅𝜙𝑖∗ .

• Had the adversary not interfered, the sum is:∑
𝑗∈[𝑅] 𝑌𝑗 < (1 − 𝜖

2
)𝑅 · 𝜙𝑖∗ .

The first point is part of the stopping condition. If the second

point does not happen, this means that

∑
𝑗∈[𝑅] (𝑌𝑗 − 𝑍 𝑗) ≥ (1 −

𝜖
2
)𝑅 · 𝜙𝑖∗ − 𝜖

2
· 𝑅𝜙𝑖∗ = (1 − 𝜖)𝑅 · 𝜙𝑖∗ , thereby violating E𝑅 .

Therefore, we have 𝛿𝑅 ≤ Pr
[∑

𝑗∈[𝑅] 𝑌𝑗 < (1 − 𝜖
2
)𝑅 · 𝜙𝑖∗

]
≤

exp(−𝜖2𝑅
8Γ), where the last inequality follows from Lemma 4.2.

Analyzing the Union of All Bad Events. Therefore, we have

∑︁
𝑅≥𝑅0

𝛿𝑅 ≤
exp

(
−𝜖

2𝑅0

8Γ

)
1 − exp

(
− 𝜖2

8Γ

) ≤ 16Γ

𝜖2
exp

(
−𝜖

2𝑅0

8Γ

)
,

where the last inequality follows because 1 − 𝑒−𝑡 ≥ 𝑡
2
for 𝑡 ∈

(0, 1). By choosing 𝑅0 := 8Γ
𝜖2
· (ln 16Γ

𝜖2
+ ln 1

𝛿
), the last expression

equals 𝛿 . This completes the proof. □

Finite Violation Budget. The adversary has some finite violation

budget 𝐶 that is unknown to the protocol. The stopping condition

ensures that the protocol will terminate with probability 1. In this

case, (𝜖, 𝛿)-maximin security follows immediately.

Corollary 4.5 (Maximin Security for Finite Unknown Bud-

get). Suppose in Lemma 4.4, the adversary has some finite (but
unknown) violation budget𝐶 . Let 0 < 𝜖, 𝛿 < 1 and 𝑅0 be as defined in
Lemma 4.4. Then, with probability 1, the protocol terminates after at
most max{𝑅0, 2𝐶Γ

𝜖 } number of P-samples. Moreover, (𝜖, 𝛿)-maximin
security is achieved for an honest player.

4.3 Unknown Violation Rate
The violation rate 𝑓 ∈ [0, 1] means that for every𝑇 > 0, during the

generation of the first𝑇 number of P-samples, there can be at most

𝑓 𝑇 violations. However, the protocol does not know 𝑓 in advance.

Adaptive Maximin Security. The protocol has some target ap-

proximation parameter 𝜖 ∈ [0, 1]. However, whether this is achiev-
able depends on the violation rate 𝑓 and the max-to-mean ratio Γ.

Algorithm 3 outlines an adaptive algorithm that returns both

an allocation 𝑥 and an approximation parameter 𝜖 . Theorem 4.6

describes the security property of Algorithm 3.

Theorem 4.6 (Adaptive Maximin Security for Violation

Rate). Suppose the adversary has some (unknown) violation rate
𝑓 ∈ [0, 1]. Furthermore, for any 0 < 𝜖, 𝛿 < 1, we execute Algorithm 3
using the NaivePerm approach.

Algorithm 3: Abstract Adaptive Protocol to Return an

Allocation

Input: A game (N , 𝑣), Γ, 𝛿 , 𝜖 .
Output: An allocation 𝑥 ∈ RN+ and 𝜖𝑘 .

1 𝑧, 𝑥 ← ®0 ∈ RN+ , 𝑅 ← 0

2 𝑘 ← 0, 𝑉 ← 0

//For all 𝑡 ≥ 0, denote 𝜖𝑡 := 2
−𝑡.

3 while 𝜖𝑘 > 𝜖 do
//Here aux is the number of violations.

4 (𝜎, aux) ← GenPerm(N)

//Marginal contribution of rank 𝑗 player in 𝜎

5 for every 𝑗 ∈ [𝑛], 𝑧𝜎 𝑗
← 𝑧𝜎 𝑗

+ 𝜇𝜎 𝑗
(𝜎< 𝑗)

6 𝑅 ← 𝑅 + 1
7 𝑉 ← 𝑉 + |aux|
8 if 𝑅 ≥ 8Γ

𝜖2
𝑘+1

ln
2
𝑘+1

𝛿
then

9 if 𝑉
𝑅

>
𝜖𝑘+1
2Γ then

10 break

11 else
12 𝑥 ← 1

𝑅
· 𝑧

13 𝑘 ← 𝑘 + 1

14 return (𝑥, 𝜖𝑘) //For any honest player 𝑖∗, with

probability at most 𝛿, 𝑥𝑖∗ < (1 − 𝜖𝑘)𝜙𝑖∗.

Then, the protocol returns (𝑥, 𝜖) such that 𝜖 ≤ max{𝜖, 4𝑓 Γ} holds
with probability 1. Moreover, for any honest player 𝑖∗, with probability
at least 1 − 𝛿 , its received reward satisfies 𝑥𝑖∗ ≥ (1 − 𝜖)𝜙𝑖∗ .

Proof. Let (𝑥, 𝜖𝑘) be the returned value. The algorithm termi-

nates either when 𝜖𝑘 ≤ 𝜖 or
𝑉
𝑅

>
𝜖𝑘+1
2Γ . Since 𝑓 ≥ 𝑉

𝑅
and 𝜖𝑘+1 =

𝜖𝑘
2
,

the second inequality implies that 𝜖𝑘 < 4𝑓 Γ.
Let B denote the bad event that the protocol terminates and

player 𝑖∗ receives a reward of less than (1 − 𝜖𝑘)𝜙𝑖∗ . Let 𝜖𝑡 = 1

2
𝑡 . Let

B𝑡 denote the event that the protocol terminates with the value

of variable 𝑘 equals 𝑡 , and player 𝑖∗ receives a reward of less than

(1− 𝜖𝑡)𝜙𝑖∗ . When 𝑡 = 0, 𝜖𝑡 = 1. Since 𝑖∗ will receive a non-negative
reward, Pr [B0] = 0, so we only focus on the cases when 𝑡 ≥ 1.

It holds that B ⊆ ∪𝑡≥1B𝑡 , therefore, Pr [B] ≤ Pr [∪𝑡≥1B𝑡]. Our
goal is to show that:

Pr [∪𝑡≥1B𝑡] ≤ 𝛿.

Analyzing the probability of ∪𝑡≥1B𝑡 . We can follow a similar

argument as in the Lemma 4.4 about analyzing E𝑅 . Let𝑅𝑡 = 8Γ
𝜖2𝑡

ln
2
𝑡

𝛿
.

Let B′𝑡 denote the event that when NaivePerm has run 𝑅𝑡 number

of P-samples and the fraction of P-samples observed so far with

detected violations is at most
𝜖𝑡
2Γ , player 𝑖

∗
receives a reward of less

than (1 − 𝜖𝑡)𝜙𝑖∗ . It’s clear that B𝑡 ⊆ B′𝑡 , so Pr [B𝑡] ≤ Pr
[
B′𝑡

]
.

Recall that for 𝑗 ∈ [𝑅], we consider the reward decomposition

𝑋 𝑗 := 𝑌𝑗 − 𝑍 𝑗 as described in Remark 3.1. Observe that the event

B′𝑡 implies both of the following have occurred:

• The number of P-sampleswith detected violation is atmost
𝜖𝑡𝑅𝑡
2Γ .

Therefore,

∑
𝑗∈[𝑅𝑡] 𝑍 𝑗 ≤ 𝜖𝑡𝑅𝑡

2Γ ·𝑈max,𝑖∗ ≤ 𝜖𝑡
2
· 𝑅𝑡𝜙𝑖∗ .

• Had the adversary not interfered, the sum is:

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

468

∑
𝑗∈[𝑅𝑡] 𝑌𝑗 < (1 −

𝜖𝑡
2
)𝑅𝑡 · 𝜙𝑖∗ .

The first point is from the definition of B′𝑡 . If the second point

does not happen, this means that

∑
𝑗∈[𝑅𝑡] (𝑌𝑗 − 𝑍 𝑗) ≥ (1 − 𝜖𝑡

2
)𝑅𝑡 ·

𝜙𝑖∗ − 𝜖𝑡
2
· 𝑅𝑡𝜙𝑖∗ = (1 − 𝜖𝑡)𝑅𝑡 · 𝜙𝑖∗ , thereby violating B′𝑡 .

Therefore, we have Pr
[
B′𝑡

]
≤ Pr

[∑
𝑗∈[𝑅𝑡] 𝑌𝑗 < (1 −

𝜖𝑡
2
)𝑅𝑡 · 𝜙𝑖∗

]
≤

exp(−𝜖
2

𝑡𝑅𝑡
8Γ) =

𝛿
2
𝑡 , where the last inequality follows from Lemma 4.2.

Therefore, we have

Pr [B] ≤ Pr [∪𝑡≥1B𝑡] ≤ Pr
[
∪𝑡≥1B′𝑡

]
≤
∑︁
𝑡≥1

𝛿

2
𝑡
≤ 𝛿,

where the first inequality follows because B ⊆ ∪𝑡≥1B𝑡 , the second
inequality holds because B𝑡 ⊆ B′𝑡 , the third inequality is from the

union bound. □

5 SAMPLING COMPLEXITY TO ACHIEVE
EXPECTED MAXIMIN SECURITY

In this section, we give an upper bound of the sampling complexity

to achieve expected maximin security for the baseline protocol

using NaivePerm. The main result of this section is a lower bound

on the sampling complexity even when we restrict to supermodular

games and impose further conditions to help an honest player. The

detailed version of this section is in the full version [7].

Model Assumptions.We consider an adversary with some known

budget 𝐶 . For analyzing the upper bound of sampling complexity,

we consider using the same model as in Section 4.

For analyzing the lower bound of sampling complexity, we con-

sider supermodular games, and replace NaivePerm with another

P-sample protocol known as SeqPerm that has better security prop-

erties. Moreover, we consider the perpetual violation model in

which detected violating players will be moved to the least prefer-

able positions, thereby giving an advantage to an honest player.

Baseline Protocol.We instantiate the abstract protocol in Algo-

rithm 1 by using NaivePerm to sample permutations. Moreover,

the stopping condition can simply be having enough number of

P-samples.

Lemma 5.1 (Upper Bound on Sampling Complexity). By us-
ing NaivePerm in Algorithm 1 against an adversary with a known
violation budget of 𝐶 , for any 𝜖 > 0, 𝑅 = Γ𝐶

𝜖 number of P-samples is
sufficient to achieve 𝜖-expected maximin security.

Lower Bound: Punish Violating Players in Supermodular
Games. In Algorithm 1, if the violating players are given the least

preferable positions, then the expected reward of an honest player

𝑖∗ will not decrease in supermodular games. We call this violation

model to be perpetual.

Lemma 5.2. In Algorithm 1, if violating players are given least
preferable positions, then the expected reward of an honest player 𝑖∗

will not decrease in supermodular games.

ReplacingNaivePermwith aMore “Secure” P-Sample Protocol
in Supermodular Games. To rectify the attack on NaivePerm in

Lemma 3.3, a simple idea is to generate a random permutation by

deciding which player goes to which position sequentially, starting

from the least preferable position. RandElim (described in the full

version [7]) is a variant of Blum’s protocol [4] that eliminates a

uniformly random player from the active set one at a time, which

goes to least preferable available remaining position.

Claim 5.3 (Probability of Elimination). Assume that the com-
mitment scheme inRandElim is ideal. WhenRandElim is run between
a collection 𝑆 of players, an honest player 𝑖∗ ∈ 𝑆 is chosen to be elim-
inated with probability at most 1

|𝑆 | , even if a Byzantine adversary
controls all other players.

Sequential Permutation Generation.We can generate a random

permutation sequentially in 𝑛 phases, where in each phase, the

protocol RandElim is used to determine which player goes to the

least preferable available position.

Algorithm 4: Sequential Permutation Generation SeqPerm

Input: Player set 𝑁 .

Output: A random permutation 𝜎 = (𝜎1, . . . , 𝜎𝑛) of 𝑁 ,

together with a collection Dev ⊆ 𝑁 of detected

violating players.

1 𝑆 ← N , 𝑖 ← 1

2 while 𝑆 ≠ ∅ do
3 (𝑎,Dev) ← RandElim(𝑆)

4 if Dev ≠ ∅ then
5 𝜎𝑖 , · · · , 𝜎𝑖+|Dev |−1 ← players in Dev in

lexicographical order

6 𝑖 ← 𝑖 + |Dev|
7 else
8 𝜎𝑖 ← 𝑎

9 𝑖 ← 𝑖 + 1
10 𝑆 ← 𝑆 \ (Dev ∪ {𝑎})
11 return (𝜎,Dev)

Claim 5.4 (Guarantee for Preferable Positions). In the ran-
dom permutation generated by Algorithm 4, for any 𝑘 ∈ [𝑛], an
honest player will be in one of the top 𝑘 most preferable positions with
probability at least 𝑘

𝑛 , even if a Byzantine adversary controls all other
players.

NaivePerm vs SeqPerm. It might seem that SeqPerm generate a

more “secure” random permutation than NaivePerm. Hence, it

would be somehow surprising that evenwhenwe replaceNaivePerm
with SeqPerm, there is a lower bound on the sampling complexity

that asymptotically matches the baseline in Lemma 5.1.

Theorem 5.5 (Lower Bound). Suppose SeqPerm is used to gener-
ate permutations in Algorithm 1. Then, for any large enough 𝑛 ≥ 100,
there exists a supermodular game with 𝑛 players such that for any
1

𝑛 ≤ 𝜖 ≤ 0.01, if the adversary has a perpetual violation budget of
1 ≤ 𝐶 ≤ 𝜖𝑛, then at least 𝑛𝐶

10𝜖 number of P-samples is necessary to
achieve 𝜖-expected maximin security.

6 EXPERIMENTS
In previous sections, we have proved upper and lower bounds on the

number of P-samples to achieve several notions of maximin security.

In this section, we conduct experiments to empirically verify our

theoretical results. The experiments are run on the computer with

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

469

25 50 75 100 125 150 175 200

n

0

50000

100000

150000

200000

250000

300000

350000

400000

N
u
m

 o
f

P
-s

a
m

p
le

s

SeqPerm

Upper Bound

Lower Bound

(a)

25 50 75 100 125 150 175 200

n

2000

3000

4000

5000

6000

N
u
m

 o
f

P
-s

a
m

p
le

s

SeqPerm

Upper Bound

(b)

0 20 40 60 80 100

C

0.0

0.2

0.4

0.6

0.8

1.0

N
u
m

 o
f

P
-s

a
m

p
le

s

1e6

SeqPerm

Upper Bound

Lower Bound

(c)

0 20 40 60 80 100

C

0

5000

10000

15000

20000

25000

30000

N
u
m

 o
f

P
-s

a
m

p
le

s

SeqPerm

Upper Bound

(d)

0.00 0.02 0.04 0.06 0.08 0.10

ε

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
u
m

 o
f

P
-s

a
m

p
le

s

1e6

SeqPerm

Upper Bound

Lower Bound

(e)

0.00 0.02 0.04 0.06 0.08 0.10

ε

0

10000

20000

30000

40000

50000

60000

N
u
m

 o
f

P
-s

a
m

p
le

s

SeqPerm

Upper Bound

(f)

Figure 1: The number 𝑅 of P-samples to reach 𝜖-expected maximin
security under different𝑛,𝐶 and 𝜖 . The default values are𝑛 = 100,𝐶 =

20, 𝜖 = 0.01. (1a), (1c) and (1e) are for the synthetic game; (1b), (1d)
and (1f) are for edge synergy game on DBLP.

0.00 0.01 0.02 0.03 0.04 0.05

̂ε

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Simulated

Theoretical

(a)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

̂ε

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Simulated

Theoretical

(b)

Figure 2: Empirical Cumulative Distribution Function ofmul-
tiplicative error 𝜖 over 1000 simulations. (2a) is for the syn-
thetic game, and (2b) is for the edge synergy game.

CPU i5-1240P, 1.70 GHz and a 16 GB RAM. The source code can

be found in our public repository
1
. To simulate the adversary’s

strategy, we use a dynamic program approach to give the optimal

adversarial strategy to attack SeqPerm, where the details are given

in the full version [7].

Game Settings.We use two supermodular games with different

values of the max-to-mean ratio Γ.
(1) The first game is based on Theorem 5.5, which is synthetic and

characterized by the number 𝑛 of players. Its definition is given in

the full version [7] and has Γ equal to 𝑛.

(2) The second is the edge synergy game described in Section 2.3.

We use a real-world hypergraph that is constructed from the col-

laboration network in DBLP, where each person is a vertex and the

co-authors in a publication is a hyperedge. For an honest player,

we pick an author, who in 2021, had 13 collaborators and 8 pub-

lications. To simulate other susceptible players, we include more

players that represent scholars that have no collaboration with the

honest player, finally resulting in a total of 𝑛 players. In this case,

Γ = 3.15789 and is independent of 𝑛.

We evaluate the performance of Algorithm 1 using SeqPerm to
generate random permutations. Even though the protocols can be

run with large number of players, the optimal adversarial strategy

takes time exponential in 𝑛. Hence, we can only run experiments

for small values of 𝑛 up to 200.

Expected Maximin Security. We perform experiments to ver-

ify Lemma 5.1 and Theorem 5.5. We evaluate the number 𝑅 of P-

samples to reach 𝜖-expected maximin security under the optimal ad-

versarial strategy. We pick default values 𝑛 = 100,𝐶 = 20, 𝜖 = 0.01,

and investigate how 𝑅 varies with each of the three parameters.

As predicted, Figure 1 shows the results that 𝑅 is proportional

to 𝐶 and inversely proportional to 𝜖 . In Figure 1a, we verify indeed

that 𝑅 is proportional to Γ = 𝑛 in the synthetic game; in Figure 1b,

we see that 𝑅 is independent of 𝑛, because Γ = 𝑂 (1) for the edge
synergy game. Moreover, we see that 𝑅 ≈ 1

3
· 𝐶Γ

𝜖 falls between its

lower bound and upper bound in the synthetic game. On the other

hand, 𝑅 ≈ 0.31 · 𝐶Γ
𝜖 in the edge synergy game.

High Probability Maximin Security.We perform experiments

to verify Theorem 4.3, Corollary 4.5 and Theorem 4.6. Although the

protocol descriptions are different, one can check that, in each case,

the number of P-samples is 𝑅 ≈ max{𝑂 (Γ
𝜖2

ln
1

𝛿
),𝑂 (𝐶Γ

𝜖)}. Hence,
we choose the parameters such that the two terms are the same.

For the synthetic game, we set 𝑛 = 100,𝐶 = 200, 𝑅 = 8 × 105, 𝜖 =

0.05, 𝛿 = 0.082; for the edge synergy game, we set 𝑛 = 100,𝐶 =

100, 𝑅 = 6316, 𝜖 = 0.1, 𝛿 = 0.082. We ran 1000 simulations for

each game to plot the empirical cumulative distribution of the

multiplicative error 𝜖 for the honest player’s Shapley value.

Figure 2 shows the empirical cumulative distribution of the mul-

tiplicative error 𝜖 in the 1000 simulations. The theoretical point

(𝜖, 1−𝛿) falls on the right of the curve, indicating that the simulated

results are better than the theoretical bounds.

ACKNOWLEDGMENTS
This researchwas partially supported by theHong Kong RGC grants

17203122 and 17202121.

1
https://github.com/l2l7l9p/coalitional-game-protocol-expcode

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

470

https://github.com/l2l7l9p/coalitional-game-protocol-expcode

REFERENCES
[1] Yoram Bachrach, Evangelos Markakis, Ariel D. Procaccia, Jeffrey S. Rosenschein,

and Amin Saberi. 2008. Approximating power indices. In AAMAS (2). IFAAMAS,

943–950.

[2] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. 2017.

Bitcoin as a Transaction Ledger: A Composable Treatment. InCRYPTO (1) (Lecture
Notes in Computer Science, Vol. 10401). Springer, 324–356.

[3] Omar Besbes, Antoine Désir, Vineet Goyal, Garud Iyengar, and Raghav Singal.

2019. Shapley Meets Uniform: An Axiomatic Framework for Attribution in

Online Advertising. InWWW. ACM, 1713–1723.

[4] Manuel Blum. 1982. Coin Flipping by Telephone - A Protocol for Solving Impos-

sible Problems. In COMPCON. IEEE Computer Society, 133–137.

[5] Javier Castro, Daniel Gómez, and Juan Tejada. 2009. Polynomial calculation of

the Shapley value based on sampling. Comput. Oper. Res. 36, 5 (2009), 1726–1730.
[6] T.-H. Hubert Chan, Ting Wen, Hao Xie, and Quan Xue. 2023. Game-Theoretically

Secure Protocols for the Ordinal Random Assignment Problem. In ACNS (Lecture
Notes in Computer Science, Vol. 13906). Springer, 582–610.

[7] T-H. Hubert Chan, Qipeng Kuang, and Quan Xue. 2024. Game-Theoretically

Secure Distributed Protocols for Fair Allocation in Coalitional Games.

arXiv:2412.19192 [cs.GT] https://arxiv.org/abs/2412.19192

[8] Hugh Chen, Ian C. Covert, Scott M. Lundberg, and Su-In Lee. 2022. Algorithms

to estimate Shapley value feature attributions. CoRR abs/2207.07605 (2022).

[9] Wei Chen and Shang-Hua Teng. 2017. Interplay between Social Influence and

Network Centrality: A Comparative Study on Shapley Centrality and Single-

Node-Influence Centrality. InWWW. ACM, 967–976.

[10] Kai-Min Chung, T.-H. Hubert Chan, Ting Wen, and Elaine Shi. 2021. Game-

Theoretic Fairness Meets Multi-party Protocols: The Case of Leader Election. In

CRYPTO (2) (Lecture Notes in Computer Science, Vol. 12826). Springer, 3–32.
[11] Kai-Min Chung, Yue Guo, Wei-Kai Lin, Rafael Pass, and Elaine Shi. 2018. Game

Theoretic Notions of Fairness in Multi-party Coin Toss. In TCC (1) (Lecture Notes
in Computer Science, Vol. 11239). Springer, 563–596.

[12] Xiaotie Deng and Christos H. Papadimitriou. 1994. On the Complexity of Coop-

erative Solution Concepts. Math. Oper. Res. 19, 2 (1994), 257–266.
[13] Daniel Deutch, Nave Frost, Benny Kimelfeld, andMikaël Monet. 2022. Computing

the Shapley Value of Facts in Query Answering. In SIGMOD Conference. ACM,

1570–1583.

[14] Paul Dütting, Monika Henzinger, and Ingmar Weber. 2010. How much is your

personal recommendation worth?. InWWW. ACM, 1085–1086.

[15] Edith Elkind, Leslie Ann Goldberg, Paul W. Goldberg, and Michael J. Wooldridge.

2007. Computational Complexity of Weighted Threshold Games. In AAAI. AAAI
Press, 718–723.

[16] Joan Feigenbaum, Christos H. Papadimitriou, and Scott Shenker. 2001. Sharing

the Cost of Multicast Transmissions. J. Comput. Syst. Sci. 63, 1 (2001), 21–41.
[17] Liyang Han, Thomas Morstyn, and Malcolm McCulloch. 2021. Estimation of the

shapley value of a peer-to-peer energy sharing game using multi-step coalitional

stratified sampling. International Journal of Control, Automation and Systems 19,
5 (2021), 1863–1872.

[18] Samuel Ieong and Yoav Shoham. 2005. Marginal contribution nets: a compact

representation scheme for coalitional games. In EC. ACM, 193–202.

[19] Kamal Jain and Vijay V. Vazirani. 2001. Applications of approximation algorithms

to cooperative games. In STOC. ACM, 364–372.

[20] Ruoxi Jia, David Dao, BoxinWang, Frances AnnHubis, Nick Hynes, NeziheMerve

Gürel, Bo Li, Ce Zhang, Dawn Song, and Costas J. Spanos. 2019. Towards Efficient

Data Valuation Based on the Shapley Value. In AISTATS (Proceedings of Machine
Learning Research, Vol. 89). PMLR, 1167–1176.

[21] David Liben-Nowell, Alexa Sharp, Tom Wexler, and Kevin Woods. 2012. Com-

puting Shapley Value in Supermodular Coalitional Games. In COCOON (Lecture
Notes in Computer Science, Vol. 7434). Springer, 568–579.

[22] Huijia Lin and Rafael Pass. 2015. Constant-Round Nonmalleable Commitments

from Any One-Way Function. J. ACM 62, 1 (2015), 5:1–5:30.

[23] Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. 2021.

Query Games in Databases. SIGMOD Rec. 50, 1 (2021), 78–85.
[24] Sasan Maleki, Long Tran-Thanh, Greg Hines, Talal Rahwan, and Alex Rogers.

2013. Bounding the Estimation Error of Sampling-based Shapley Value Approxi-

mation With/Without Stratifying. CoRR abs/1306.4265 (2013).

[25] Ramin Okhrati and Aldo Lipani. 2020. A Multilinear Sampling Algorithm to

Estimate Shapley Values. In ICPR. IEEE, 7992–7999.
[26] Alon Reshef, Benny Kimelfeld, and Ester Livshits. 2020. The Impact of Negation

on the Complexity of the Shapley Value in Conjunctive Queries. In PODS. ACM,

285–297.

[27] Lloyd S Shapley. 1953. A value for n-person games. Contributions to the Theory
of Games (1953), 307–317.

[28] Gilad Zlotkin and Jeffrey S. Rosenschein. 1994. Coalition, Cryptography, and

Stability: Mechanisms for Coalition Formation in Task Oriented Domains. In

AAAI. AAAI Press / The MIT Press, 432–437.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

471

https://arxiv.org/abs/2412.19192
https://arxiv.org/abs/2412.19192

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Coalitional Game
	2.2 Distributed and Security Model
	2.3 Max-to-Mean Ratio in Special Games

	3 Distributed Protocols Based on Permutation Sampling
	3.1 ``Secure'' Permutation Generation
	3.2 Attack NaivePerm in Supermodular Games

	4 Sampling Complexity to Achieve High Probability Maximin Security
	4.1 Warmup: Known Violation Budget
	4.2 Unknown Violation Budget
	4.3 Unknown Violation Rate

	5 Sampling Complexity to Achieve Expected Maximin Security
	6 Experiments
	Acknowledgments
	References

