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ABSTRACT
Agent-based modeling (ABM) offers powerful insights into complex
systems, but its practical utility has been limited by computational
constraints and simplistic agent behaviors, especially when simu-
lating large populations. Recent advancements in large language
models (LLMs) could enhance ABMs with adaptive agents, but
their integration into large-scale simulations remains challenging.
This work introduces a novel methodology that bridges this gap
by efficiently integrating LLMs into ABMs, enabling the simula-
tion of millions of adaptive agents. We present LLM archetypes,
a technique that balances behavioral complexity with computa-
tional efficiency, allowing for nuanced agent behavior in large-scale
simulations. Our analysis explores the crucial trade-off between
simulation scale and individual agent expressiveness, comparing
different agent architectures ranging from simple heuristic-based
agents to fully adaptive LLM-powered agents. We demonstrate the
real-world applicability of our approach through a case study of the
COVID-19 pandemic, simulating 8.4 million agents representing
New York City and capturing the intricate interplay between health
behaviors and economic outcomes. Our method significantly en-
hances ABM capabilities for predictive and counterfactual analyses,
addressing limitations of historical data in policy design. By imple-
menting these advances in an open-source framework, we facilitate
the adoption of LLM archetypes across diverse ABM applications.
Our results show that LLM archetypes can markedly improve the
realism and utility of large-scale ABMs while maintaining com-
putational feasibility, opening new avenues for modeling complex
societal challenges and informing data-driven policy decisions.
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1 INTRODUCTION
Many of the today’s challenges — from epidemics to housing short-
ages to humanitarian crises — emerge from the complex interplay
of countless individuals making decisions and interacting over
time. Agent-based models (ABMs) aim to capture these dynamics
by simulating collections of agents that act and interact within
digital worlds. ABMs have proven useful across various domains,
including epidemiology [7, 21, 23], economics [5, 6], and disaster
response [8, 18]. For instance, they were used to evaluate vaccina-
tion protocols during the COVID-19 pandemic [7, 21, 43], predict
the crash of housing markets [6, 17], and design evacuation pro-
grams for war refugees [18, 29]. Their utility in addressing policy
questions stems from the ability to simulate interplay between
individual behaviors and environmental dynamics.

However, the practical application of ABMs has been hindered
by two major challenges. First, the high computational costs associ-
ated with simulating and calibrating large-scale models have limited
their widespread adoption [9]. Recent advancements in deep learn-
ing have addressed some of these challenges, enabling the simula-
tion of complex dynamics over millions of agents using vectorized
operations [11, 42] and the calibration of models to heterogeneous
data sources using differentiable programming [2, 11, 14, 30, 41, 46].
In such differentiable ABMs, deep neural networks also help spec-
ify complex environment dynamics [31], and autograd facilitates
sensitivity analysis in zero-shot [39]. Hence, it is now feasible to
simulate, calibrate, and analyze ABMs with millions of agents using
commodity hardware. Second, and perhaps more critical, is the
lack of expressiveness in ABM agents. Many ABMs rely on sim-
plistic, rule-based agent behaviors that fail to capture the nuanced,
adaptive decision-making of real-world individuals.

Large language models (LLMs) have shown remarkable perfor-
mance in text-based applications [3, 35, 47], suggesting a possible
solution to the challenge of creating more realistic agent behaviors.
LLM-powered agents have demonstrated potential to enable more
general and adaptive human-like behavior [22, 45]. However, inte-
grating LLMs into large-scale ABMs remains problematic. While
promising work on multi-agent simulations with LLM-agents has
been performed [36, 48], it has primarily been limited to table-
top games and small population scenarios (few hundred agents).
Querying an LLM for each individual agent’s decision at every time
step quickly becomes computationally infeasible as the number of

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

500

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


agents grows into the millions, which is often necessary for study-
ing large-scale complex systems like epidemics or supply chain
networks. The goal of our research is to bridge this gap.

Contribution: This work introduces LLM archetypes, a novel
methodology that efficiently integrates LLMs into ABMs while
maintaining the ability to simulate millions of agents. Our key
insight is that by querying LLMs for representative agent types
rather than individual agents, we can achieve a balance between be-
havioral complexity and computational efficiency. LLM archetypes
identify representative agent types and use LLM queries to inform
the behavior of entire groups of similar agents. Importantly, our
approach does not lead to a degenerate solution where all agents
within a group make identical decisions. Archetypes maintain ac-
tion heterogeneity within each group through probabilistic sam-
pling, while significantly reducing the computational burden.

Our approach demonstrates two crucial advantages of LLM
archetypes: computational feasibility and enhanced performance.
First, we show that LLM archetypes can reproduce population-wide
individual behaviors with significantly fewer queries compared to
fully LLM-powered agents. This dramatic reduction in computa-
tional overhead enables the simulation of millions of agents, which
is often necessary for studying large-scale complex systems. Second,
LLM archetypes achieve better calibration, and enable flexible coun-
terfactual analysis by preserving simulation scale. We highlight the
nuanced trade-off between individual agency and simulation scale,
demonstrating that archetypes outperform both fully-adaptive LLM
agents (limited to smaller populations due to computational con-
straints) and simple heuristic agents (which lack adaptivity).

To validate the concept of archetypes, we present a case study of
the COVID-19 pandemic in New York City, simulating 8.4 million
interacting agents. This case study showcases how LLM archetypes
offer a balanced solution that preserves both adaptive behaviors
and computational efficiency. We merge our contributions to the
AgentTorch framework [12] to enable utility across diverse ABMs.

2 BACKGROUND
We define the simulation, calibration and analysis of an ABM. We
formalize the notion of an ABM agent and highlight challenges in
scaling LLM-based agent simulations to large populations.

2.1 Agent-based Modeling
Consider an ABM composed of 𝑁 agents. We denote by 𝒔𝑖 (𝑡) the
state of agent 𝑖 at simulation time 𝑡 , which contains both static and
time-evolving properties of agents. For instance, 𝒔 may represent
the age and sex of a person and their infected status. As the simu-
lation proceeds, an agent 𝑖 updates their state 𝒔𝑖 (𝑡) by interacting
with their neighboursN𝑖 (𝑡) and their environment 𝑒 (𝑡), which can
both also be time evolving. The neighbourhood of an agent can be
specified using a graph, a proximity metric, or other methods. We
denote by𝑚𝑖 𝑗 (𝑡) the message or information that agent 𝑖 obtains
from their interaction with agent 𝑗 . In the case of an epidemiolog-
ical ABM, this may represent the transmission of infection from
agent 𝑗 to agent 𝑖 . We can then write the agent’s update rule as

𝒔𝑖 (𝑡 + 1) = 𝑓
(
𝒔𝑖 (𝑡),∪𝑗∈N(𝑖 )𝑚𝑖 𝑗 (𝑡), 𝑒 (𝑡), 𝜽

)
, (1)

where 𝜽 are the structural parameters of the ABM. For instance,
𝜽 may correspond to the infectivity of a virus, or the vaccination
efficacy. Similarly, the environment can also have its own dynamics
that depend on the agent’s updates and actions,

𝒆(𝑡 + 1) = 𝑔 (𝒔 (𝑡), 𝑒 (𝑡), 𝜽 ) . (2)

The specific choices of 𝑓 and 𝑔 define the dynamics of the ABM
system and they are typically stochastic functions which can be
mechanistically specified or learned from data.

Simulating an ABM consists of picking an initial condition
for the agents and environment states (𝒔 (0), 𝑒 (0)) and recursively
applying Equation 1 and Equation 2. Despite the very large size of
the simulated state space, we are mainly interested in a collection
of aggregate outcomes over agent states. For most ABMs, this cor-
responds to a multivariate time-series 𝒙𝑡 = ℎ(𝒔 (𝑡)). For example, in
epidemiological ABMs ℎ corresponds to summing over the infected
agents to obtain the daily number of infected agents. Once the
functional form of an ABM has been set, the simulation of an ABM
can be conceived as a stochastic simulator,

𝒙 = 𝐹 (𝜽 , 𝒔 (0), 𝒆(0)), (3)

where 𝐹 = (𝑓 , 𝑔) ◦ · · · ◦ (𝑓 , 𝑔). The composition is repeated for 𝑇
time-steps.

Calibrating an ABM refers to the process of finding a set of
structural parameters 𝜽 , or a probability distribution over 𝜽 , such
that 𝐹 (𝜽 , 𝒔 (0), 𝑒 (0)) produces an output 𝒙 that is consistent with
real-world data 𝒚. There are various techniques for calibrating
ABMs, including approximate Bayesian computation [37] and neu-
ral likelihood and posterior estimation [14], among others.

Once calibrated, we can execute sensitivity analyses on ABMs
to understand past events (retrospective), explore alternative scenar-
ios (counterfactual), and design future policies (prospective) [40, 43].
This analytical capability makes ABMs powerful tools for policy
design and positions them to address the Lucas critique [26].

2.2 Scaling Agent-based Models
Recent advancements, particularly in differentiable ABMs, have
made it feasible to simulate, calibrate, and analyze ABMs with
millions of agents using commodity hardware. A differentiable
ABM [4, 11, 41] is an ABM for which the gradient

𝜂 = ∇𝜽 E[𝐹 (𝜽 )] (4)

exists and can be computed. This allows ABMs to improve calibra-
tion by using gradient-assisted techniques to integrate heteroge-
neous data[15, 41], accelerate simulations on CPUs and GPUs via
tensorization [10], compose with neural networks in end-to-end dif-
ferentiable pipelines [11, 32, 33] and accelerate sensitivity analyzes
with gradients [40].

AgentTorch [12] is an open-source framework that allows to
generalize these capabilities across diverse ABMs. Its key feature is
the ability to differentiate through the simulation (𝑓 , 𝑔), enabling
gradient-based optimization ofmodel parameters𝜽 . Through smooth-
ing and reparameterization techniques, AgentTorch achieves dif-
ferentiability in discrete stochastic programs and allows for the
simulation of tens of millions of agents on consumer-grade GPUs.
However, these large-scale simulations have only focused on heuris-
tic. The focus on our work is to preserve this simulation scale while
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incorporating LLMs to capture adaptive agent behavior. We build
on top of AgentTorch for our experiments and analysis. Its flexi-
bility in composing various agent rules and environments makes
it a suitable framework for benchmarking agents defined by both
heuristic and LLM-based behaviors.

2.3 Agency in Agent-based Models
Conventional ABMs typically use heuristic agents update rules 𝑓
(Equation 1) derived from observational data or grounded in the-
ory. However, these rules may not explicitly differentiate between
components that depend on agent behaviour and environmental
dynamics. An illustrative example of this is the dependence of dis-
ease risk on the basic reproduction number 𝑅0. 𝑅0 corresponds to
the expected number of cases directly generated by one infected
individual. This parameter definition, however, does not allow to
distinguish whether a high number of cases is driven by the agent’s
behaviour (i.e., they interact more), or an increase in the infectivity
of the virus (i.e., each contact is more infectious).

Recent advances in Large Language Models (LLMs) have opened
new possibilities for creating more realistic and adaptive agent
behaviors in ABMs. Integrating LLMs into ABMs can help decou-
ple agent behavior dynamics from environmental dynamics. This
modification to the agent update rule (Equation 1) is expressed as:

𝒔𝑖 (𝑡 + 1) = 𝑓
(
𝒔𝑖 (𝑡),∪𝑗∈N(𝑖 )𝑚𝑖 𝑗 (𝑡), 𝑒 (𝑡), 𝜽 , ℓ (·|𝒔𝑖 (𝑡), 𝑒 (𝑡), 𝜽 )

)
, (5)

where ℓ (·|𝒔𝑖 (𝑡), 𝑒 (𝑡), 𝜽 ) is the LLM output. For example, when mod-
eling the infection probability of an agent, an LLM could param-
eterize behaviour related mask-wearing compliance. To interpret
the LLM output as an action within the ABM environment, we
instruct the ABM to return yes / no answers to our prompts. In
other words, given an action 𝛼 (i.e., will the agent isolate at home?)
with unknown probability 𝑝 , we use the LLM as a proxy,

𝛼 ∼ Bernoulli(p) = ℓ (·|𝒔𝑖 (𝑡), 𝑒 (𝑡), 𝜽 ). (6)

Several recent works has explored integrating LLMs as ABM
agents. Notably, "Smallville" [36] simulates 25 LLM-powered agents
coordinating to plan a party together, [19] simulates disease spread
over 100 LLM-powered agents, [25] build an expressive environ-
ment ofmacroeconomic dynamics but simulate only 300 agents, [49]
simulates 1000 LLM-powered agents interacting in minecraft with
the aim to capture self-organization in societies. [48] built an ABM
framework where both agents and environment are modeled using
LLMs. While promising, these works have been limited to small
population scenarios (few hundred agents) and not designed to
integrate real-world population data [20]. Integrating LLMs into
large-scale ABMs remains challenging but is necessary for eval-
uating population-scale complex systems and guiding real-world
policy decisions. The focus of our work is to preserve the simulation
scale while incorporating LLMs to capture adaptive agent behavior,
addressing the critical trade-off between individual agent expres-
siveness and computational feasibility in large-scale simulations.

3 LLM ARCHETYPES: SCALING ABM AGENTS
Understanding complex systems often requires the simulation of
the entire population of agents to correctly capture emergent scale-
sensitive effects. For instance, while the agency or intelligence of

Prompt

Prompt

Prompt

LLM

Action

Action

Action

Population Archetypes
Population
Actions

Archetype
Actions

Figure 1: Schematic for sampling individual agent behavior
using LLM archetypes. The process involves: (1) assigning
individuals to representative archetypes (based on prompt
template), (2) querying LLMs for archetype behaviors and
estimating action distributions, and (3) sampling individual
agent decisions from action distribution of representative
archetype. This approach enables efficient scaling of adaptive
behaviors to large agent populations.

an individual ant may be quite limited, the simulation of the entire
colony captures coordination processes wherein ants use them-
selves as bridges for other ants to use. In these large systems, how-
ever, it is infeasible to query Equation 6 for each agent, time-step,
and specific action. This problem can be overcome by recognizing
that the number of different behaviors is typically much smaller
than the number of agents. In other words, we only need to query
the LLM to inform the behaviour over each unique set of agents’
characteristics. For instance, if we consider that the behavior is
purely informed by age and gender, we only need to consider one
LLM query per different combination of age and sex. We refer to
each of these unique combinations as archetypes.

For each possible agent action 𝛼 , we can estimate its probability
𝑝𝛼 in Equation 6 using Monte-Carlo,

𝑝𝛼 (𝒔𝒊 (𝑡), 𝑒 (𝑡), 𝜽 ) = E [ℓ (·|𝒔𝑖 (𝑡), 𝑒 (𝑡), 𝜽 )]

≈ 1
𝑀

𝑀∑︁
𝑗=1

𝜉𝑖 with 𝜉𝑖 ∼ ℓ (·|𝑠𝑖 (𝑡), 𝑒 (𝑡), 𝜽 ).
(7)

By estimating 𝑝𝛼 (𝑘) for each archetype 𝑘 , we can simulate the
action of its agent by sampling the action from the archetype to
which it belongs. Let 𝐾 be the number of agent archetypes and 𝐴
be the number of LLM-queryable actions; we can then simulate the
behaviour of all agents with 𝐾 ×𝐴 queries, which will be typically
much smaller than the number of agents 𝑁 , allowing us to scale
the simulation to millions of agents. This is shown in Figure 1.
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4 EXPERIMENTAL SETUP
We consider a large-scale ABM of New York City simulating 8.4
million individuals during COVID-19. The pandemic exemplifies
the intricate interplay between individual behavior, policy interven-
tions, and environmental factors that our approach aims to capture.
Disease spread initially triggered fluctuating mobility patterns and
multiple infection waves [44]. Government lockdowns, while con-
trolling spread, caused severe economic consequences, including
unprecedented unemployment [13]. Stimulus programs, introduced
to mitigate economic hardship and encourage compliance to health
measure [24], had unintended effects on labor markets and resource
allocation [16]. As the pandemic progressed, "pandemic fatigue"
emerged, further complicating public health compliance and eco-
nomic recovery [38]. This feedback loop between health outcomes,
economic conditions, and human behavior is ideal to study the
trade-off between simulation scale and individual agency.

Environment: The agent states have static (age, gender, in-
come, occupation) and dynamic (disease, employment status) at-
tributes. We use 2022 American community survey (ACS) for de-
mographic and household characteristics, the Bureau of Labor Sta-
tistics for employment data, and the center for disease control
(CDC) reports for data on disease dynamics, consistent with prior
work [10, 21, 43]. Agent attributes are specified at census-resolution
with demographic and income information discretized into bins.
Interactions occur over household, workplace, and mobility net-
works, with recreational and workplace mobility parameterized
using Google Mobility trends. Our simulations focus on the dy-
namics of disease spread and labor market. For disease spread, we
consider a standard epidemiological model [7, 11, 21] wherein infec-
tion spreads through contact and the probability of agent 𝑖 getting
infected at step 𝑡 is:

𝑝𝑖 (𝑡) = 1 − exp ©«− 𝛽 𝑆𝑖𝑛𝑖
∑︁

𝑗∈N(𝑖 )
𝐼 𝑗 (𝑡)

ª®¬ , (8)

where N(𝑖) is the set of neighbors of agent 𝑖 , 𝑆𝑖 the susceptibility
of agent 𝑖 , 𝐼 𝑗 the infection status of each neighbour, 𝑛𝑖 = #N(𝑖)
the total number of neighbors, and 𝛽 a structural parameter of the
ABM called the effective contact rate. The neighbourhood N(𝑖) is
given by contact networks constructed via household and mobility
data in the US census.

For labor market, we consider a standard econometric model [25]
which relates participation behavior of individual agents with ag-
gregate unemployment rate at time 𝑡 (𝜇𝑤,𝑡 ) as:

𝜇𝑤,𝑡 =
∑︁
𝑗∈N

𝛾0𝑊𝑗 (𝑡) + 𝛾1𝐶𝑡 (9)

where𝑊𝑗 (𝑡) is the willingness to work for agent 𝑗 at time 𝑡 and 𝐶𝑡
is the history of unemployment claim rates in the region, obtained
from census data; and 𝛾0 and 𝛾1 are the structural parameters.

The epidemiological model forecast cases, while the economic
model forecast unemployment rates. Themodels are coupled through
a feedback loop: case numbers affect agents’ willingness to work,
which influences labor-force participation rates and workplace in-
teraction networks, which in turn affect disease transmission. We
implement this environment using the AgentTorch framework [12]
which enables differentiate through these stochastic dynamics and

scales to large populations (8.4 million agents). The parameters
(𝛽,𝛾0, 𝛾1) are calibrated to real-world data for cases and unemploy-
ment rates, using a standard protocol for differentiable ABMs [11,
12, 41] (visualized in figure 3).

Behavior: We use LLMs to model isolation and employment be-
havior of individual agents. Our prompt includes agent demograph-
ics, disease dynamics, information about extrinsic interventions
(stimulus payment) and intrinsic behavior adaptation (duration of
pandemic to capture effect of "pandemic fatigue"). The user prompt
template, motivated by [25], is given below:

User Prompt

You are a {gender} of age {age}, living in the {location} region
and receiving a monthly income of {income}.
The number of new cases in your neighborhood is {cases},
which is a {change}% change from the previous month. It
has been {duration} months since the start of the pandemic.
This month, you have received a stimulus payment of {pay-
ment} to support your living expenses.
Given these factors, do you choose to isolate at home?
(isolation behavior)
Given these factors, do you choose to work? (employment
behavior)
"There isn’t enough information" and "It is unclear" are not
acceptable answers. Give a "Yes" or "No" answer, followed
by a period. Give one sentence explaining your choice.

The input prompt receives case numbers and pandemic duration
from the past simulation trajectory, instead of ground-truth data,
and outputs agents’ willingness to work𝑊𝑗 (𝑡) which is further used
in simulation. We conduct such auto-regressive prompting for two
reasons: i) when simulating for prospective interventions, ground-
truth data is not available and hence prompt needs to be specified
entirely using simulation, ii) when simulation is un-calibrated, the
model peaks may not align well with real-world data. In such case,
using ground-truth data is unsuitable for capturing the adaptability
of behavior (especially when incorporating time-varying informa-
tion like infections). Since prompt at step 𝑡 depends upon simulated
trajectory at step 𝑡 − 1, LLMs need to be sampled online during the
simulation. As behavior cannot be sampled offline, the trade-off
between simulation scale and agent behavior becomes particularly
critical. Finally, the stimulus eligibility, timing and amounts are
based on the policy implemented in NYC at the time. Specifically,
December 2020 - March 2021 overlaps with the second stimulus
check which provided adults $ 600 and additional $ 600 for every
child [34]. We use GPT-3.5 for our experiments.

5 VALIDATING ARCHETYPES
The section benchmarks the capacity of Archetypes to prompt be-
havior consistent with measurable population-wide observations.
We use LLM archetypes to prompt individual-level willingness to
work for 8.4 million synthetic agents (consider responses only for
eligible working adults), focusing on two time-periods: December
2020 toMarch 2021 (coinciding with the second stimulus round) and
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Figure 2: Prompting agents via LLM archetypes: Correlation between population-wide employment behavior predicted by
LLM archetypes and observed data for 8.4 million NYC agents. Prompt 1 (left) corresponds to scenario where LLMs only see
demographic attributes. Prompt 2 (middle) and Prompt 3 (right) add further contextual information regarding disease dynamics
and stimulus payments. Increased correlation with additional contextual information highlights the ability of LLMs to capture
behaviour trends across demographics and geography.

March to May 2022 (post-Omicron wave). We test three scenarios
with increasing contextual information: (Prompt 1) we only provide
demographic attributes of the agent, (Prompt 2) we add information
about disease dynamics, (Prompt 3) we further include information
about access to stimulus payments. For each scenarios, we initialize
3 (𝑀 in equation 7) queries per archetypes representing different
combinations of unique prompts over the considered time frame.
Given the census-resolution (demographic and income attributes
binned for privacy) and prompt design (disease dynamics and stim-
ulus information shared by all agents), this approach requires only
4̃00 LLM queries to sample one decision (weekly) for each individ-
ual in the population. This is a significant reduction compared to
millions of queries required in the conventional paradigm.

Following Equation 7, we obtain the probability of each archetype
𝑘 performing action 𝛼 ("will you work?") for each week, 𝑝𝛼 (𝑘, 𝑡).
By sampling from the induced Bernoulli distributions, we generate
a time-series of work attendance. We aggregate these individual-
level actions to calculate the change in labor force participation rate
across New York boroughs and compute correlation of this time
series with observed data from the US Bureau of Labor Statistics 1.
Results are averaged across 5 independent runs for robustness.

Figure 2 shows increasing correlation between behavior gener-
ated by LLM-archetypes and census data as we add more contextual
information to the prompt. This demonstrates the method’s ability
to incorporate nuanced factors - like evolving environments and
incentives - into agent decision making. Notably, archetypes cap-
ture positive time-varying correlations in census-level behaviors
for 3 of 5 boroughs (roughly 5 million people across income and
demographic), which is an encouraging result.

In the second experiment (March to May 2022), we test the abil-
ity of LLM-archetypes to simulate adaptive behavior over time,
particularly "pandemic fatigue". This period represents the scenario
post-Omicron wave, when stimulus and unemployment payments
1https://www.bls.gov/charts/employment-situation/civilian-labor-force-
participation-rate.htm

had also declined considerably. We modify the prompt to highlight
the time duration since the start of the pandemic and the lack of
financial incentives, testing whether our representative (and indi-
vidual) agents are sensitive to these changes. We then repeat the
population sampling procedure described in the previous experi-
ment to obtain the time-series and examine cross-correlation with
real-world data on participation rates.

This analysis demonstrates the potential of LLM archetypes to
capture complex, adaptive behaviors in large-scale populations
while maintaining computational efficiency. Despite high-variance
individual responses, archetypes successfully capture positive time-
varying correlations with census-level behaviors, an encouraging
outcome for large-scale ABMs. To mitigate biased LLM responses,
we estimation archetype distributions via multiple LLM genera-
tions (𝑀 queries per archetype), as motivated by [28]. While these
results are promising, we acknowledge ongoing challenges. First,
real-world behaviors can be significantly more complex than what
our prompt can capture and second, data contamination in LLMs
remains an open challenge with no formal technique to design
prompts for LLM queries. Despite these limitations, the computa-
tional efficiency of archetypes - requiring only 400 queries for 8.4
million agents - compared to millions in the conventional approach
represents a significant advance. This efficiency, combined with
the ability to capture adaptive behaviors, makes LLM archetypes a
promising tool for large-scale ABMs. We demonstrate the viability
of this approach for large-scale simulations in Section 6, present-
ing performance benchmarking results of online LLM sampling
coupled with a highly complex environment.

6 BEHAVIOR AGENCY VS SIMULATION SCALE
This section investigates the impact of incorporating adaptive agent
behavior within ABMs and analyzes the trade-off between agency
and simulation scale when calibrating to real-world data. We sim-
ulate dynamics of disease spread and labor market in New York
City from December 2020 to April 2021 and, compare three kinds
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of agent architectures: LLM-as-agent, Heuristics and Archetypes.
LLM-as-agent instantiates a unique LLM query per individual agent,
Archetype instantiates 𝑀 LLM queries per representative agent
and heuristic agents used hand-crafted behaviors shared across all
agents. Specifically, heuristic agents use Equation 8 and Equation 9
as they are. For archetype and LLM-as-agent, these equations are
modified to incorporate an action 𝛼 determined by the LLM output
and obtain agent decision to isolate (𝐼 𝑗 ) and work (𝑊𝑗 ). In terms of
𝐼 𝑗 , this is defined as:

𝐼LLM𝑗 := 𝐼 𝑗 (𝑡) (1 − ℓ𝛼 (𝒔 𝑗 (𝑡), 𝑒 (𝑡))), (10)

where ℓ𝛼 is the LLM output for the action, and

𝐼
archetype
𝑗

(𝑡) := 𝐼 𝑗 (𝑡) (1 −𝐴 𝑗 (𝑡)), (11)

where 𝐴 𝑗 (𝑡) is sampled from Bernoulli(𝑝 𝑗 (𝛼)) with 𝑝 𝑗 (𝛼) is esti-
mated using the LLM (see section 3). Similarly,𝑊𝑗 (𝑡) is also modi-
fied for LLM-as-agent and archetypes.

ABM parameters

ABM simulator

Output

Timestep 2

Timestep 1

Timestep n

Sampling agent
behaviour

LLMs

Archetypes

Heuristic rules

Loss Data

G
ra
di
en
t

Figure 3: Calibration protocol for the three types of agent
behaviours considered. This involves simulating ABM by
sampling agent behavior at each step, comparing outputs to
real-world data, and adjusting parameters through gradient-
based optimization.

When simulating, we sample agent decisions at each step to exe-
cute dynamics and, aggregate infection and employment states after
𝑁 steps. The aggregated outputs are used to calibrate structural
parameters 𝜽 = (𝛽,𝛾0, 𝛾1) to historical time-series of infections
and unemployment rates, using the protocol visualized in Figure 3.
LLMs-as-agents query behavior at individual level and hence using
it to simulate 8.4 million agents is computational infeasible. This
enforces a trade-off between simulation scale and individual agency.
For fair comparison, we fix the prompt budget to 300 LLM queries
per step and compare the following configuration: a) Heuristic
agents simulate 8.4 million agents using hand-crafted behaviors, b)
Archetypes simulate 8.4 million agents with representative-level
LLM queries and c) LLM-as-agents simulate a smaller population
of 300 agents with individual-level LLM queries. Output of LLM-as-
agents are scaled to the full population to compare with historical
data and evaluate performance. To evaluate each calibrated model,
we simulate a future time-series of 16 weeks for infection data

(measured weekly) and 80 weeks for employment rates (measured
monthly) and report forecasting errors.

Figure 4: Runtime benchmarks for the environment and
agent. Archetypes introduce much lower runtime overhead,
enabling the simulation to scale to larger population size

Analysis: Results presented in Table 1 show that archetype-
based model achieves the best performance, highlighting both the
need for adaptive and expressive agents and the requirement of
simulating the entire scale of the system. Further, heuristic agents
simulated at population scale outperform LLM agents constrained
to small population samples which shows that computational scal-
ing is crucial. The benefit of LLM-archetypes over heuristic agents
shows the benefit of capturing behavioral adaptations can be ex-
tremely useful at the right simulation scale. Figure 4 shows that
Archetypes achieve this superior performance while consuming
95% less run-time compared to LLM-as-agents and marginally more
than heuristic agents, which is encouraging for practical utility.

Agent | Error Rate Unemployment (↓) Infection (↓)
Archetype 24.59 ± 1.5 95.17 ± 20.23
Heuristic 41.05 ± 0.1 2914.73 ± 300.25

LLM-as-agent 56.98 ± 2.5 4311.70 ± 674.14
Table 1: Benchmark results showing the mean-square errors
for each of the considered agent architectures. Archetype
achieves lower test error when forecasting both infections
and unemployment rates as they capture adaptive agent be-
haviors without compromising simulation scale.

7 COUNTERFACTUAL SIMULATIONS
The Lucas Critique [27] posits that historical data alone can never
predict the outcome of new policy, since behavior may adapt while
outcomes are realized. By balancing individual agency and simula-
tion scale, LLM archetypes allow us to analyze the relative impact
of behavior adaptation and environment dynamics in shaping real
world outcomes. We explore the interplay of pandemic fatigue and
variant transmissibility on severity of disease outbreaks.

We consider transmission of two variants of COVID-19 - Delta
(𝛽 = [2.5−4.0], April 2021) and Omicron (𝛽 = [5.5−8.0], November
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Figure 5: LLM archetypes help explore the interplay between behavior adaptation and environment dynamics in shaping
epidemic outcomes. (left) Introducing pandemic fatigue ("the offset") to the prompt reduces relative rates of isolation behavior
in the population. (middle) This decrease in isolation behavior translates to increased disease transmission in the population.
(right) Comparing the original delta wave (in blue), delta wave with "omicron-like" transmissibility (in orange) and the omicron
wave (shown in dashed purple to indicate this emerges at a later time). The omicron wave achieves a higher peak than both the
original and "omicron-like" delta wave due to coupled impact of viral transmission and time-induced pandemic fatigue.

2021) - which emerged at different stages of the pandemic. While
Omicron was roughly 2-3 times more transmissible than Delta, it
produced 5-20 times the case intensity [1]. We hypothesize this is
due to the coupled dynamics of time-induced fatigue and increased
transmissibility. Using our model calibrated to the Delta wave, we
conduct two counterfactual simulations:

Q1: What if we had the delta wave later?: To simulate time-
induced behavior change ("pandemic fatigue"), we update the user
prompt with an artificial offset: "it has been number of {weeks +
OFFSET } since start of the epidemic", where OFFSET is 30 weeks.

Q2: What if we had the omicron wave earlier?: We update 𝛽
in the simulation trace to mimic the Omicron variant while keeping
the same behavioral dynamics.

Figure 5 illustrates the results of our counterfactual analysis,
helping decouple the impact of behavior change and viral transmis-
sibility on disease waves during the pandemic. First, we observe
that time-induced fatigue can alter behavior of individuals with
agents demonstrating lower willingness to isolate when prompted
using the OFFSET( Figure 5(a)). This behavior change can result in a
more severe outbreak even with viral dynamics do not change ( Fig-
ure 5(b)). Second, an early onset of "omicron-like variant" would
have been more destructive due to higher transmissibility, but not
as severe as the actual omicron wave. The actual Omicron wave was
exacerbated by the coupled influence of behavior change (additional
"pandemic fatigue" due to extended duration). Such analyses can
inform policy decisions during a pandemic helping appropriately
allocate resources to both clinical and behavioral interventions.

We note that archetypes enable such analysis since they provide
the ability to query adaptations in individual behavior, via expres-
sive natural language, and also measure the cascading impact of
individual decisions at a population scale. These analyses are chal-
lenging with other agent architectures due to trade-offs between
simulation scale (compromised when using LLMs for each agent)
and individual agency (lost when using heuristic agents). We note

that for small populations with high-personalized interventions,
LLMs-as-agent can be viable architecture (as explored in works
like [36, 48]). Archetypes are useful when analyzing outcomes in
large populations with demographic-resolved interventions as often
required for policy making.

8 DISCUSSION
This section addresses implementation considerations and limita-
tions. We analyze sensitivity of Archetype-specific design choice
when querying LLMs and introduces an API to generalize utility of
our contributions to diverse scenarios. We also discuss some promis-
ing future capabilities and summarize limitations of the work.

LLM Consistency: LLM archetypes are sensitive to the quality
and consistency of agent behaviors, which can vary with the choice
of choice of model and number of queries per archetype (𝑀 in
equation 7). We repeat the experiment in section 3 (using Prompt
3) and analyze sensitivity of individual decisions to model choice
(GPT-3.5 vs GPT-4o) and number of instances per archetype (𝑀=1,
3, 6). Results are shown in Figure 6. First, for lower 𝑀 , using the
superior GPT-4o model improves performance. Our algorithm is
agnostic to the choice of LLMs and we anticipate the our results
will become progressively better as LLMs mature, making ABMs
more reliable. Second, for larger 𝑀 - when archetype distributions
are aggregated over multiple queries - performance significantly
improves for GPT-3.5. We hypothesize that this mitigates biased
LLM responses and helps capture realistic variability in individual
behaviors. For future work, we plan to extensively benchmark
different models (both open and closed-source) and design formal
guidelines to specify archetype prompts. Finally, we also note that
the choice of LLM is not the only factor affecting effectiveness. As
demonstrated in Section 6, population scale is also critical for ABMs
where heuristic agents can outperform LLM agents. This highlights
the complex interplay between agent sophistication and simulation
scale in determining overall ABM utility.
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Figure 6: Sensitivity analysis to LLM model choice (GPT-3.5,
GPT-4o) and number of queries per archetype (M=1, 3, 6)

Archetype API: We extend the AgentTorch framework [12] to
integrate an ’Archetype’ API, allowing the use of LLMs to prompt
agent behavior in large-scale simulations. This API supports both of-
fline and online LLMs, facilitatingwider adoption of LLM archetypes
in ABMs. We present a code snippet in Figure 7.

Figure 7: We extend the AgentTorch framework to generalize
use of LLM Archetypes.

High-resolution Analysis: LLM archetypes enable measuring
granular individual behavior and integrating it with population-
scale simulations. Using our model calibrated to borough-level data,
we measure the impact of stimulus payments on employment be-
havior at a granular zip-code level. In future, such analyses can help
overcome limitations of historical data in policy design ( Figure 8).

Limitations: While our work demonstrates the utility of LLM
archetypes in large-scale ABMs, several areas for improvement
remain. First, ensuring the robustness and fairness of LLM-driven
agents remains an open challenge, as LLMs can produce incon-
sistent or biased outputs, potentially leading to unrealistic agent
behaviors. Future work should focus on developing methods to
detect and mitigate these biases. Second, while LLM archetypes aid
scalability, they may not always capture the desired heterogene-
ity of individual agents, necessitating the development of more
sophisticated archetype selection and interpolation methods. Third,
the current implementation focuses on relatively simple agent ac-
tions, limiting the complexity of decision-making processes that

Figure 8: Zip-code level employment behavior for 8.4 million
agents in NYC estimated using a model calibrated to coarse
borough-level data. LLM Archetypes help overcome limita-
tions of historical data for policy design.

can be modeled. Extending the action space and implementing
multi-scale archetypes could address this limitation. Fourth, verify-
ing the accuracy of individual agent behaviors generated by LLMs
remains challenging, calling for the development of formal verifica-
tion methods and benchmarks. We currently measure performance
via comparisons with mesoscopic census data and generalization
of macroscopic ABM predictions. Despite these limitations, we be-
lieve this work represents a significant step forward in agent-based
modeling and opens new possibilities to understand and address
societal challenges.

9 CONCLUSION
This work introduces LLM archetypes as a novel approach to scale
adaptive agent behavior in large-scale agent-based models (ABMs).
By efficiently integrating LLMs into ABMs, we enable the simula-
tion of millions of agents with nuanced, context-aware behaviors
while maintaining computational feasibility. Our case study on the
COVID-19 pandemic in New York City demonstrates the power of
this approach in capturing complex societal dynamics, balancing in-
dividual agency with population-scale outcomes. The framework’s
ability to perform counterfactual analyses addresses key limitations
in policy design, offering a powerful tool for tackling real-world
challenges. While challenges remain in ensuring robustness and
fairness of LLM-driven agents, this work represents a significant
step forward in ABM capabilities. By bridging the gap between
expressive individual agents and large-scale simulations, our ap-
proach opens new avenues for modeling complex systems and
informing data-driven policy decisions across various domains.
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