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ABSTRACT
We study the problems of computing envy-free Pareto-efficient al-

locations in the context of fair allocation and hedonic games under

dichotomous preferences. We establish Σ
p

2
-completeness of decid-

ing the existence of envy-free Pareto-efficient allocations, refining

earlier related results. We also develop iterative SAT-based exact al-

gorithms for computing envy-free Pareto-efficient allocations, and

extend the approach to computing minimum-envy Pareto-efficient

allocations under different combinations of aggregation functions.

We provide open-source implementations of the algorithms and

show empirically that the approach scales to computing envy-free

Pareto-efficient allocations up to hundreds of agents.
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1 INTRODUCTION
Allocation problems concerning multiple agents occur naturally

in various real-world settings, from dividing computational re-

sources in clusters [41] through assigning university courses to

students [24] to food distribution [1], to name a few examples. Var-

ious allocation problems have been studied within computational

social choice [4, 27, 57, 59]. We focus on two well-studied prob-

lem settings concerning allocations: fair allocation of indivisible

goods [2, 18, 44, 51], where the task is to divide discrete items be-

tween agents based on the preferences of individual agents, and

hedonic games [8, 39], where the task is to form a partitioning of a set

of agents into coalitions based on the individual agents’ preferences

regarding the coalition they are assigned to. In particular, we study

these tasks under dichotomous preferences [5, 15, 16, 22, 38], i.e., in
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a setting where agents express their preferences via propositional

formulas [7, 20, 34, 43, 52].

Envy-freeness is a central and desirable property of fair alloca-

tions [40, 58]; an allocation is envy-free if no agent would prefer

to be allocated a set of items allocated to another agent over the

agent’s own allocation. However, envy-freeness in itself admits

non-satisfactory allocations, with not allocating any items to any

agents as one extreme example. Such non-satisfactory allocations

can be ruled out by a choice of a notion of efficiency; indeed, in the

study of fair allocation it is typical to study combinations of envy-

freeness and efficiency notions [6, 10, 19, 20, 26, 35]. Requiring that

allocations are complete, i.e., that each item is allocated to some

agent, already makes deciding the existence of an envy-free alloca-

tion NP-complete [46]. On the other hand, this also means that this

decision problem can be polynomially encoded in propositional

logic and decided via a single call to a Boolean satisfiability (SAT)

solver [12]. Propositional encodings of similar flavor have also been

presented [7] for envy-free partitioning into coalitions (or an envy-

free allocation for short) in hedonic games. Amore refined notion of

efficiency in fair allocation is Pareto-efficiency, targeting envy-free

allocations in which, intuitively, it is not possible to reallocate items

in such a way that some agent would be better off without making

some other agent worse off. However, deciding the existence of an

envy-free Pareto-efficient allocation is computationally even harder,

specifically Σ
p

2
-complete [20, 35], which makes the development

of efficient algorithms for computing envy-free Pareto-efficient

allocations even more challenging. This is the setting we focus on.

In more detail, we focus on the problems of computing envy-free

Pareto-efficient allocations in the contexts of fair allocation and he-

donic games under dichotomous preferences. Our contributions are

four-fold: (1) we present new Σ
p

2
-completeness results for fair allo-

cation and hedonic games; (2) we develop exact SAT-based iterative

algorithms for deciding the existence of envy-free Pareto-efficient

allocations; (3) we further extend our algorithms to computing

minimum-envy Pareto-efficient allocations under different notions

of total envy; and (4) we provide open-source implementations of

our algorithms and empirically evaluate their scalability.

In terms of complexity results, strengthening earlier results for

fair allocation [20], we establish Σ
p

2
-completeness for deciding the

existence of envy-free Pareto-optimal allocations even when re-

stricting each agent’s preferences to a 3DNF formula with at most

four terms and each item to occur in the preferences of at most

three agents. This also improves on other earlier results from the

literature that only indicated (exponential) bounds on the number
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of parallel NP oracle queries needed to solve the problem [13]. For

hedonic games, building on second-level completeness results in a

different setting [53], we establish Σ
p

2
-completeness in the specific

context of envy-free Pareto-optimal allocations under dichotomous

preferences evenwith similar restrictions as in the case of fair alloca-

tion. In terms of algorithms, we build on the earlier-proposed direct

SAT encoding of envy-free fair allocation [20] by using the encoding

as a base abstraction of our iterative SAT-based counterexample-

guided abstraction refinement (CEGAR) [30, 31] approach to the

Σ
p

2
-complete problem of deciding the existence of a Pareto-efficient

envy-free allocation under dichotomous preferences. The approach

is motivated by earlier-proposed CEGAR-style approaches to other

problem settings in computational social choice [17, 23, 32, 33].

Conceptually, our SAT-based CEGAR iterates between computing

envy-free allocations (using a SAT solver) and checking for a coun-

terexample for the claim that the latest found envy-free allocation

is Pareto-efficient. Furthermore, due to the fact that our SAT-based

CEGAR approach allows for including further constraints on the

solutions of interest, our approach also directly captures hedonic

games under dichotomous preferences by simply enforcing transi-

tivity over pairwise allocations of agents into the same coalition

through a propositional encoding [7]. Going beyond deciding the ex-

istence of envy-free Pareto-efficient allocations, it should be noted

that that a simple “no” answer can be considered insufficient as a

“solution” in cases where there are no envy-free Pareto-efficient allo-

cations. To this end, we show how our SAT-based approach can be

extended to computingminimum-envy [21, 25, 28, 29, 46, 49, 50, 55]

Pareto-efficient allocations, considering three combinations of ag-

gregation functions which yield meaningful objective functions for

minimizing envy under dichotomous preferences. Again, to the best

of our understanding our approach to minimizing envy is the first

to enable envy minimization under Pareto-efficiency. In particular,

earlier works proposing ways of minimizing envy in fair allocation

via, e.g., direct integer programming encodings [55] cannot be di-

rectly applied in this setting by complexity-theoretic assumptions.

We provide an open-source implementation of our algorithms and

show that our approach scales to hundreds of agents.

2 PRELIMINARIES
We begin with an overview on fair allocation and hedonic games

under dichotomous preferences [7, 20, 52].

Let 𝐼 = {1, . . . , 𝑛} be a set of agents, 𝑂 = {𝑜1, . . . , 𝑜𝑝 } a set of
items, and 𝑅 = {⪰1, . . . , ⪰𝑛} a preference profile where for each

𝑖 ∈ 𝐼 , ⪰𝑖 is a reflexive, transitive, and complete relation on 2
𝑂
.

For subsets of items 𝐴, 𝐵 ⊆ 𝑂 , agent 𝑖 prefers items 𝐴 to items 𝐵

if 𝐴 ⪰𝑖 𝐵; if 𝐴 ⪰𝑖 𝐵 and 𝐵 ⪰̸𝑖 𝐴, agent 𝑖 strictly prefers 𝐴 to 𝐵,

denoted by 𝐴 ≻𝑖 𝐵. Preferences are monotonic if for any preference

relation ⪰𝑖∈ 𝑅 and 𝐴 ⊆ 𝐵 ⊆ 𝑂 we have 𝐵 ⪰𝑖 𝐴. A preference

relation ⪰𝑖 is dichotomous if there exists a collection of bundles of

items 𝐺𝑖 ⊆ 2
𝑂

such that for all 𝐴, 𝐵 ⊆ 𝑂 , 𝐴 ⪰𝑖 𝐵 if and only if

𝐴 ∈ 𝐺𝑖 or 𝐵 ∉ 𝐺𝑖 . We consider dichotomous preference profiles,

i.e., preference profiles consisting only of dichotomous preference

relations. An agent 𝑖 is “happy” with a bundle 𝐴 if 𝐴 ∈ 𝐺𝑖 , and

“unhappy” if 𝐴 ∉ 𝐺𝑖 .

An allocation 𝜋 is a mapping 𝜋 : 𝑂 → 𝐼 . As standard in literature,

we also use 𝜋 to refer to the inverse function, i.e., 𝜋 (𝑖) = {𝑜 ∈

𝑂 | 𝜋 (𝑜) = 𝑖}. An allocation is envy-free if, for each agent 𝑖 ∈ 𝐼 ,
𝜋 (𝑖) ⪰𝑖 𝜋 ( 𝑗) for all agents 𝑗 ≠ 𝑖 . An allocation 𝜋 ′ dominates an
allocation 𝜋 if (i) for all agents 𝑖 ∈ 𝐼 , 𝜋 ′ (𝑖) ⪰𝑖 𝜋 (𝑖) and (ii) there is

an agent 𝑗 ∈ 𝐼 such that 𝜋 ′ ( 𝑗) ≻𝑗 𝜋 ( 𝑗). An allocation 𝜋 is Pareto-
efficient if there is no 𝜋 ′ which dominates 𝜋 .

Hedonic games model scenarios where agents form coalitions

amongst themselves, with agents only interested in the members

of their own respective coalitions. The preference profile therefore

contains preference relations over other agents instead of a set

of items. Formally, ⪰𝑖 is a complete and transitive relation over

{𝑆 ⊆ 𝐼 | 𝑖 ∉ 𝑆}. Analogous to an allocation is a partition 𝜋 of

the agents into coalitions. For convenience, we interchangeably

use the term “allocation” to refer to such partitions in the context

of hedonic games scenarios. Let 𝜋 (𝑖) denote the members of the

coalition to which agent 𝑖 belongs (not including 𝑖). A partition is

envy-free if 𝜋 (𝑖) ⪰𝑖 𝜋 ( 𝑗) for all pairs of agents 𝑖, 𝑗 where 𝑖 and 𝑗
are not in the same coalition, i.e., (𝜋 (𝑖) ∪ {𝑖}) ≠ (𝜋 ( 𝑗) ∪ { 𝑗}).

Propositional Satisfiability. The algorithms we develop are based

on iteratively employing Boolean satisfiability (SAT) solvers [12];

we briefly recall necessary background on SAT. For a Boolean vari-

able 𝑥 there are two literals, 𝑥 and ¬𝑥 . A clause 𝐶 is a disjunction

(∨) of literals. A conjunctive normal form (CNF) formula 𝐹 is a

conjunction (∧) of clauses, while a disjunctive normal form (DNF)

formula is a disjunction of conjunctions of literals. For convenience

we view clauses as sets of literals and CNF formulas as sets of

clauses. We denote by 𝑉 (𝐹 ) and 𝐿(𝐹 ) the set of variables and liter-

als of 𝐹 , respectively. A truth assignment 𝜏 : 𝑉 (𝐹 ) → {0, 1} maps

each variable to 0 (false) or 1 (true), and is extended to literals via

𝜏 (¬𝑥) = 1 − 𝜏 (𝑥), to clauses via 𝜏 (𝐶) = max{𝜏 (𝑙) | 𝑙 ∈ 𝐶}, and
to formulas via 𝜏 (𝐹 ) = min{𝜏 (𝐶) | 𝐶 ∈ 𝐹 }. We interchangeably

represent truth assignments 𝜏 as sets of non-contradictory literals:

{𝑙 ∈ 𝐿(𝐹 ) | 𝜏 (𝑙) = 1}. The Boolean satisfiability problem (SAT) asks

if a given CNF formula 𝐹 has an assignment 𝜏 with 𝜏 (𝐹 ) = 1; if so,

𝐹 is satisfiable andotherwise unsatisfiable.

Dichotomous Preference Profiles. Any dichotomous preference

relation ⪰𝑖 can be represented as a propositional formula 𝜙𝑖 . Specif-

ically, let 𝐾 = 𝑂 if ⪰𝑖 is a preference relation over bundles of items

(fair allocation), and 𝐾 = 𝐼 \ {𝑖} if it is a preference relation over

sets of agents (hedonic games). Then, for a formula 𝜙𝑖 representing

⪰𝑖 , we have 𝑉 (𝜙𝑖 ) ⊇ {𝑝𝑘 | 𝑘 ∈ 𝐾}, and 𝜏 (𝜙𝑖 ) = 1 if and only if

{𝑘 ∈ 𝐾 | 𝜏 (𝑝𝑘 ) = 1} ∈ 𝐺𝑖 . In other words, the formula is satisfied ex-

actly by truth assignments corresponding to bundles (or coalitions)

favored by agent 𝑖 . In this work, we therefore assume without loss

of generality that dichotomous preference profiles are represented

as a set of (arbitrary) propositional formulas 𝑅 = {𝜙1, . . . , 𝜙𝑛}.

Computational Problems. We focus on the computational prob-

lems of deciding the existence of Pareto-efficient and envy-free

allocations under dichotomous preferences in the settings of fair

allocation and hedonic games. Formally, the problem input consists

of a set 𝐼 of agents, a set 𝑂 of items (only in the setting of fair

allocation), and a preference profile 𝑅 = {⪰1, . . . , ⪰𝑛} of dichoto-
mous preferences that are specified as formulas 𝜙1, . . . , 𝜙𝑛 . The

problem is to decide whether there exists an allocation 𝜋 that is

both Pareto-efficient and envy-free (and to output one if it exists).
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3 COMPLEXITY RESULTS
In this section, we will establish that deciding the existence of

Pareto-efficient and envy-free allocations (under dichotomous pref-

erences in logical form) is Σ
p

2
-complete both for fair allocation and

for hedonic games. Specifically, we show that Σ
p

2
-hardness holds

even for the restricted setting where (i) each agent uses a constant-

size DNF formula to express their preferences and (ii) each item

(resp. agent) is only mentioned in the formula of a constant num-

ber of agents. For fair allocation, this refines an earlier-established

Σ
p

2
-completeness result [20].

We assume that the reader is familiar with basic notions from

computational complexity theory, such as polynomial-time reduc-

tions and completeness. For more details, we refer to textbooks on

the topic; see e.g. [3]. The computational complexity class Σ
p

2
can be

most aptly characterized in our setting as all decision problems that

are polynomial-time reducible to the problem ∃∀-QBF-SAT. For our
Σ
p

2
-hardness results, we will give polynomial-time reductions from

∃∀-QBF-SAT. In ∃∀-QBF-SAT, the input is a quantified Boolean

formula of the form ∃𝑋1∀𝑋2𝜓 , where 𝑋1 and 𝑋2 are disjoint sets
of propositional variables and where 𝜓 is a propositional 3DNF

formula over the variables 𝑋1 ∪ 𝑋2. The question is to decide if the

formula is true, i.e., whether there is a truth assignment 𝜏1 : 𝑋1 →
{0, 1} such that for all truth assignments 𝜏2 : 𝑋2 → {0, 1} it holds
that 𝜏1∪𝜏2 satisfies𝜓 . (The complexity class Σ

p

2
can alternatively be

characterized as all decision problems decidable by a polynomial-

time alternating Turing machine that starts in an existential state,

and alternates to a universal state at most once. For more details

on the various characterizations of the class Σ
p

2
, we refer to [3,

Chapter 5].)

We start with fair allocation: we show that the problem is hard

even when agents’ preferences are monotonic.

Theorem 1. The problem of determining whether there exists a
Pareto-efficient and envy-free allocation for a given allocation problem
with monotonic, dichotomous preferences under logical form is Σp

2
-

hard, even when:
(i) each agent’s preferences are expressed by a (positive) 3DNF

formula with at most 4 terms; and
(ii) each item occurs in at most 3 agents’ expressed preferences.

Proof. To show membership in Σ
p

2
, it suffices to observe that

we can use existential nondeterminism to produce an envy-free

allocation 𝜋 , and use the subsequent universal nondeterminism to

verify that there is no allocation 𝜋 ′ that dominates it.

To showhardness, we give a reduction from∃∀-QBF-SAT. Let 𝜒 =

∃𝑋1∀𝑋2𝜓 be a quantified Boolean formula, where𝜓 = 𝑡1 ∨ · · · ∨ 𝑡𝑚
is a (quantifier-free) formula in 3DNF. Without loss of generality

we may assume that each variable in 𝑋1 ∪𝑋2 appears at most twice

positively and at most twice negatively in𝜓 . Let 𝑋1 = {𝑥1, . . . , 𝑥𝑛1
}

and 𝑋2 = {𝑥𝑛1+1, . . . , 𝑥𝑛2
}.

We will construct an allocation problem as follows, that ad-

mits a Pareto-efficient and envy-free allocation if and only if 𝜒

is true. As the set of agents, we take 𝐼 = {(a, 𝑖), (b, 𝑖) | 𝑖 = 1..𝑛1} ∪
{(c, 𝑗), (f, 𝑗) | 𝑗 = 1..𝑚} ∪ {(d, 𝑖), (e, 𝑖) | 𝑖 = 1..𝑛2} ∪ {(g, 1), (g, 2)}.
The set𝑂 of itemswill contain the following items. For each agent of

the form (𝑘, 𝑖) ∈ 𝐼 such that 𝑘 ∉ {d, e, g}, we introduce an item𝑤𝑘
𝑖
.

Moreover, we have an item𝑤g
. The idea behind introducing these

items—which will be worked out in more detail below—is that these

items are only desirable to the corresponding agent, so any Pareto-

efficient allocation will assign these items to them, avoiding envy

between these agents.

Next, for each 𝑖 = 1..𝑛1, we have six items 𝑥0
𝑖
, 𝑥1

𝑖
, 𝑥2

𝑖
and 𝑧0

𝑖
, 𝑧1
𝑖
, 𝑧2

𝑖
.

The items 𝑥1
𝑖
, 𝑥2

𝑖
and 𝑧1

𝑖
, 𝑧2
𝑖
correspond to the (at most) two occur-

rences of 𝑥𝑖 and ¬𝑥𝑖 , respectively. Additionally, for each 𝑗 = 1..𝑚,

we have an item 𝑢 𝑗 representing the 𝑗-th term 𝑡 𝑗 in𝜓 . We also have

an item 𝑦𝑖 for each 𝑖 = 1..𝑛2, whose use can be intuitively described

as forcing a choice between allocating the items corresponding

to 𝑥𝑖 or the items corresponding to ¬𝑥𝑖 to the agent (d, 𝑖).
The preferences of each agent (𝑘, 𝑖) ∈ 𝐼 will be described by a

formula 𝜑 (𝑘,𝑖 ) . Before we describe these formulas, we briefly in-

troduce some notation that we will use. For each term 𝑡 𝑗 in𝜓 , the

formula ⟦¬𝑡 𝑗⟧ is obtained from 𝑡 𝑗 as follows. We start with ¬𝑡 𝑗 ,
and write it into negation normal form, i.e., as a clause. We then

replace each positive literal 𝑥𝑖 , corresponding to the ℓ-th occurrence

of 𝑥𝑖 in𝜓 , by 𝑥
ℓ
𝑖
. We replace each negative literal ¬𝑥𝑖 , correspond-

ing to the ℓ-th occurrence of 𝑥𝑖 in 𝜓 , by 𝑧
ℓ
𝑖
. We then define the

formulas 𝜑 (𝑘,𝑖 ) expressing the agents’ preferences as follows.

𝜑a,𝑖 = 𝑥
0

𝑖 ∧𝑤
a

𝑖 , 𝜑
b,𝑖 = 𝑧

0

𝑖 ∧𝑤
b

𝑖 for 𝑖 = 1..𝑛1

𝜑c,1 = (⟦¬𝑡 𝑗⟧ ∨ 𝑢 𝑗 ) ∧𝑤c

𝑗 for 𝑗 = 1..𝑚

𝜑
d,𝑖 = (𝑥0𝑖 ∧ 𝑥

1

𝑖 ∧ 𝑥
2

𝑖 ) ∨ (𝑧
0

𝑖 ∧ 𝑧
1

𝑖 ∧ 𝑧
2

𝑖 ) ∨ 𝑦𝑖 for 𝑖 = 1..𝑛2

𝜑e,𝑖 = 𝑦𝑖 for 𝑖 = 1..𝑛2

𝜑
f, 𝑗 = (𝑢 𝑗−1 ∨ 𝑢 𝑗 ) ∧𝑤 f

𝑗 for 𝑗 = 1..𝑚

𝜑g,1 = 𝜑g,2 = 𝑢0 ∧𝑤g

Next, we will show that this allocation problem admits a Pareto-

efficient and envy-free allocation if and only if 𝜒 is true. To structure

the proof, we will proceed by establishing several claims, which

build up to correctness of the reduction. All proofs missing from

the paper are available in an online paper supplement.

An allocation 𝜋 is called regular if 𝜋 assigns no agent 𝑘 an item

that is not mentioned in this agent’s formula 𝜑𝑘 . The first claim

allows us to restrict our attention to regular allocations.

Claim 1. Let 𝜋 be an allocation, and let 𝜋 ′ be the regular alloca-
tion that assigns each agent 𝑘 exactly those items in 𝜋 (𝑘) that are
mentioned in 𝜑𝑘 . Then 𝜋 is Pareto-efficient if and only if 𝜋 ′ is Pareto-
efficient. Moreover, if one agent 𝑘1 does not envy another agent 𝑘2
under 𝜋 then 𝑘1 also does not envy 𝑘2 under 𝜋 ′.

Claim 2. Under any regular allocation 𝜋 , the following are the
only pairs of agents that could possibly envy each other:
• agents (d, 𝑖) and (e, 𝑖), for each 𝑖 = 1..𝑛2; and
• agents (g, 1) and (g, 2).

Claim 3. Let 𝜋 be a regular allocation that is Pareto-efficient
and envy-free. Then for each 𝑖 = 1..𝑛, 𝜋 satisfies both agents (d, 𝑖)
and (e, 𝑖).

Claim 4. Let 𝜋 be a regular allocation that is Pareto-efficient and
that for each 𝑖 = 1..𝑛2 satisfies both agents (d, 𝑖) and (e, 𝑖). Then for
each 𝑖 = 1..𝑛1, 𝜋 satisfies at most one of (a, 𝑖) and (b, 𝑖).

Claim 5. Let 𝜋 be a regular allocation that is Pareto-efficient and
envy-free. Then for each 𝑖 = 1..𝑛1, 𝜋 satisfies at most one of (a, 𝑖)
and (b, 𝑖).
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Proof of Claim 5. This follows from Claims 3 and 4. ⊣

Claim 6. Let 𝜋 be an allocation that is envy-free. Then neither of
the agents (g, 1) and (g, 2) are satisfied.

Proof of Claim 6. If one of the two agents is satisfied, the other

agent envies them, as their formulas are identical. ⊣

Claim 7. If there exists an allocation 𝜋 that is Pareto-efficient and
envy-free. Then the QBF 𝜒 is true.

Proof (sketch) of Claim 7. Take an allocation 𝜋 that is Pareto-

efficient and envy-free. By Claim 1, we may assume without loss

of generality that 𝜋 is regular. We construct a (partial) truth as-

signment 𝛼 to the variables in 𝑋1 as follows. For each 𝑖 = 1..𝑛1,

we let 𝛼 (𝑥𝑖 ) = 1 if 𝜋 satisfies agent (b, 𝑖), we let 𝛼 (𝑥𝑖 ) = 0 if 𝜋

satisfies agent (a, 𝑖), and we let 𝛼 (𝑥𝑖 ) be undefined otherwise. By

Claim 5, we know that 𝜋 satisfies at most one of (a, 𝑖) and (b, 𝑖),
which means that 𝛼 is well defined. One can show that 𝜓 [𝛼] is a
valid 3DNF formula, i.e., that all truth assignments extending 𝛼

make𝜓 true. This witnesses that the QBF 𝜒 is true. ⊣

Claim 8. If the QBF 𝜒 is true. Then there exists an allocation 𝜋
that is Pareto-efficient and envy-free.

Proof (sketch) of Claim 8. Suppose that 𝜒 is true. This means that

there is a truth assignment 𝛼 to the variables in 𝑋1 such that𝜓 [𝛼]
is a valid 3DNF formula. We will construct an allocation 𝜋 that is

Pareto-efficient and envy-free, as follows.

To the agents (a, 𝑖) and (b, 𝑖), it assigns items as follows. Take

some 𝑖 ∈ {1, . . . , 𝑛1. If 𝛼 (𝑥𝑖 ) = 0, it assigns to agent (a, 𝑖) item 𝑤a

𝑖

only and it assigns to agent (b, 𝑖) the items𝑤b

𝑖
and 𝑧1

𝑖
. Conversely,

if 𝛼 (𝑥𝑖 ) = 1, it assigns to agent (b, 𝑖) item 𝑤b

𝑖
only and it assigns

to agent (a, 𝑖) the items𝑤a

𝑖
and 𝑥1

𝑖
. To each agent (d, 𝑖), it assigns

the items 𝑧0
𝑖
, 𝑧1
𝑖
, 𝑧2
𝑖
if 𝛽 (𝑥𝑖 ) = 1, and it assigns the items 𝑥0

𝑖
, 𝑥1

𝑖
, 𝑥2

𝑖
if 𝛽 (𝑥𝑖 ) = 0. To each agent (e, 𝑖), it assigns the item 𝑦𝑖 . To each

agent (f, 𝑖) with 𝑖 ≤ 𝑗0, it assigns the items 𝑢𝑖−1,𝑤 f

𝑖
. To each

agent (f, 𝑖) with 𝑖 > 𝑗0, it assigns the items 𝑢𝑖 ,𝑤
f

𝑖
. To agent (g, 1), it

assigns the item𝑤g
, and to agent (g, 2), it assigns no items.

Finally, we consider the assignment to the agents (c, 𝑗). Take an
arbitrary 𝑗 ∈ {1, . . . ,𝑚}. The allocation 𝜋 ′ assigns to (c, 𝑗) all items

mentioned in 𝜑c, 𝑗 that have not yet been assigned to other agents.

In addition, if 𝑗 = 𝑗0, then it assigns to agent (c, 𝑗) in addition the

item 𝑢 𝑗0 , where 𝑗0 is an arbitrary fixed index such that 𝛽 makes

the term 𝑡 𝑗0 true. One can show that 𝜋 is an envy-free and Pareto-

efficient allocation using Claims 1, 2 and 4. ⊣

Claims 7 and 8 give us that there exists an allocation that is

Pareto-efficient and envy-free if and only if 𝜒 is true. Therefore,

the reduction is correct. Clearly, the reduction can be computed in

polynomial time, which finishes our proof of Σ
p

2
-hardness. □

Next, let us turn our attention to the result for hedonic games.

Note that restricting our attention to monotonic preferences does

not make sense in the setting of hedonic games, as then the total

coalition involving all agents would trivially satisfy envy-freeness

and Pareto efficiency.

Theorem 2. The problem of determining whether there exists a
Pareto-efficient and envy-free partition for a given Boolean hedonic
game is Σp

2
-hard, even when:

(i) each agent’s preferences are expressed by a 3DNF formula with
at most 3 terms; and

(ii) each agent occurs in at most 3 other agents’ expressed prefer-
ences.

Proof. Membership in Σ
p

2
can be proved entirely analogously to

the proof of Theorem 1. To show hardness, we give a reduction from

∃∀-QBF-SAT. Let 𝜒 = ∃𝑋1∀𝑋2𝜓 be a quantified Boolean formula,

where 𝜓 = 𝑡1 ∨ · · · ∨ 𝑡𝑚 is a (quantifier-free) formula in 3DNF.

Without loss of generality wemay assume that each variable in𝑋1∪
𝑋2 appears at most twice positively and at most twice negatively

in𝜓 . Let 𝑋1 = {𝑥1, . . . , 𝑥𝑛1
} and 𝑋2 = {𝑥𝑛1+1, . . . , 𝑥𝑛2

}.
We will construct a Boolean hedonic game as follows, that admits

a Pareto-efficient and envy-free partition if and only if 𝜒 is true.

As set of agents, we take 𝐼 = {𝑥𝑖 , 𝑥𝑖 , 𝑡𝑖 , 𝑓𝑖 | 𝑖 = 1..𝑛1} ∪ {𝑥 𝑗 , 𝑥 𝑗 | 𝑗 =
𝑛1 + 1..𝑛2} ∪ {𝑐𝑘 , 𝑑𝑘 | 𝑘 = 1..𝑚} ∪ {𝑤1,𝑤2}.

The next step is to define the formulas expressing the agents’

preferences. Before we describe these formulas, we briefly intro-

duce some notation that we will use. For each term 𝑡𝑘 in 𝜓 , the

formula ⟦¬𝑡𝑘⟧ is obtained from 𝑡𝑘 as follows. We start with ¬𝑡𝑘 ,
and write it into negation normal form—i.e., as a clause. We replace

each positive literal 𝑥𝑖 , by ¬𝑥𝑖 . We are now ready to define the

agents’ preferences, as follows.

𝜑𝑥𝑖 = 𝑓𝑖 ∧ ¬𝑡𝑖 ∧ 𝑥𝑖 for 𝑖 = 1..𝑛1

𝜑𝑥𝑖 = 𝑡𝑖 ∧ ¬𝑓𝑖 ∧ 𝑥𝑖 for 𝑖 = 1..𝑛1

𝜑𝑡𝑖 = 𝜑𝑓𝑖 = ¬𝑤1 ∧ ¬𝑤2 for 𝑖 = 1..𝑛1

𝜑𝑥 𝑗
= ¬𝑥 𝑗 , 𝜑𝑥 𝑗

= ¬𝑥 𝑗 for 𝑗 = 𝑛1 + 1..𝑛2
𝜑𝑐𝑘 = (¬𝑤1 ∧ ¬𝑤2) ∨ (𝑑𝑘 ∧ 𝑐𝑘+1) for 𝑘 = 1..𝑚 − 1
𝜑𝑐𝑚 = (¬𝑤1 ∧ ¬𝑤2) ∨ (𝑑𝑘 )
𝜑𝑑𝑘 = ⟦¬𝑡𝑘⟧ for 𝑘 = 1..𝑚

𝜑𝑤1
= (𝑐1 ∧ ¬𝑤2), 𝜑𝑤2

= (𝑐1 ∧ ¬𝑤1)
One can show that there is a Pareto-efficient and envy-free partition

if and only if 𝜒 is true, based on the following. One cannot simul-

taneously satisfy 𝑥𝑖 and 𝑥𝑖 , for any 𝑖 = 1..𝑛1. In Pareto-efficient

allocations, exactly one of such 𝑥𝑖 and 𝑥𝑖 is satisfied, which cor-

responds to a truth assignment 𝜏1 on 𝑋1. Also, by envy-freeness,

agents 𝑤1 and 𝑤2 may not be satisfied. Such an allocation 𝜋 can

only be dominated by another allocation 𝜋 ′ if it satisfies agent𝑤1

(or𝑤2) by grouping it with all agents 𝑐𝑘 and 𝑑𝑘 , with exactly one

of 𝑥 𝑗 and 𝑥 𝑗 for each 𝑗 = 𝑛1+1..𝑛2, and (possibly) with other agents

not satisfied in 𝜋 , forming a grand coalition. The agents 𝑐𝑘 and 𝑑𝑘
are only satisfied in this grand coalition (which is needed for 𝜋 ′ to
dominate 𝜋 ) if the corresponding truth assignment to the variables

in 𝑋2 falsifies𝜓 [𝜏1]. □

4 ENCODING ALLOCATIONS AS SAT
It is well-known that under dichotomous preferences, both in the

context of fair allocation [20] and hedonic games [7], envy-free

allocations can be captured as satisfying truth assignments of a

specific propositional formula, i.e., a SAT encoding. This motivates

the use of SAT as a declarative paradigm for computing envy-free
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allocations in practice. We assume as input a set of agents 𝐼 =

{1, . . . , 𝑛}, a set of items 𝑂 (for fair allocation), and a dichotomous

preference profile 𝑅 = {𝜙1, . . . , 𝜙𝑛}.
We begin by recalling the SAT encoding for envy-freeness in

fair allocation [20]. We introduce variables 𝑝𝑖,𝑜 for all 𝑖 ∈ 𝐼 and
𝑜 ∈ 𝑂 with the interpretation that for a truth assignment 𝜏 , it holds

that 𝜏 (𝑝𝑖,𝑜 ) = 1 if and only if item 𝑜 is assigned to the bundle of

agent 𝑖 . To encode a complete allocation, we ensure that every item

is allocated to exactly one agent via

completeness(𝐼 ,𝑂) =
∧
𝑜∈𝑂

(∑︁
𝑖∈𝐼

𝑝𝑖,𝑜 = 1

)
,

where

∑
𝑖∈𝐼 𝑝𝑖,𝑜 = 1 is an exactly-one constraint. Such cardinal-

ity constraints are converted to clauses by making use of readily-

available CNF encodings [54].

Envy-freeness is then captured as follows [20]. We define for

each 𝑖 ∈ 𝐼 the formula 𝜙∗
𝑖
= 𝜙𝑖 [𝑝𝑜 ↦→ 𝑝𝑖,𝑜 | 𝑜 ∈ 𝑂] which evaluates

to true if agent 𝑖 is happy with the bundle of items allocated to

them. For each pair 𝑖, 𝑗 ∈ 𝐼 , 𝑖 ≠ 𝑗 , we then let

𝜙∗𝑖 [ 𝑗] = 𝜙𝑖 [𝑝𝑜 ↦→ 𝑝 𝑗,𝑜 | 𝑜 ∈ 𝑂],

i.e., 𝜙∗
𝑖
[ 𝑗] evaluates to true iff agent 𝑖 would be happy with the

bundle assigned to agent 𝑗 . Then envy-freeness is encoded via

ef(𝑅) =
∧
𝑖, 𝑗∈𝐼
𝑖≠𝑗

¬
(
¬𝜙∗𝑖 ∧ 𝜙

∗
𝑖 [ 𝑗]

)
=

∧
𝑖, 𝑗∈𝐼
𝑖≠𝑗

(
𝜙∗𝑖 [ 𝑗] → 𝜙∗𝑖

)
.

In words, ef(𝑅) declares for every pair of agents 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≠ 𝑗

that it is not the case that 𝑖 envies 𝑗 , i.e., if agent 𝑖 would be happy

with the bundle received by agent 𝑗 (encoded by 𝜙∗
𝑖
[ 𝑗]), they are

happy with their respective bundle (encoded by 𝜙∗
𝑖
).

In summary, for a fair allocation instance (𝐼 ,𝑂, 𝑅), any truth

assignment 𝜏 satisfying completeness(𝐼 ,𝑂) ∧ ef(𝑅) corresponds
to an envy-free allocation via 𝜋 (𝑖) = {𝑜 ∈ 𝑂 | 𝜏 (𝑝𝑖,𝑜 ) = 1}.

Adjustment to Hedonic Games. The above encoding is adjusted to
hedonic games [7] as follows.We instead introduce variables 𝑝𝑖, 𝑗 for

all 𝑖, 𝑗 ∈ 𝐼 , 𝑖 ≠ 𝑗 , with the interpretation that 𝜏 (𝑝𝑖, 𝑗 ) = 1 if and only

if agent 𝑗 is a member of the coalition of agent 𝑖 . Symmetry can be

encoded by treating 𝑝𝑖, 𝑗 and 𝑝 𝑗,𝑖 as the same variable (following [7]).

Transitivity is encoded using the constraint

transitivity(𝐼 ) =
∧

𝑖, 𝑗,𝑘∈𝐼
𝑖≠𝑗≠𝑘

((𝑝𝑖, 𝑗 ∧ 𝑝 𝑗,𝑘 ) → 𝑝𝑖,𝑘 ),

ensuring that satisfying assignments correspond to partitions of

the set of agents. For encoding envy-freeness, we define for each

𝑖 ∈ 𝐼 the formula 𝜙∗
𝑖
= 𝜙𝑖 [𝑝𝑘 ↦→ 𝑝𝑖,𝑘 | 𝑘 ∈ 𝐼 \ {𝑖}], and for each

pair 𝑖, 𝑗 ∈ 𝐼 , 𝑖 ≠ 𝑗 ,

𝜙∗𝑖 [ 𝑗] = 𝜙𝑖 [𝑝𝑘 ↦→ 𝑝 𝑗,𝑘 | 𝑘 ∈ 𝐼 \ {𝑖, 𝑗}] [𝑝 𝑗 ↦→ 𝑝𝑖, 𝑗 ]

which evaluates to true iff agent 𝑖 would be happy by swapping

partitions with agent 𝑗 . Now for an instance of hedonic games (𝐼 , 𝑅),
truth assignments satisfying transitivity(𝐼 ) ∧ ef(𝑅) correspond
to envy-free partitions via 𝜋 (𝑖) = { 𝑗 ∈ 𝐼 \ {𝑖} | 𝜏 (𝑝𝑖, 𝑗 ) = 1}.

5 ITERATIVE SAT FOR EFFICIENT
ALLOCATIONS

We develop iterative procedures for identifying Pareto-efficient

(non-dominated) allocations, including a SAT-based CEGAR algo-

rithm for the Σ
p

2
-complete task of finding allocations which are

both Pareto-efficient and envy-free. Each of the algorithms takes

as input either a fair allocation instance with agents 𝐼 , items 𝑂 ,

and preference profile 𝑅 (consisting of agents’ preferences over the

items), or a hedonic game instance defined by agents 𝐼 and prefer-

ence profile 𝑅 (consisting of agents’ preferences over the remaining

agents).

5.1 Maximizing Efficiency
Pareto-efficient allocations correspond to so-called maximally sat-

isfiable subsets (MSSes) [45, 47] of the formulas {𝜙∗
𝑖
, . . . , 𝜙∗𝑛} under

completeness(𝐼 ,𝑂) for fair allocation [20] or transitivity(𝐼 ) for
hedonic games [7]. In practice, computing such an MSS can be done

with a series of calls to a SAT solver, making use of SAT calls under

assumptions (i.e., partial assignments) in order to find an MSS in-

crementally, i.e., without starting the SAT solver from scratch after

computing a satisfiable subset.

First, we assign a fresh variable name to each of the input for-

mulas via 𝑞𝑖 ↔ 𝜙∗
𝑖
for each 𝑖 ∈ 𝐼 , and, for fair allocation, combine

this with completeness to form the SAT instance 𝐹 defined as

Abstraction𝐴 (𝐼 ,𝑂, 𝑅) = completeness(𝐼 ,𝑂) ∧
∧
𝑖∈𝐼
(𝑞𝑖 ↔ 𝜙∗𝑖 ) .

Analogously, for hedonic games we employ transitivity (instead

of completeness) to form the SAT instance 𝐹 defined as

Abstraction𝐻 (𝐼 , 𝑅) = transitivity(𝐼 ) ∧
∧
𝑖∈𝐼
(𝑞𝑖 ↔ 𝜙∗𝑖 ) .

In both cases, for a satisfying assignment 𝜏 to 𝐹 and for all 𝑖 ∈ 𝐼 , it
holds that 𝜏 (𝑞𝑖 ) = 1 iff 𝜏 (𝜙∗

𝑖
) = 1. We distinguish the happy and

unhappy agents, respectively, via happy(𝜏) = {𝑖 ∈ 𝐼 | 𝜏 (𝑞𝑖 ) = 1}
and unhappy(𝜏) = {𝑖 ∈ 𝐼 | 𝜏 (𝑞𝑖 ) = 0}. To find a Pareto-efficient

allocation (i.e., an MSS of {𝜙∗
𝑖
, . . . , 𝜙∗𝑛}) we iteratively search for a

satisfying assignment 𝜏 ′ to 𝐹 ∧∧
𝑖∈happy(𝜏 ) 𝑞𝑖 ∧

∨
𝑖∈unhappy(𝜏 ) 𝑞𝑖 ,

set 𝜏 = 𝜏 ′, and continue until this formula is unsatisfiable. In this

case 𝜏 corresponds to a Pareto-efficient allocation.

5.2 Combining Envy-freeness and Efficiency
For determining existence of allocations or partitions which are

both envy-free and efficient, we propose a SAT-based CEGAR al-

gorithm presented as Algorithm 1. It returns a Pareto-efficient

envy-free allocation if one exists, and false otherwise.
Firstly, we initialize an abstraction 𝐹 , that is, a SAT instance

whose solutions bijectively correspond to complete allocations of

the items amongst the agents in the case of fair allocation (line

1), or partitions of the agents into disjoint coalitions in the case

of hedonic games (line 2). We then iteratively solve this instance,

further enforcing the constraint that the solution corresponds to

an allocation which is envy-free with respect to the preferences of

the agents (line 4). If there is no solution, we return false, as there
is therefore no candidate allocation which is envy-free (line 5).

Otherwise, we extract a candidate allocation 𝜋
abs

from the obtained

solution 𝜏
abs

(line 6). It remains to be checked, however, whether
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Algorithm 1 SAT-based CEGAR for finding EEF allocations. Input:
Problem variant 𝑆 ∈ {𝐴,𝐻 }, agents 𝐼 , items 𝑂 (if 𝑆 = 𝐴), and

preference profile 𝑅.

1: if 𝑆 = 𝐴 then 𝐹 ← Abstraction𝐴 (𝐼 ,𝑂, 𝑅)
2: else if 𝑆 = 𝐻 then 𝐹 ← Abstraction𝐻 (𝐼 , 𝑅)
3: while true do
4: (𝑟𝑒𝑠𝑢𝑙𝑡, 𝜏

abs
) ← SAT(𝐹 ∧ ef(𝑅))

5: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑢𝑛𝑠𝑎𝑡 then return false
6: 𝜋

abs
← alloc(𝜏

abs
)

7: while 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑠𝑎𝑡 do
8: 𝐹

dom
← 𝐹 ∧∧

𝑖∈happy(𝜏abs ) 𝑞𝑖 ∧
∨

𝑖∈unhappy(𝜏abs ) 𝑞𝑖
9: (𝑟𝑒𝑠𝑢𝑙𝑡, 𝜏) ← SAT(𝐹

dom
∧ ef(𝑅))

10: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑠𝑎𝑡 then 𝜏
abs
← 𝜏, 𝜋

abs
← alloc(𝜏)

11: 𝐹
dom
← 𝐹 ∧∧

𝑖∈happy(𝜏abs ) 𝑞𝑖 ∧
∨

𝑖∈unhappy(𝜏abs ) 𝑞𝑖
12: (𝑟𝑒𝑠𝑢𝑙𝑡, 𝜏cex) ← SAT(𝐹

dom
)

13: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑢𝑛𝑠𝑎𝑡 then return 𝜋
abs

14: 𝐹 ← 𝐹 ∧∨
𝑖∈unhappy(𝜏cex ) 𝑞𝑖

𝜋
abs

is efficient, that is, whether 𝜋
abs

is dominated by any other

allocation(s).

We first conduct a series of SAT solver calls to obtain a candidate

allocation which is not dominated by any other envy-free allocation.
This is accomplished by a similar procedure as outlined in Sec-

tion 5.1 for computing a Pareto-efficient allocation. We construct

a formula 𝐹
dom

the solutions of which correspond to allocations

which dominate 𝜋
abs

(line 8), enforcing that all agents who are

happy with the bundle allocated by 𝜏
abs

remain happy, while at

least one of the unhappy agents becomes happy. Then, we query a

SAT solver for a solution to 𝐹
dom

(line 9). If a solution exists, we

replace 𝜋
abs

by the obtained candidate, which dominates 𝜋
abs

(line

10). We repeat this process until 𝐹
dom

is unsatisfiable, i.e., until 𝜋
abs

is not dominated by any envy-free allocation.

Finally, we check for a counterexample to the candidate alloca-
tion 𝜋

abs
. This is achieved by dropping the envy-freeness constraint

and querying the SAT solver for an allocation that dominates 𝜋
abs

(lines 11–12). If no counterexample exists, 𝜋
abs

is non-dominated,

so we return 𝜋
abs

as a Pareto-efficient envy-free allocation (line

13). Otherwise, the obtained solution 𝜏cex corresponds to an allo-

cation 𝜋cex which dominates 𝜋
abs

(but is not envy-free). In this

case we continue by refining the abstraction by conjoining to 𝐹

a clause enforcing that at least one agent who is unhappy with

the counterexample allocation 𝜋cex must be happy with allocations

extracted from solutions to subsequent calls (line 14), excluding

𝜏cex as a solution.

5.3 Minimizing Envy
Since an efficient envy-free allocation is not guaranteed to exist,

we additionally consider the task of minimizing envy [29, 50], out-

lining an algorithm which finds a Pareto-efficient allocation with

minimum envy, that is, envy at least as low as any other efficient

allocation. The amount of envy in a given allocation is quanti-

fied via a pair of aggregation functions [29]. A local aggregation
function defines the local degree of envy for a single agent 𝑖 , i.e.,
envy(𝑖) = □𝑗≠𝑖𝑒𝑖, 𝑗 , where □ is an aggregation function, and 𝑒𝑖, 𝑗 is

a Boolean variable assigned to 1 iff agent 𝑖 envies agent 𝑗 . Then,

Algorithm 2 CEGAR for finding a minimum-envy Pareto-efficient

allocation. Input: Problem variant 𝑆 ∈ {𝐴,𝐻 }, agents 𝐼 , items 𝑂 (if

𝑆 = 𝐴), preference profile 𝑅, global envy aggregator ★, and local

envy aggregator □.

1: 𝜋∗ ← ∅, 𝑒∗ ←∞
2: if 𝑆 = 𝐴 then 𝐹 ← Abstraction𝐴 (𝐼 ,𝑂, 𝑅) ∧ E(𝐼 )
3: else if 𝑆 = 𝐻 then 𝐹 ← Abstraction𝐻 (𝐼 , 𝑅) ∧ E(𝐼 )
4: while true do
5: (𝑟𝑒𝑠𝑢𝑙𝑡, 𝜏

abs
) ← SAT(𝐹 ∧ bound(★,□, 𝑒∗))

6: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑢𝑛𝑠𝑎𝑡 then return 𝜋∗

7: 𝜋
abs
← alloc(𝜏

abs
)

8: while 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑠𝑎𝑡 do
9: 𝐹

dom
← 𝐹 ∧∧

𝑖∈happy(𝜏abs ) 𝑞𝑖 ∧
∨

𝑖∈unhappy(𝜏abs ) 𝑞𝑖
10: (𝑟𝑒𝑠𝑢𝑙𝑡, 𝜏) ← SAT(𝐹

dom
∧ bound(★,□, 𝑒∗))

11: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑠𝑎𝑡 then 𝜏
abs
← 𝜏, 𝜋

abs
← alloc(𝜏)

12: 𝐹
dom
← 𝐹 ∧∧

𝑖∈happy(𝜏abs ) 𝑞𝑖 ∧
∨

𝑖∈unhappy(𝜏abs ) 𝑞𝑖
13: (𝑟𝑒𝑠𝑢𝑙𝑡, 𝜏cex) ← SAT(𝐹

dom
)

14: if 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑢𝑛𝑠𝑎𝑡 then 𝜋∗ ← 𝜋
abs
, 𝑒∗ ← envy(𝜋

abs
)

15: else 𝐹 ← 𝐹 ∧∨
𝑖∈unhappy(𝜏cex ) 𝑞𝑖

a global aggregation function ★ combines the envy of all of the

agents together, that is, envy(𝜋) = ★𝑖∈𝐼 envy(𝑖). We consider three

combinations of aggregators which correspond to reasonable opti-

mization objectives in the context of dichotomous preferences:

• local aggregator □ =
∨

and global aggregator ★ =
∑

corre-

spond to envy(𝜋) = ∑
𝑖∈𝐼

(∨
𝑗≠𝑖 𝑒𝑖, 𝑗

)
, that is, the number of

envious agents;

• using □ = ★ =
∑

as both the local and global aggregator

defines envy(𝜋) = ∑
𝑖∈𝐼

(∑
𝑗≠𝑖 𝑒𝑖, 𝑗

)
, i.e., the total number of

(𝑖, 𝑗) pairs where agent 𝑖 envies agent 𝑗 (absolute envy);
• local aggregator □ =

∑
and global aggregator ★ = max

correspond to envy(𝜋) = max𝑖∈𝐼
(∑

𝑗≠𝑖 𝑒𝑖, 𝑗

)
, that is, the

maximum number of agents envied by any single agent

(maximum envy).

Towards a CEGAR algorithm, we define constraints

E(𝐼 ) =
∧
𝑖, 𝑗∈𝐼
𝑖≠𝑗

(
𝑒𝑖, 𝑗 ↔ (¬𝜙∗𝑖 ∧ 𝜙

∗
𝑖 [ 𝑗])

)
.

In words, variable 𝑒𝑖, 𝑗 is true if and only if agent 𝑖 envies agent 𝑗 .

Further, we denote by bound(★,□, 𝑘) a cardinality constraint [54]

which bounds the envy of a candidate allocation to less than 𝑘 . For

the three combinations we consider,

bound(∑,∨, 𝑘) = ∑
𝑖∈𝐼

(∨
𝑗≠𝑖 𝑒𝑖, 𝑗

)
≤ 𝑘 − 1

enforces such a bound on the number of envious agents,

bound(∑,∑, 𝑘) = ∑
𝑖∈𝐼

∑
𝑗≠𝑖 𝑒𝑖, 𝑗 ≤ 𝑘 − 1

similarly constrains absolute envy, and finally

bound(max,
∑
, 𝑘) = ∧

𝑖∈𝐼
(∑

𝑗≠𝑖 𝑒𝑖, 𝑗 ≤ 𝑘 − 1
)

enforces a bound on maximum envy.

Our CEGAR algorithm for finding a minimum-envy Pareto-

efficient allocation is detailed as Algorithm 2, as an extension of
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Algorithm 1. We start by initializing the best known solution so

far to ∅ and its total envy to∞ (line 1). We initialize an abstraction

which encodes complete or transitive allocations, and adds con-

straints E(𝐼 ) for pairs of envious agents (lines 2–3). We iteratively

solve this instance under the constraint that the total envy of the

allocation is strictly less than the total envy of the best known

solution (line 5). If no solution is found, we return the current best

allocation, as there is no candidate allocation with less total envy

(line 6). Otherwise the obtained solution corresponds to a candidate

allocation 𝜋
abs

(line 7) which is not known to be efficient. We obtain

through a sequence of SAT solver calls a candidate allocation which

is not dominated by any other allocation with less envy than the
best known solution (lines 8–11). A counterexample to the candidate

allocation 𝜋
abs

is another allocation which dominates it. We drop

the constraint which bounds the total envy and search for such

an allocation (lines 12–13). If there is no counterexample, 𝜋
abs

is

efficient, so we set it as the best known solution and update the

total envy (line 14). Otherwise, the obtained solution corresponds

to an allocation dominating 𝜋
abs

, but which has more total envy. As

in Algorithm 1, we refine the abstraction via a clause which states

that at least one agent who is unhappy with the counterexample

allocation must be happy in subsequent iterations (line 14).

6 EMPIRICAL EVALUATION
We implemented the CEGAR approach and its extension to minimiz-

ing envy on top of PySAT [42], using CaDiCaL [11] (version 1.9.5)

incrementally as the underlying SAT solver. We use the sequential

counter encoding [56] for exactly-1 constraints and incremental

totalizers [48] for at-most-k constraints, offered by PySAT. The

implementation, benchmark generators and experiment data are

openly available at https://bitbucket.org/coreo-group/satfair. The

experiments were run on 2.40-GHz Intel Xeon Gold 6148 CPUs and

381-GB memory using a per-instance 30-minute time and 16-GB

memory limit (the memory limit was exceeded only when minimiz-

ing absolute envy for 300 agents).

For fair allocation, we generated benchmarks as follows. Agents

express their instances in negation-free DNF. Each conjunction in

a DNF represents a bundle of items preferred by the agent, and the

bundles may overlap. We assigned each agent 5–10 preferred bun-

dles with 3–4 items per bundle, selected for each agent uniformly

at random. These parameter values reflect the complexity results in

Section 3. We generated instances for 𝑛 = 300, 400, . . . , 700 agents,

and report for each 𝑛 on a range of values for the total number of

items to ensure that we obtained challenging-enough, both “yes” in-

stances (where an EEF allocation exists) and “no” instances (where

an EEF allocation does not exist). Intuitively, and as observed in

our experiments, if items are sufficiently abundant, one can expect

there to be various EEF allocations. In contrast, by considering

relatively low numbers of items wrt agents, there can be expected

to be few EEF allocations or none at all.

An overview of the results for deciding EEF fair allocation are

shown in Table 1 and Figure 1. Overall, our CEGAR approach scales

up to 700 agents (#a) for each number 𝑖 of items (#i) and 𝑛 of agents

considered. By varying 𝑖 and 𝑛, we observe that there exists a sharp

transition from all instances being “no” to all instances being “yes”

at specific thresholds 𝑖/𝑛. The hardest-to-solve instances for our

Table 1: Envy-free Pareto-efficient fair allocation.

#a #i #solved avg. time (s) #yes #no

300 5 100 38.22 0 100

300 10 100 90.61 0 100

300 15 100 60.55 100 0

300 20 100 36.15 100 0

300 25 100 39.72 100 0

300 30 100 41.76 100 0

400 5 100 84.40 0 100

400 10 100 181.82 0 100

400 15 100 167.22 100 0

400 20 100 64.72 100 0

400 25 100 72.98 100 0

400 30 100 76.80 100 0

500 5 100 159.73 0 100

500 10 100 306.96 0 100

500 15 100 547.38 74 26

500 20 100 106.98 100 0

500 25 100 117.38 100 0

500 30 100 123.48 100 0

600 5 100 225.05 0 100

600 10 100 520.79 0 100

600 15 100 1047.41 10 90

600 20 100 168.11 100 0

600 25 100 188.34 100 0

600 30 100 203.11 100 0

700 5 100 313.09 0 100

700 10 100 860.89 0 100

700 15 99 1389.19 0 99

700 20 100 240.12 100 0

700 25 100 260.57 100 0

700 30 100 303.29 100 0

CEGAR algorithm appear to be those “critical” instances which

were generated near the threshold for each 𝑛. In addition to aver-

age runtimes (y axis) individually for 𝑛 = 500, 600, 700 agents for

different numbers of items (x axis), Figure 1 also shows curves fit

to the data shown in Table 1 through polynomial interpolation for

the potential no-to-yes transition points for each 𝑛. Interestingly,

a phase transition phenomenon has been previously reported on

in the context of envy-free fair allocation under additive prefer-

ences [36]. The problem we consider here is naturally related but

different (and also harder in terms of computational complexity).

Table 2: Minimum-envy Pareto-efficient fair allocation.

#solved (avg. time (s))

#a #i mea mae mme

100 5 100 (52.31) 100 (90.29) 100 (16.54)

100 10 100 (78.34) 100 (110.04) 100 (27.59)

200 5 100 (600.10) 100 (1158.43) 100 (163.98)

200 10 25 (1474.77) 4 (1515.76) 88 (411.60)

300 5 13 (1515.53) 0 (—) 100 (753.81)

300 10 0 (—) 0 (—) 16 (977.27)
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Figure 1: Fair allocation: average runtimes over solved in-
stances, % of ’yes’ instances.

Nevertheless, the phase-transition-like behaviour we observe here

could warrant further investigation of independent interest.

To obtain benchmarks for minimum-envy Pareto-efficient fair

allocation, we generated smaller instances (reflecting the increased

difficulty of the problem), using 𝑛 = 100, 200, 300 and keeping other

parameters the same, and solved the instances with the CEGAR

algorithm to the decision problem to find 100 “no” instances for

each 𝑛. An overview of the runtime performance of our CEGAR

approach extended to minimizing envy on the resulting benchmark

instances is shown in Table 2. Here mea, mae, and mme refer to

the three objectives of minimizing the number of agents envious of

some other agent, minimizing absolute envy in terms of the number

of times the agents are envious of other agents, and minimizing

the maximum number of envied agents over the individual agents,

respectively. Overall, as expected we observe that minimizing envy

is indeed empirically harder than deciding the existence of an envy-

free Pareto-efficient allocation. Regardless we can solve instances

at least up to 200 agents. Minimizing maximum envy appears to

be the easiest for our approach based on these benchmarks, while

minimizing absolute envy appears the hardest.

Finally, we consider hedonic games. We generated benchmarks

for deciding the existence of EEF coalitions as follows. As in the

fair allocation instances, each agent’s preferences are expressed

as a DNF formula with 5–10 DNF terms and 3–4 agents per term,

selected uniformly at random. As the grand coalition is trivially a

solution if the DNF contains only positive variables, we flip each

literal in the DNFs with probabilities 0.25 and 0.5, expressing that

an agent prefers a coalition which another specific agent is not in.

We generated instances for 𝑛 = 20, 30, . . . , 100 agents. An overview

of the results is shown in Table 3. Interestingly, the probability used

for negating literals has a significant impact on the runtime of our

approach. With the lower probability 0.25, our approach performs

somewhat modestly, with an increasing number of timeouts beyond

60 agents. Using the higher probability 0.5 results in noticeably

better scalability, with all instances solved up to 100 agents (and

likely beyond). It should be noted that while wewere able to observe

Table 3: Results on hedonic games.

neg. = 0.5 neg. = 0.25

#a #solved avg. time (s) #solved avg. time (s)

20 100 0.26 100 0.34

30 100 0.47 100 1.46

40 100 0.99 100 6.42

50 100 1.65 100 28.02

60 100 3.02 98 238.61

70 100 4.76 53 632.73

80 100 7.52 23 212.61

90 100 11.16 15 291.49

100 100 16.97 7 294.78

a yes-no transition for the fair allocation benchmark generation

model, for hedonic games the benchmark generation parameters

we used here appear to yield mainly “yes” instances, with very

few “no” instances. These observations suggest a more involved

study into more fine-grained benchmark generation models for

hedonic games as well as further investigating how choices within

the large parameter space for generated benchmark instances affect

algorithmic performance.

7 CONCLUSIONS
We presented new complexity results and SAT-based algorithms for

the Σ
p

2
-complete problems of computing envy-free Pareto-efficient

allocations in the context of fair allocation and hedonic games un-

der dichotomous preferences. Refining earlier related results, we

establish Σ
p

2
-completeness of deciding the existence of envy-free

Pareto-efficient allocations even when limiting the number of pref-

erences and preferences to restricted-size DNFs. The SAT-based

CEGAR algorithms we developed for deciding envy-free Pareto-

efficient allocations constitute to the best of our knowledge the

first practical approaches proposed for these problems. Further, we

extended the algorithmic approach to computing minimum-envy
Pareto-efficient allocations under reasonable measures of global

envy, and, providing an open-source implementation of the algo-

rithms showed empirically that our approach scales reasonably.

An interesting direction for further work would be to extend the

algorithmic approach to handling additive preferences, and, in the

case of hedonic games, to notions of stability such as core and

strict-core stable coalitions [9, 14, 37]. Furthermore, investigating

the potentially underlying phase-transition-like phenomenon in

this problem setting further would be interesting; and additionally,

evaluating the algorithmic approach on real-world allocation in-

stances would also be of significant interest, especially as randomly

generated benchmarks tend to typically be significantly be harder

than more structured instances for modern SAT solvers.
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