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ABSTRACT
We study the convergence and equilibrium behavior of a large

number of selfish agents who interact by queuing for sequentially

acquired consumable resources. Examples of such systems include

ridehailing and crowdsourcing platforms, systems with energy-like

resources such as charging stations, and communication systems.

Despite the generality of the agents’ Markov decision process struc-

tures, this type of interaction permits a tractable characterization

of equilibria. In particular, we leverage the property that these

equilibria can be formulated as optimal solutions to an extended

Eisenberg-Gale program, where time serves as an analog for money.

Using this formulation, we (i) approximate equilibria via binary

search, (ii) demonstrate Lyapunov stability for a broad class of

learning dynamics, and (iii) establish global asymptotic stability

of equilibria under replicator dynamics. Additionally, we prove

Lyapunov stability for the coupled dynamics of queues and agents’

replicator dynamics. When agents receive proportionally fair pay-

offs, they converge to an optimal set of actions, effectively behaving

as if centrally coordinated.
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1 INTRODUCTION
In this paper, we examine the behavior of noncooperative multi-

agent systems composed of a large number of agents, each maxi-

mizing its own benefit. Such systems include, but are not limited to,

ride-hailing, crowdsourcing, and communication networks. A com-

mon feature of these systems is that agents compete for resources

required for task execution, which can lead to congestion effects.

There are two main approaches to studying multi-agent resource

competition.

In the literature on congestion games and selfish routing, re-

searchers have long studied properties of Nash (or Wardrop, in the
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nonatomic case) equilibria, startingwith [1, 23]. Thework by Rough-

garden and Tardos [20] addresses efficiency questions in terms of

the price of anarchy. The convergence to equilibrium has been tack-

led by a number of authors, e.g., by [14] in the atomic/discrete time

case, and [8] in the nonatomic/continuous time case, where simple

learning dynamics (related to replicator dynamics) are shown to

converge. In these models, the number of agents varies over time

as they enter or exit the system, making them less suitable for ap-

plications where the same agents interact over extended periods.

Imposing ‘agent mass conservation’ constraints cannot work in

these cases, as the variational characterizations foundational to

these results will fail to hold.

In economics, Fisher’s market is one of the most fundamental

models of resource competition [17], where the numbers of agents

and resources are fixed. Market-based models (see Jain and Vazi-

rani [11] for generalizations of Fisher’s market) are also frequently

applied in noneconomic contexts, where prices can be interpreted

as waiting times, as in Kelly’s work [12]. In these settings, con-

vergence to a competitive equilibrium is typically analyzed using

tâtonnement processes or primal-dual algorithms (e.g., see [10]).

More recently, proportional response dynamics –a straightforward

adjustment that does not require gradient information– has been

shown to converge in discrete time for Fisher’s markets [2, 24], with

competitive prices instantly recalculated after each adjustment. In

noneconomic settings, it is more appropriate to consider gradual

price/waiting time updates as these are driven by the natural queue-

ing dynamics (which are of the tâtonnement type). More impor-

tantly, convergence of proportional response has been analyzed

under Fisher’s market constraints, where resources are indepen-

dent. However, in many real-world applications, agents’ actions

require multiple resources simultaneously, leading to interdepen-

dent constraints.

In this paper, we consider a nonatomic model of resource com-

petition using a Markov Decision Process (MDP) formalism. We

define equilibrium as a market-based equilibrium in a noneconomic

context, where prices represent time. Unlike in traditional economic

applications, our notion of equilibrium is not competitive, as even

undesired actions may have positive execution times
1
. Nevertheless,

we show that equilibria in this type of market correspond to optimal

solutions of an extended Eisenberg-Gale program [7]. We leverage

this connection to approximate equilibria through a straightfor-

ward algorithm that combines binary search with a network flow

problem. We note that markets with interdependent constraints,

such as the ones we consider in this work, have fundamentally

different characteristics compared to Fisher’s markets. For example,

there can be non-determinacy for the waiting times that form in

1
In a competitive market equilibrium, undesired resources have zero prices.
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the market, which complicates the definition of equilibria and the

rest of the analysis (potential function, learning dynamics, etc).

Using the set of deterministic unichain
2
policies, we study con-

vergence of learning dynamics to equilibrium. Although the po-

tential function we use is related to the work in [2, 5], we derive

it independently not via Shmyrev’s problem [22] as in those ref-

erences, but through an Eisenberg-Gale type of program distinct

from the one used for equilibria characterization. This new po-

tential formulation enables us to establish Lyapunov stability for

a broad range of dynamics and prove global asymptotic stability

for replicator dynamics. Furthermore, we demonstrate Lyapunov

stability when agents follow replicator dynamics and queues ad-

just according to a natural tâtonnement mechanism, an outcome

derived directly from our potential formulation.

Our work can also be seen as an extension of fluid models for

multi-class closed queueing networks [13, 15, 21], reframing them

within a game-theoretic context. In these models, there is a closed

network of queues where a finite population of customers of dif-

ferent types circulate continuously, each type corresponding to

a probabilistic queue routing profile, and customers interacting

through their waiting in the queues. Our model is a nonatomic ver-

sion of the above system that associates rewards with completing

service at different subsets of the queues, with customers free to

switch types if they find it more profitable in the long run. More

specifically, in our model, agents subscribe to ‘policies’, i.e., a type

of randomized cyclic behaviour, and collect the corresponding long-

run average reward equal to the average reward of the cycle divided

by the average cycle time. In an equilibrium, all cycles with posi-

tive agent mass have same average rewards, and convergence to

the equilibrium occurs by agents switching to cycles that generate

higher average revenue.

The paper is organized as follows. Section 2 introduces the basic

model and notation. In Section 3, we define the concept of equi-

librium and present Theorem 1, which characterizes equilibria as

optimal solutions to an extended Eisenberg-Gale program. Sec-

tion 4 discusses the polynomial-time approximation of equilibrium.

Section 5 addresses learning dynamics: Proposition 1 offers an alter-

native equilibrium characterization in policy space using a potential

function, which underpins the main convergence results. These

include Proposition 2 on Lyapunov stability for a range of ‘sen-

sible’ dynamics, Theorem 2 on replicator dynamics convergence,

and Proposition 3 on the Lyapunov stability of joint replicator

and queueing (tâtonnement) dynamics. In Section 6, we consider

ridehailing as an application of our model and demonstrate the

behavior of the joint dynamics using a numerical example based on

data from the NYC area [6]. A summary is given in Section 7. Proofs

not included in the main sections are provided in the Appendix.

2 MODEL AND DEFINITIONS
2.1 Model of a Single Agent
A nonatomic set of agents of unit total mass compete for resources.

The state of each agent evolves according to a continuous time semi-

Markov decision process with finite state space 𝑆 and finite set of

2
The policies for which the resulting Markov chain has a single recurrent class of

states (plus possibly some transient states).

actions, 𝐴. The actions are chosen at state transition instances so

that the choice of 𝑎 ∈ 𝐴 in 𝑖 ∈ 𝑆 results in the following sequence:

(1) An immediate reward 𝑟𝑖𝑎 is awarded
3
to the acting agent.

(2) The next state of the acting agent is chosen independently

of the past according to the transition probabilities 𝑝𝑎
𝑖 𝑗
, 𝑖, 𝑗 ∈

𝑆, 𝑎 ∈ 𝐴.
(3) The transition to the next state occurs after a random time

with mean 𝜏𝑖𝑎 (when averaged also over the next state 𝑗 ).

We refer to 𝜏𝑖𝑎 as the mean sojourn time in state-action pair

(𝑖, 𝑎). Its precise form is given in the following subsection.

(4) Upon entry to 𝑗 the agent decides the next action and the

process continues as above.

A (deterministic) policy 𝜎 is a function 𝜎 : 𝑆 → 𝐴. Let 𝑋𝑛 be

the state visited at the 𝑛-th transition for 𝑛 = 0, 1, . . .4, and let the

action selected at that instant be 𝜎(𝑋𝑛), for some policy 𝜎 . For any

starting state 𝑖 , the average reward is

𝑉 (𝑖, 𝜎, 𝜏) = lim inf

𝑇

1

𝑇
𝐸

(
𝑁𝑇∑︁
𝑛=1

𝑟𝑋𝑛𝜎(𝑋𝑛 )

�����𝑋0 = 𝑖

)
,

where 𝜏 = (𝜏𝑖𝑎, 𝑖 ∈ 𝑆, 𝑎 ∈ 𝐴), and 𝑁𝑇 is the number of transitions

before time 𝑇 .

We will assume the MDP is weakly communicating [19], i.e., the
state-space can be partitioned into sets 𝑆0, 𝑆1 where the states in 𝑆0

are transient under any policy, and every state in 𝑆1 is accessible

from any other in 𝑆1 under some policy. This makes the optimal

average case reward independent of the starting state.

A policy 𝜎∗ is optimal if

𝑉 (𝑖, 𝜎∗, 𝜏) = sup

𝜎
𝑉 (𝑖, 𝜎, 𝜏) ≡ 𝑉∗(𝜏) for all 𝑖 . (1)

We will restrict
5
ourselves to the set of deterministic policies Π

possessing a single recurrent class, i.e., the set of unichain policies.

2.2 Resource competition
When choosing an action, an agent must obtain the resources re-

quired for its execution. Thus, we assume 𝜏𝑖𝑎 is decomposed as

𝜏𝑖𝑎 = 𝑡𝑖𝑎 +

𝐿∑︁
𝑙=1

𝛼𝑙,𝑖𝑎𝑤𝑙 ,

where 𝑡𝑖𝑎 > 0 is a constant action execution time and the second

term represents the waiting time to collect the resources required

by action 𝑎 in 𝑖 . Here, 𝑙 indexes the set of resources {1, . . . , 𝐿},
𝛼𝑙,𝑖𝑎 denotes the units of resource 𝑙 required by action 𝑎 in state 𝑖 ,

and 𝑤𝑙 denotes the waiting time to obtain one unit of resource 𝑙 .

Additionally, let the constant supply rate of resource 𝑙 be 𝑏𝑙 > 0,

for 𝑙 = 1, . . . , 𝐿. To emphasize the dependence of 𝜏𝑖𝑎 on𝑤 = (𝑤𝑙 , 𝑙 =

1, . . . , 𝐿), we write 𝜏𝑖𝑎(𝑤 ) ≡ 𝜏𝑖𝑎 .
The waiting times are only assumed to satisfy the ‘fluid queue’

condition: there is no waiting if the rate resource 𝑙 is consumed is

strictly below its supply rate, i.e.,∑︁
𝑖,𝑎

𝛼𝑙,𝑖𝑎𝑥𝑖𝑎 < 𝑏𝑙 =⇒ 𝑤𝑙 = 0, (2)

3
Nonpositive rewards are allowed.

4𝑋0 is the initial state.

5
This restriction does not yield inferior policies since for any optimal deterministic

policy 𝜎 /∈ Π, a 𝜎 ′ ∈ Π with 𝑉 (𝑖, 𝜎 ′, 𝜏 ) = 𝑉 (𝑖, 𝜎, 𝜏 ) can be constructed by taking

𝜎 ′ = 𝜎 on a recurrent class 𝑆𝜎 of 𝜎 , and making 𝜎 ′ move towards 𝑆𝜎 elsewhere.
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where 𝑥𝑖𝑎 is the agent mass per unit time, or rate, entering state 𝑖
and choosing action 𝑎.

3 EQUILIBRIUM
We are now ready to define our main equilibrium concept.

Definition 1 (Eqilibrium). A pair (𝑥,𝑤 ) of rates 𝑥 = (𝑥𝑖𝑎, 𝑖 ∈
𝑆, 𝑎 ∈ 𝐴) and resource waiting times 𝑤 = (𝑤𝑙 , 𝑙 = 1, . . . , 𝐿) is an
equilibrium if they satisfy the following:

(1) Resource constraints:∑︁
𝑖,𝑎

𝛼𝑙,𝑖𝑎𝑥𝑖𝑎 ≤ 𝑏𝑙 , 𝑙 = 1, . . . , 𝐿. (3)

(2) Fluid queue condition: (2) holds for every 𝑙 = 1, . . . , 𝐿.
(3) Flow balance:∑︁

𝑎∈𝐴
𝑥𝑖𝑎 =

∑︁
𝑗∈𝑆,𝑎∈𝐴

𝑥 𝑗𝑎𝑝
𝑎
𝑗𝑖 , for each 𝑖 ∈ 𝑆. (4)

(4) Conservation of mass:∑︁
𝑖∈𝑆,𝑎∈𝐴

𝜏𝑖𝑎(𝑤 )𝑥𝑖𝑎 = 1. (5)

(5) Individual optimality: Any 𝜎 ∈ Π with 𝑥𝑖𝜎(𝑖) > 0 for all 𝑖 in
its recurrent class is optimal, i.e., 𝑉 (𝑖, 𝜎, 𝜏(𝑤 )) = 𝑉∗(𝜏(𝑤 )) for
all 𝑖 .

The first four conditions pertain to the behavior of the aggregate,

while the fifth condition relates to the selfish behavior of individual

agents: if a non-negligible subset of agents uses action 𝑎 in state 𝑖 ,

it is because it maximizes the average reward of an individual.

To establish Theorem 1, as a first step we obtain an equivalent

description of an equilibrium which uses the linear program (LP)

form of the average case dynamic program (e.g., see [19]):

Lemma 1. (𝑥,𝑤 ) is an equilibrium if and only if it satisfies the
resource constraints (3), the fluid queue condition (2), and 𝑥 is an
optimal solution of the LP:

max

∑︁
𝑖,𝑎

𝑟𝑖𝑎𝑥𝑖𝑎 (6)

s.t. flow balance (4), and (7)

mass conservation (5) hold, (8)

over 𝑥 = (𝑥𝑖𝑎, 𝑖 ∈ 𝑆, 𝑎 ∈ 𝐴) ∈ R𝑆×𝐴
+

.

Proof. If (𝑥,𝑤 ) is an equilibrium, 𝑥 is a feasible solution of the

LP. We will show that it is an optimal solution.

First notice that in the case of a weakly communicating chain

there exists ℎ : 𝑆 → 𝐴 which satisfies the dynamic programming

equation:

ℎ(𝑖) = max

𝑎∈𝐴

(
𝑟𝑖𝑎 − 𝜏𝑖𝑎𝑉∗(𝜏) +

∑︁
𝑗∈𝑆

𝑝𝑎𝑖 𝑗ℎ( 𝑗 )

)
, (9)

for all 𝑖 ∈ 𝑆 . If 𝑥𝑖𝑎 > 0 then there exists an optimal policy 𝜎 with

𝜎(𝑖) = 𝛼 , so

ℎ(𝑖) = 𝑟𝑖𝑎 − 𝜏𝑖𝑎𝑉∗(𝜏) +

∑︁
𝑗∈𝑆

𝑝𝑎𝑖 𝑗ℎ( 𝑗 ). (10)

Thus,∑︁
𝑖,𝑎

𝑟𝑖𝑎𝑥𝑖𝑎 =

∑︁
𝑖,𝑎

[
𝑟𝑖𝑎𝑥𝑖𝑎 + 𝑥𝑖𝑎

(
ℎ(𝑖) − 𝑟𝑖𝑎 + 𝜏𝑖𝑎𝑉∗(𝜏) −

∑︁
𝑗∈𝑆

𝑝𝑎𝑖 𝑗ℎ( 𝑗 )

)]
= 𝑉∗(𝜏)

∑︁
𝑖,𝑎

𝑥𝑖𝑎𝜏𝑖𝑎 +

∑︁
𝑖

ℎ(𝑖)

(∑︁
𝑎

𝑥𝑖𝑎 −
∑︁
𝑗,𝑎

𝑝𝑎𝑗𝑖𝑥 𝑗𝑎

)
= 𝑉∗(𝜏),

by conditions 3 and 4 in Definition 1. Since 𝑉∗(𝜏) is the optimal

value of (6), we conclude that 𝑥 is an optimal solution.

For the converse, let ℎ satisfy (9) and notice that∑︁
𝑖,𝑎

𝑥𝑖𝑎

(
ℎ(𝑖) − 𝑟𝑖𝑎 + 𝜏𝑖𝑎(𝑤 )𝑉∗(𝜏(𝑤 )) −

∑︁
𝑗

𝑝𝑎𝑖 𝑗ℎ( 𝑗 )

)
=

∑︁
𝑖

ℎ(𝑖)

(∑︁
𝑎

𝑥𝑖𝑎 −
∑︁
𝑗,𝑎

𝑝𝑎𝑗𝑖𝑥 𝑗𝑎

)
= 0,

since

∑
𝑖,𝑎 𝑟𝑖𝑎𝑥𝑖𝑎 = 𝑉∗(𝜏) =

∑
𝑖,𝑎 𝑥𝑖𝑎𝜏𝑖𝑎𝑉 (𝑟, 𝑝, 𝜏 ) by the optimality of

𝑥 . Thus, (10) holds for all 𝑖 with 𝑥𝑖𝑎 > 0 for some 𝑎 ∈ 𝐴, and so any

policy 𝜎 as in the statement is optimal. □

This equivalent definition in Lemma 1 is analogous to the concept

of equilibrium in Fisher’s markets, where 𝑤 is interpreted as a

competitive price vector and (5) as a budget constraint. However,

unlike in Fisher’s markets, agents are not charged directly according

to 𝑤 ; instead, they pay 𝜏𝑖𝑎(𝑤 ), which includes an additional flat

fee due to constant action execution times. Nevertheless, it is not

surprising that the equilibria are characterized by a convex program

that extends the Eisenberg-Gale program.

Theorem 1. (𝑥,𝑤 ) is an equilibrium if and only if 𝑥 is an optimal
solution of:

max log

(∑︁
𝑖,𝑎

𝑟𝑖𝑎𝑥𝑖𝑎

)
−

∑︁
𝑖,𝑎

𝑡𝑖𝑎𝑥𝑖𝑎 (11)

s.t.
∑︁
𝑖,𝑎

𝛼𝑙,𝑖𝑎𝑥𝑖𝑎 ≤ 𝑏𝑙 , , 𝑙 = 1, . . . , 𝐿, (12)∑︁
𝑎

𝑥𝑖𝑎 =

∑︁
𝑗,𝑎

𝑥 𝑗𝑎𝑝
𝑎
𝑗𝑖 , 𝑖 ∈ 𝑆, (13)

over 𝑥 = (𝑥𝑖𝑎, 𝑖 ∈ 𝑆, 𝑎 ∈ 𝐴) ∈ R𝑆×𝐴
+

,

and 𝑤 = (𝑤𝑙 , 𝑙 = 1, . . . , 𝐿) are optimal Lagrange multipliers for the
resource constraints (12).

Proof of Theorem 1. If (𝑥,𝑤 ) is an equilibrium, then Lemma 1

implies that𝑥 maximizes𝑚 log

(∑
𝑖,𝑎 𝑟𝑖𝑎𝑥𝑖𝑎

)
under the constraints (4),

(5). Thus, there exist Lagrange multipliers 𝜈 ∈ R, 𝜉 ∈ R𝑆
for which

𝑟𝑖𝑎∑
𝑗,𝛽 𝑟 𝑗𝛽𝑥 𝑗𝛽

− 𝜈𝜏𝑖𝑎(𝑤 ) − 𝜉𝑖 +

∑︁
𝑗

𝑝𝑎𝑖 𝑗 𝜉 𝑗 ≤ 0, (14)

with the equality holding if 𝑥𝑖𝑎 > 0, so∑︁
𝑖,𝑎

𝑥𝑖𝑎

(
𝑟𝑖𝑎∑

𝑗,𝛽 𝑟 𝑗𝛽𝑥 𝑗𝛽
−𝜈𝜏𝑖𝑎(𝑤 ) − 𝜉𝑖 +

∑︁
𝑗

𝑝𝑎𝑖 𝑗 𝜉 𝑗

)
= 0.

Applying (7) and (8) to the last equality yields 𝜈 = 1. Consequently,

(14) holds with 𝜈 = 1, and in combination with the feasibility condi-

tions (3), (4) and the complementary slackness condition (2), this

implies the optimality of 𝑥 and the dual optimality of𝑤, 𝜉 .
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For the converse, let 𝑥 be an optimal solution, and𝑤 be an opti-

mal set of Lagrange multipliers. Making use of (13) in the optimality

condition (14) (with 𝜈 = 1) implies (5) holds, and so 𝑥 is feasible in

(6). Since also (14) holds for 𝜈 = 1, 𝑥 satisfies the optimality condi-

tions for (6). This and the fact that (𝑥,𝑤 ) satisfies (2), (3), implies

(𝑥,𝑤 ) is an equilibrium, by Lemma 1. □

The assumption 𝑡𝑖𝑎 > 0 for all 𝑖, 𝑎 implies an optimal solution

of (11) exists, guaranteeing the existence of an equilibrium. More-

over, the strict concavity of the objective with respect to the average

reward

∑
𝑖,𝑎 𝑟𝑖𝑎𝑥𝑖𝑎 implies that its value in equilibrium is unique.

Corollary 1. An equilibrium always exists, and the average
reward is the same across all equilibria.

4 EQUILIBRIUM COMPUTATION
In this section we give a polynomial time approximation algorithm

for computing an equilibrium, based on binary search.

Observe that problem (11) is equivalent to

max 𝑚 log

(∑︁
𝑖,𝑎

𝑟𝑖𝑎𝑥𝑖𝑎

)
−𝑚𝑜 (15)

s.t.

∑︁
𝑖,𝑎

𝛼𝑙,𝑖𝑎𝑥𝑖𝑎 ≤ 𝑏𝑙 , 𝑙 = 1, . . . , 𝐿,∑︁
𝑎

𝑥𝑖𝑎 =

∑︁
𝑗,𝑎

𝑥 𝑗𝑎𝑝
𝑎
𝑗𝑖 , 𝑖 ∈ 𝑆,∑︁

𝑖,𝑎

𝑡𝑖𝑎𝑥𝑖𝑎 ≤ 𝑚𝑜 , (16)

over 𝑥𝑖𝑎 ≥ 0, 𝑖 ∈ 𝑆, 𝑎 ∈ 𝐴,𝑚𝑜 ≥ 0,

where the variable𝑚𝑜 represents the mass of active agents: at the
optimal solution, where (16) holds with equality, 𝑚𝑜 equals the

mass of agents executing some action, or equivalently, not waiting

in a queue.

Optimizing over the 𝑥𝑖𝑎 ’s first and then over 𝑚𝑜 , allows to

rewrite (15) as

max

𝑚𝑜≥0

𝑚 log 𝐹 (𝑚𝑜 ) −𝑚𝑜 , (17)

where 𝐹 (𝑚𝑜 ) is the optimal value of the LP:

max

∑︁
𝑖,𝑎

𝑟𝑖𝑎𝑥𝑖𝑎 (18)

s.t.

∑︁
𝑖,𝑎

𝛼𝑙,𝑖𝑎𝑥𝑖𝑎 ≤ 𝑏𝑙 , 𝑙 = 1, . . . , 𝐿,∑︁
𝑎

𝑥𝑖𝑎 =

∑︁
𝑗,𝑎

𝑥 𝑗𝑎𝑝
𝑎
𝑗𝑖 , 𝑖 ∈ 𝑆,∑︁

𝑖,𝑎

𝑡𝑖𝑎𝑥𝑖𝑎 ≤ 𝑚𝑜 , (19)

over 𝑥𝑖𝑎 ≥ 0, 𝑖 ∈ 𝑆, 𝑎 ∈ 𝐴.
Since 𝐹 (𝑚𝑜 ) is a concave function of𝑚𝑜 , the objective function in

(17) is strictly concave so its maximum is achieved at the unique

𝑚𝑜 for which𝑚𝐹 ′(𝑚𝑜 ) = 𝐹 (𝑚𝑜 ) holds, for some subgradient 𝐹 ′(𝑚𝑜 )

of 𝐹 (·) at𝑚𝑜 . This𝑚𝑜 can be approximated arbitrarily well using

binary search. This is the idea of Algorithm 1 which runs in poly-

nomial time: an LP is solved in each iteration and binary search

requires log(1/𝜖) steps for approximation within 𝜖 .

In each iteration, a subgradient of 𝐹 ′(𝑚𝑜 ) is calculated, using

any optimal Lagrange multiplier 𝜈 of the constraint (19). Because

Algorithm 1 Equilibrium computation

Input: Active mass approximation tolerance 𝜖 > 0.

Output: 𝑥𝑖𝑎, 𝑖 ∈ 𝑆, 𝑎 ∈ 𝐴.
1: Let 𝑎 ← 0, 𝑏 ← 1, 𝜈+

= + inf, 𝜈− = 0

2: while 𝑏 − 𝑎 > 𝜖 do
3: 𝑚𝑜 ← 𝑎+𝑏

2

4: (𝐹 (𝑚𝑜 ), 𝑥, 𝜈)← (optimal value of (18), optimal solution, La-

grange multiplier of (19))

5: if 𝐹 (𝑚𝑜 )

𝑚 > 𝜈 then
6: 𝑎 ←𝑚𝑜

7: 𝜈+ ← 𝜈

8: 𝑥+ ← 𝑥

9: else if 𝐹 (𝑚𝑜 )

𝑚 < 𝜈 then
10: 𝑏 ←𝑚𝑜

11: 𝜈− ← 𝜈

12: 𝑥− ← 𝑥

13: else
14: break
15: end if
16: end while
17: 𝜃 ← 𝐹 (𝑚𝑜 )−𝜈−

𝜈+−𝜈−
18: 𝑥 ← 𝜃𝑥+

+ (1 − 𝜃 )𝑥−

19: return 𝑥 = (𝑥𝑖𝑎, 𝑖 ∈ 𝑆, 𝑎 ∈ 𝐴).

of the concavity of 𝐹 (·), if the search continues in the left (right)

interval then 𝜈 can be used as a lower (upper) bound of the range

of subgradients [𝜈−, 𝜈+
] for the next iteration. For this reason, the

comparison needs to only consider a single subgradient 𝜈 , thus

avoiding the computation of the entire subgradient range.

5 LEARNING DYNAMICS
In this section we consider whether an agent population will evolve

towards an equilibrium under simple learning dynamics.

To better understand learning dynamics and convergence, we use

an alternative formulation of the agent decision problem. Instead

of making separate decisions about actions in each state as the

MDP formulation suggests, agents subscribe to policies from the

set of unichain policies Π defined in Section 2.1. Each such policy

fully specifies all the action choices of the agent at the different

states of the MDP, and corresponds to an ergodic Markov chain

over the state-actions, i.e., a randomized cyclic behaviour in the

corresponding closed resource network that gets renewed each

time some target state is visited. There are finitely many such

‘policy cycles’ available for agents to choose from, since Π is finite.

Given the state of the system, i.e., the waiting times in the queues,

each such policy offers a certain average reward per renewal cycle

and requires a certain average cycle time. Agents prefer to switch

to policies that offer a higher rate of average reward (cycle reward

divided by cycle time). Eventually, equilibria will form where only

policies with the highest possible (hence equal) reward rates attract

a positive agent mass.

It is important to highlight that there is an important aspect of

non-determinacy in this model that we must deal with. Policies that

are not chosen at a given time by a positive mass of agents have

not unique average cycle execution times, making many revenue
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rates possible for these policies. This is because the waiting times

that form in the resources can take many possible combinations of

values. But, interestingly enough, for cycles with a positive mass of

agents, the corresponding cycle times, and hence the revenue rates,

are always uniquely determined.

This non-determinacy aspect for unused policies is taken into

account in our definition of equilibrium (by introducing explicitly

the waiting times at the queues in addition to the distribution of

agents to policies), and in the analysis of the learning dynamics.

Before turning into this, we first characterize the rates and wait-

ing delays for any selection of policies in Π by the agents, not just

for the equilibrium, using a convex program ((23) below).

5.1 Policy-space formulation
For every 𝜎 ∈ Π, let 𝑚𝜎 be the mass of agents using policy 𝜎 .

Define the policy rate 𝑥𝜎 as the expected rate of transitions of

agents following 𝜎 , i.e.,

𝑥𝜎 =

𝑚𝜎

𝜏𝜎 (𝑤 )

, 𝜎 ∈ Π, (20)

where 𝑤 = (𝑤𝜎 , 𝜎 ∈ Π) is the vector of waiting delays, 𝜏𝜎 (𝑤 ) =∑
𝑖,𝑎 𝜋

𝜎
𝑖𝑎
𝜏𝑖𝑎(𝑤 ) is the expected time between transitions for agents

following policy 𝜎 , and 𝜋𝜎 = (𝜋𝜎
𝑖𝑎

) is the invariant distribution of

state-actions of the embedded chain of jumps (also under 𝜎), i.e., the

solution of

∑
𝑎 𝜋

𝜎
𝑖𝑎

=

∑
𝑗,𝑎 𝜋

𝜎
𝑗𝑎
𝑝𝑎
𝑗𝑖
for all 𝑖 . Of the transitions counted

in (20), those that leave 𝑖 with action 𝑎 having been selected come

at a rate of 𝑥𝜎𝜋
𝜎
𝑖𝑎
. Thus, the state-action rates can be written in

terms of the policy rates:

𝑥𝑖𝑎 =

∑︁
𝜎∈Π

𝑥𝜎𝜋
𝜎
𝑖𝑎, 𝑖 ∈ 𝑆, 𝑎 ∈ 𝐴. (21)

(Conversely, for any selection of state-action rates which satisfy (4)

there exist policy rates for which (21) holds, e.g., see Corollary 8.8.7

in [19].) Next, we show that the policy rates are defined uniquely

for each probability distribution on Π given by𝑚 = (𝑚𝜎 ).

Let𝑊 (𝑚) denote the set of𝑤 = (𝑤𝑙 ) for which the induced policy

rates (𝑥𝜎 ) satisfy ∑︁
𝜎,𝑖,𝑎

𝜋𝜎𝑖𝑎𝛼𝑙,𝑖𝑎𝑥𝜎 ≤ 𝑏𝑙 , (22)

and𝑤𝑙 = 0 if the inequality is strict, for every 𝑙 = 1, . . . , 𝐿.

Lemma 2. For each𝑚 = (𝑚𝜎 ), the policy rates are unique, i.e., 𝑥𝜎
in (20) attains the same value for all𝑤 ∈𝑊 (𝑚). In particular, (𝑥𝜎 ) is
the optimal solution of

max

∑︁
𝜎 :𝑚𝜎>0

𝑚𝜎 log

𝑟𝜎𝑥𝜎

𝑚𝜎
−

∑︁
𝜎,𝑖,𝑎

𝜋𝜎𝑖𝑎𝑡𝑖𝑎𝑥𝜎 (23)

s.t.
∑︁
𝜎,𝑖,𝑎

𝜋𝜎𝑖𝑎𝛼𝑙,𝑖𝑎𝑥𝜎 ≤ 𝑏𝑙 , 𝑙 = 1, . . . , 𝐿, (24)

over 𝑥𝜎 ≥ 0, 𝜎 ∈ Π,

while𝑊 (𝑚) is the set of optimal dual variables corresponding to (24).

To highlight the dependence of the policy rates on𝑚, we denote

𝑥𝜎 as 𝑥𝜎 (𝑚).

Equation (20) implies that 𝜏𝜎 (𝑤 ) is unique too if𝑚𝜎 > 0. Since

the average reward 𝑢𝜎 (𝑤 ) of 𝜎 (viz. the expected reward per unit

time) can be expressed as the ratio 𝑟𝜎/𝜏𝜎 (𝑤 ) of the expected reward

per transition, 𝑟𝜎 =

∑
𝑖,𝑎 𝜋

𝜎
𝑖𝑎
𝑟𝑖𝑎 , and the expected time between

transitions, it is unique as well, if𝑚𝜎 > 0.

Corollary 2. If𝑚𝜎 > 0 the values of 𝜏𝜎 (𝑤 ), 𝑢𝜎 (𝑤 ) are the same
across all𝑤 ∈𝑊 (𝑚).

Let 𝜙(𝑚) be the optimal value of (23), and its dual,

min

∑︁
𝜎

𝑚𝜎

(
log𝑢𝜎 (𝑤 ) − 1

)
+

∑︁
𝑙

𝑏𝑙𝑤𝑙 (25)

over𝑤𝑙 ≥ 0, 𝑙 = 1, . . . , 𝐿.

The distributions of agents that correspond to equilibria achieve

the maximum value of 𝜙(𝑚) over all probability distributions𝑚. To

show this we will work with an alternative problem which is based

on the dual of max𝜙(𝑚):

min

∑︁
𝑙

𝑏𝑙𝑤𝑙 + 𝑣 (26)

s.t. log𝑢𝜎 (𝑤 ) − 1 ≤ 𝑣, 𝜎 ∈ Π,

over𝑤 ≥ 0, 𝑣 .

Lemma 3. 𝑚 is a maximizer of 𝜙(𝑚) over the probability distribu-
tions on Π if and only if it is an optimal dual variable in (26).

Proposition 1. Let𝑤,𝑚 be a primal and dual optimal solution,
respectively, of (26), and 𝑥 = (𝑥𝑖𝑎) be the corresponding state-action
rates (through (21)). The pair (𝑥,𝑤 ) is an equilibrium.

Conversely, let (𝑥,𝑤 ) be an equilibrium, and 𝑥𝜎 , 𝜎 ∈ Π any set
of corresponding policy rates. Let𝑚 be the probability distribution
defined by𝑚𝜎 = 𝑥𝜎𝜏𝜎 (𝑤 ) for every 𝜎 ∈ Π. Then𝑤,𝑚 is a primal and
dual optimal solution, respectively, of (26).

5.2 Stability and Convergence
While our results could also be formulated in discrete time, we use

continuous-time dynamics to circumvent stability issues associated

with step-size selection, as reported in [3] and [18].

We consider dynamics of the form ¤𝑚𝜎 (𝑡 ) = 𝐺𝜎 (𝑚(𝑡 )), 𝜎 ∈ Π, 𝑡 ≥ 0,

where the functions 𝐺𝜎 : RΠ

+
→ R, 𝜎 ∈ Π satisfy the properties:

Properties. (1) Lipschitz continuity,
(2) Conservation of mass:

∑
𝜎 𝐺𝜎 (𝑚) = 0.

(3) Forward invariance:𝑚𝜎 (𝑡 ) = 0 if and only if𝑚𝜎 (0) = 0. (E.g.,
this holds if 𝑚𝜎 = 0 ⇒ 𝐺𝜎 (𝑚) = 0, sup𝑚𝜎>0

|𝐺𝜎 (𝑚) |
𝑚𝜎

< ∞
[16].)

(4) If 𝐺𝜎 (𝑚) > 0 > 𝐺𝜎 ′ (𝑚) ⇒ 𝑢𝜎 (𝑤 ) > 𝑢𝜎 ′ (𝑤 ) for every 𝑤 ∈
𝑊 (𝑚).

Lipschitz continuity is needed for the existence and uniqueness

of trajectories; forward invariance implies that extinct strategies

do not resurface and conversely, initially existent strategies do not

become extinct in finite time. Property 4 states that if more agents

play 𝜎 and less play 𝜎′ then the payoff of playing 𝜎 must be strictly

greater than that of 𝜎′. Most sensible policies have this property,

e.g., best response, replicator, Brown-von Neumann-Nash, logit

dynamics [9].

Note that policies that depend on the average reward 𝑢𝜎 (𝑤 ) are

included in the above framework as their dynamics depend only

on𝑚. This is because 𝑢𝜎 (𝑤 ) takes the same value for all𝑤 ∈𝑊 (𝑚)

if𝑚𝜎 > 0, by Corollary 2; if𝑚𝜎 = 0 forward invariance implies

𝐺𝜎 (𝑚) = 0 anyway.

For any subset of probability distributions 𝑀 on Π, let 𝐵𝛿 (𝑀) be

‘ball of radius 𝛿 around𝑀 ’, i.e., the set of probability distributions𝑚

with min𝑚′∈𝑀 𝑑(𝑚,𝑚′) ≤ 𝛿 , where 𝑑(·, ·) is the Euclidean distance.
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The set of distributions 𝑀 is said to be Lyapunov stable if for every
𝜖 > 0 there exists 𝛿 > 0 such that 𝑚(0) ∈ 𝐵𝛿 (𝑀) implies 𝑚(𝑡 ) ∈
𝐵𝜖 (𝑀) for all 𝑡 ≥ 0; in other words, trajectories remain close to𝑀

when they start close to it.

Proposition 2. The set𝑀𝑜 , consisting of the maximizers of 𝜙(𝑚),
is Lyapunov stable under learning dynamics that satisfy Properties
1-4.

Proof. Let𝑚𝑜
be any maximizer of 𝜙(𝑚), and for any 𝜖 > 0 let

𝑉𝜖 be the set of probability distributions𝑚 with 𝜙(𝑚) ≥ 𝜙(𝑚𝑜
) − 𝜖 .

We first show that𝑉𝜖 is invariant, i.e., if𝑚(0) ∈ 𝑉𝜖 then𝑚(𝑡 ) ∈ 𝑉𝜖
for all 𝑡 ≥ 0. Applying Danskin’s envelope theorem [4] to (25) gives

¤𝜙(𝑚(𝑡 )) = min

𝑤∈𝑊 (𝑚(𝑡 ))

∑︁
𝜎

𝐺𝜎 (𝑚(𝑡 )) (log𝑢𝜎 (𝑤 ) − 1)

=

∑︁
𝜎

𝐺𝜎 (𝑚(𝑡 )) (log𝑢𝜎 (𝑤 ) − 1) ,

for every 𝑤 ∈𝑊 (𝑚(𝑡 )), by Corollary 2. If𝑚(𝑡 ) is not a stationary

point for the dynamics then the sets 𝑃 = {𝜎 : 𝐺𝜎 (𝑚(𝑡 )) > 0}, 𝑁 =

{𝜎 : 𝐺𝜎 (𝑚(𝑡 )) < 0} are nonempty (by Property 2), and

¤𝜙(𝑚(𝑡 )) =

∑︁
𝜎∈𝑃

𝐺𝜎 (𝑚) (log𝑢𝜎 (𝑤 ) − 1)+
∑︁
𝜎∈𝑁

𝐺𝜎 (𝑚) (log𝑢𝜎 (𝑤 ) − 1)

≥
∑︁
𝜎∈𝑃

𝐺𝜎 (𝑚) min

𝜎 ′∈𝑃
(log𝑢𝜎 ′ (𝑤 ) − 1)

+

∑︁
𝜎∈𝑁

𝐺𝜎 (𝑚) max

𝜎 ′∈𝑁
(log𝑢𝜎 ′ (𝑤 ) − 1)

>
∑︁
𝜎∈𝑃

𝐺𝜎 (𝑚) max

𝜎 ′∈𝑁
(log𝑢𝜎 ′ (𝑤 ) − 1)

+

∑︁
𝜎∈𝑁

𝐺𝜎 (𝑚) max

𝜎 ′∈𝑁
(log𝑢𝜎 ′ (𝑤 ) − 1) = 0,

where Property 4 is used in the second inequality, and Property 2

in the final equality. If𝑚(𝑡 ) is a stationary point then ¤𝜙(𝑚(𝑡 )) = 0, so

¤𝜙(𝑚(𝑡 )) ≥ 0 in any case, i.e.,𝑚(𝑡 ) moves along ascending directions

of 𝜙 . Thus, if𝑚(0) ∈ 𝑉𝜖 then 𝜙(𝑚(𝑡 )) ≥ 𝜙(𝑚(0)), implying𝑚(𝑡 ) ∈ 𝑉𝜖
for all 𝑡 ≥ 0, i.e., 𝑉𝜖 is invariant.

Because 𝜙 is continuous, choose 𝛿 > 0 such that 𝑉𝛿 ⊂ 𝐵 𝜖
2

(𝑀𝑜
).

Then𝑚(0) ∈ 𝑉𝛿 implies𝑚(𝑡 ) ∈ 𝑉𝛿 ⊂ 𝐵 𝜖
2

(𝑀𝑜
) ⊂ 𝐵𝜖 (𝑀𝑜

), i.e., the set

𝑀𝑜
is Lyapunov stable. □

More can be shown for the replicator dynamics with fitness

function ℎ𝜎 (𝑢) = log𝑢𝜎 , for every 𝑢 ∈ RΠ

++
:

𝐺𝜎 (𝑚) = 𝑚𝜎

(
ℎ𝜎 (𝑢𝜎 (𝑤 )) −

∑︁
𝜎 ′

𝑚𝜎 ′ℎ𝜎 ′ (𝑢𝜎 (𝑤 ))

)
, 𝜎 ∈ Π,𝑚 ∈ RΠ

+
.

(27)

In Theorem 2, we show convergence to an equilibrium for any

initial distribution𝑚(0).

Theorem 2. Assume the starting policy mix𝑚(0) contains an equi-
librium, i.e., there exists probability distribution𝑚𝑜 supported in the
support of𝑚(0) for which the corresponding state-action rates 𝑥 paired
with a𝑤𝑜 ∈𝑊 (𝑚𝑜

) is an equilibrium. Then, the trajectory𝑚(𝑡 ), 𝑡 ≥ 0

under replicator dynamics (27) converges to an equilibrium.

Proof of Theorem 2. For any 𝑡 ≥ 0, let

𝐷KL

(
𝑚𝑜 | |𝑚(𝑡 )

)
= −

∑︁
𝜎

𝑚𝑜
𝜎 log

𝑚𝜎 (𝑡 )

𝑚𝑜
𝜎

,

denote the Kullback-Leibler divergence between𝑚(𝑡 ),𝑚𝑜
, which is

well-defined since supp(𝑚𝑜
) ⊆ supp(𝑚(0)) = supp(𝑚(𝑡 )). Then,

¤𝐷KL

(
𝑚𝑜 | |𝑚(𝑡 )

)
= −

∑︁
𝜅

𝑚𝑜
𝜎

¤𝑚𝜎 (𝑡 )

𝑚𝜎 (𝑡 )

= −
∑︁
𝜎

𝑚𝑜
𝜎

[
log𝑢𝜎 (𝑤 ) −

∑︁
𝜎 ′

𝑚𝜎 ′ (𝑡 ) log𝑢𝜎 ′ (𝑤 )

]
=

∑︁
𝜎

𝑚𝜎 (𝑡 ) [log𝑢𝜎 (𝑤 ) − 1] −
∑︁
𝜎

𝑚𝑜
𝜎 [log𝑢𝜎 (𝑤 ) − 1]

≤ 𝜙(𝑚(𝑡 )) − 𝜙(𝑚𝑜
),

where the last line is because𝑤 ∈𝑊 (𝑚(𝑡 )). Now, Theorem 1 implies

the last term is non-positive, so ¤𝐷KL (𝑚𝑜 | |𝑚(𝑡 )) ≤ 0 for all 𝑡 ≥ 0.

Any accumulation point𝑚′ of the trajectory (𝑚(𝑡 ), 𝑡 ≥ 0) satisfies

¤𝐷KL (𝑚𝑜 | |𝑚′) = 0 so 𝜙(𝑚′) = 𝜙(𝑚𝑜
), by the above inequality, i.e.,

𝑚′ is a maximizer of 𝜙 .

As we could have taken𝑚′ as𝑚𝑜
, repeating the above for𝑚𝑜

=

𝑚′ yields lim𝑡
¤𝐷KL(𝑚′ | |𝑚(𝑡 )) = 0. Since𝑚′ is an accumulation point,

we must have lim𝑡 𝐷KL(𝑚′ | |𝑚(𝑡 )) = 0, so𝑚𝜎 (𝑡 )→𝑚′𝜎 for all 𝜎 , as

𝑡 →∞. □

The condition in the theorem is necessary because extinct poli-

cies cannot re-emerge; thus, the set of initially non-extinct strate-

gies must be rich enough to include an equilibrium. Otherwise, any

stationary point reached will fail to be an equilibrium.

5.2.1 Joint learning and queueing dynamics. Here we assume the

waiting delays 𝑤 (𝑡 ) are not computed instantaneously given the

current policy distribution𝑚(𝑡 ), but evolve as fast as policies. In

particular, their joint evolution is:

¤𝑚𝜎 (𝑡 ) = 𝑚𝜎

(
ℎ𝜎 (𝑢𝜎 (𝑤 (𝑡 ))) −

∑︁
𝜎 ′

𝑚𝜎 ′ℎ𝜎 ′ (𝑢𝜎 (𝑤 (𝑡 )))

)
, 𝜎 ∈ Π, (28)

¤𝑤𝑙 (𝑡 ) =

[
1

𝑏𝑙

∑︁
𝜎

𝜋𝜎𝑖𝑎𝛼𝑙,𝑖𝑎𝑥𝜎 (𝑡 ) − 1

]
+

𝑤𝑙 (𝑡 )

, 𝑙 = 1, . . . , 𝐿,

where [𝑧]
+

𝑎 = 0 if 𝑎 = 0 and 𝑧 < 0; otherwise [𝑧]𝑎 = 𝑧. The

second equation captures the queueing dynamics: the waiting delay

of resource 𝑙 grows proportionally to the instantaneous rate of

requests for that resource and decreases at a constant rate of 1 (as

time passes at a unit rate). Here, 𝑥𝜎 (𝑡 ) is the instantaneous policy

rate of agents that use 𝜎 , and is defined by (20). Note that 𝑥𝜎 (𝑡 ) in

general differs from 𝑥𝜎 (𝑚(𝑡 )), as the resource constraints and the

fluid queue condition now may not hold for all 𝑡 .

For arbitrary but fixed (𝑚𝑜 ,𝑤𝑜
) ∈ RΠ

+
× R𝐿

+
, define the function

𝜓 (𝑚,𝑤 ) = 𝐷KL

(
𝑚𝑜 | |𝑚

)
+

∑︁
𝑙

𝑏𝑙

2

(𝑤𝑙 −𝑤𝑜
𝑙

)
2, (29)

on RΠ

+
× R𝐿

+
. As the sum of two distances, it is always nonnegative

and equals zero only if (𝑚,𝑤 ) = (𝑚𝑜 ,𝑤𝑜
).

Proposition 3. The set of all primal-dual optimal pairs (𝑤𝑜 ,𝑚𝑜
)

of (25) is Lyapunov stable under the combined replicator and queueing
dynamics (28).

Proof of Proposition 3. Let𝑚𝑜 ,𝑤𝑜
be as in the statement and

define 𝜓 as in (29). As in the proof of Proposition 2, it suffices to
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show that𝜓 (𝑚(𝑡 ),𝑤 (𝑡 )) is increasing in 𝑡 . To see this, note that

¤𝜓 (𝑚(𝑡 ),𝑤 (𝑡 )) = ¤𝐷KL

(
𝑚𝑜 | |𝑚(𝑡 )

)
+

∑︁
𝑙

𝑏𝑙 (𝑤𝑙 (𝑡 ) −𝑤𝑜
𝑙

) ¤𝑤𝑙 (𝑡 )

≤
∑︁
𝜎

𝑚𝜎 (𝑡 ) [log𝑢𝜎 (𝑤 (𝑡 )) − 1] −
∑︁
𝜎

𝑚𝑜
𝜎 [log𝑢𝜎 (𝑤 (𝑡 )) − 1]

+

∑︁
𝑙

(𝑤𝑙 (𝑡 ) −𝑤𝑜
𝑙

)

𝜕𝐿

𝜕𝑤𝑙

(𝑤 (𝑡 );𝑚(𝑡 ))

≤ 𝐿(𝑤 (𝑡 );𝑚(𝑡 )) − 𝐿(𝑤 (𝑡 );𝑚𝑜
) + 𝐿(𝑤𝑜

;𝑚(𝑡 )) − 𝐿(𝑤 (𝑡 );𝑚(𝑡 )), (30)

where 𝐿(𝑤 ;𝑚) is the Lagrangian of (25), defined in (35), but with 𝑣

omitted since all 𝑣 terms vanish if𝑚 is a probability distribution.

The dual optimality of𝑚𝑜
implies 𝐿(𝑤𝑜

;𝑚(𝑡 )) ≤ 𝐿(𝑤𝑜
;𝑚𝑜

), and

the primal optimality of 𝑤𝑜
implies 𝐿(𝑤 (𝑡 );𝑚𝑜

) ≥ 𝐿(𝑤𝑜
;𝑚𝑜

). To-

gether, the two inequalities imply that the last expresion in (30) is

nonpositive, so
¤𝜓 (𝑤 (𝑡 ),𝑚(𝑡 )) ≤ 0. □

Lastly, note that if 𝑡𝑖𝑎 = 0 for all 𝑖 ∈ 𝑆, 𝑎 ∈ 𝐴 then the linear term

in the optimization problem (23) vanishes. In this case, the average

rewards 𝑢𝜎 = 𝑟𝜎𝑥𝜎/𝑚𝜎 received by each agent using policy 𝜎 , for

each 𝜎 , satisfy proportionally fairness [12]: any other feasible policy

rates (𝑥 ′𝜎 ) result in average rewards 𝑢′𝜎 = 𝑟𝜎𝑥
′
𝜎/𝑚

′
𝜎 , for 𝜎 ∈ 𝑃 , such

that ∑︁
𝜎

𝑚𝜎
𝑢′𝜎 − 𝑢𝜎

𝑢𝜎
≤ 0.

The vanishing of the linear terms in (11) implies that the average

reward for each agent at equilibrium matches the reward level that

would arise under centralized coordination. (This follows because

(11) is equivalent to the linear program that maximizes average

rewards.) Consequently, the global asymptotic convergence under

replicator dynamics in Proposition 2 translates here to:

Corollary 3. When agents receive proportionally fair payoffs,
the replicator dynamics converge to a socially optimal set of actions.

Proof. Follows from Proposition 2. □

6 APPLICATION TO RIDEHAILING
In this section, we formulate a model of driver mobility in a ride-

hailing platform, where drivers act as agents.

The set of states, 𝑆 , represents the different geographical regions

where a driver can be located, and the set of actions is defined as:

𝐴 = {‘wait’, ‘move to 1’, . . . , ‘move to |𝑆 |’} .
The action ‘wait’ refers to a driver remaining in the current region

until they are assigned a passenger originating from that region,

whereas ‘move to 𝑗 ’ refers to a driver moving to region 𝑗 without a

passenger.

The MDP of each driver is defined by:

𝑝𝑎𝑖 𝑗 =


𝑞𝑖 𝑗 , 𝑎 = ‘wait’,

1, 𝑎 = ‘move to 𝑗 ’

0, otherwise

, 𝑡𝑖𝑎 =

{∑
𝑗 𝑞𝑖 𝑗 𝑡𝑖 𝑗 , 𝑎 = ‘wait’,

𝑡𝑖 𝑗 , 𝑎 = ‘move to 𝑗 ’

𝑟𝑖𝑎 =

{∑
𝑗 𝑞𝑖 𝑗𝑐𝑖𝑡𝑖 𝑗 , 𝑎 = ‘wait’,

0, 𝑎 = ‘move to 𝑗 ’
(31)

Here, 𝑐𝑖 is the driver’s compensation rate per unit time for trans-

porting a passenger originating from region 𝑖 . Under the action

𝑎 = ‘move to 𝑗 ’, the driver moves to 𝑗 in 𝑡𝑖 𝑗 time units without

Figure 1: Ridehailing example based on NYC taxi data [6].

receiving compensation. Under 𝑎 = ‘wait’, the driver is assigned a

passenger with destination 𝑗 with probability 𝑞𝑖 𝑗 and completes the

journey in 𝑡𝑖 𝑗 time units, receiving a total compensation of 𝑐𝑖𝑡𝑖 𝑗 .

We also define 𝑆 as the set of resources, where the 𝑖-th resource

represents passengers originating from region 𝑖 . The supply rate 𝑏𝑖
for resource 𝑖 is the demand for trips from region 𝑖 , and 𝛼𝑖,𝑖‘wait’ = 1,

and 0 otherwise, meaning that transporting a passenger from region

𝑖 consumes one unit of resource 𝑖 . (For simplicity, we assume that

drivers are only assigned passengers from their current region, and

that any excess passenger demand in a region is lost. )

Figure 1 illustrates the joint dynamics of learning and queu-

ing (28) for an example based on NYC taxi data [6]. The NYC area

is divided into 𝐿 = 64 regions, with trip travel times (𝑡𝑖 𝑗 ), passenger

arrival rates (𝑏𝑖 ), destination probabilities (𝑞𝑖 𝑗 ), and driver com-

pensation rates (𝑐𝑖 ) derived from data collected for every Friday in

March 2013, between 9 a.m. and 10 a.m.

The upper plot depicts the evolution of𝑚𝜎 (𝑡 ) for each policy 𝜎 ,

assuming a uniform initial mass distribution. In the middle plot, the

average reward 𝑢𝜎 (𝑤 (𝑡 )) is shown over time for each policy, with

the best-performing policies shown in red. As indicated, the driver

mass corresponding to these optimal policies (also shown in red in

the upper plot) eventually dominates the entire driver population,

rendering suboptimal policies (shown in black) extinct.

The lower plot depicts the waiting delay𝑤𝑖 (𝑡 ) in each region 𝑖

over a longer time span. Long-lasting oscillations persist due to the

presence of multiple equilibria.
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7 SUMMARY
In this paper, we introduced a novel non-atomic model of resource

competition where agents act according to a Markov Decision Pro-

cess that is affected by resource congestion. In our model, action

execution is associated with consuming resources from a common

pool that get replenished with fixed rates, causing waiting captured

by a fluid model. As a result, in this resource market, waiting plays

the role of prices, discouraging agents to use actions that require

congested resources. Agents subscribe to ‘policies’, i.e., a type of

randomized cyclic behaviour, and collect the corresponding long-

run average reward equal to the average reward of the cycle divided

by the average cycle time. In an equilibrium, all cycles with posi-

tive agent mass have same average rewards, and convergence to

the equilibrium occurs by agents switching to cycles that generate

higher average revenue.

We show that equilibria correspond to optimal solutions of an

extended Eisenberg-Gale program, that suggests the interpretation

of our system as a market where delays play the role of prices.

We introduce a new potential function formulation that allows us

to study convergence of learning dynamics to the equilibria. This

new formulation enables us to establish Lyapunov stability for a

broad range of dynamics and prove global asymptotic stability for

replicator dynamics. Furthermore, we demonstrate Lyapunov sta-

bility when agents follow replicator dynamics and queues adjust in

similar time scales according to a natural tâtonnement mechanism.

Our research in this area started from our desire to model the

effects of selfish agent optimization in practical applications con-

sisting of closed systems where a fixed mass of circulating agents

interacts continuously. There are many applications that fit into

this category. For example, in ridehailing networks, a fixed popula-

tion of drivers serves customers that arrive in the different nodes

of the network, by circulating continuously according to different

repositioning strategies. The equilibria of this ridehailing system

are characterized by the solution of the extended Eisenberg-Gale

program we mentioned earlier.

Finally, we note that, aside from the algorithm in Section 4, the

results in this paper extend straightforwardly to the case of multiple

agent types. However, these extensions are omitted here to simplify

the notation.

APPENDIX
Proof of Lemma 2. Observe that (20), (22) are equivalent to the

KKT conditions for problem (23), where𝑤𝑙 is the Lagrange multi-

plier for the capacity constraint of resource 𝑙 . The optimal solution

(𝑥𝜎 ) is unique since the objective is strictly concave with respect

to 𝑥𝜎 whenever 𝑚𝜎 > 0;

∑
𝜎,𝑖,𝑎 𝜋

𝜎
𝑖𝑎
𝑡𝑖𝑎 > 0 implies 𝑥𝜎 = 0 when

𝑚𝜎 = 0. □

Proof of Lemma 3. The objective of the dual problem ofmax𝜙(𝑚)

over probability distributions𝑚 is max [𝜙(𝑚) − 𝑣 ∑
𝜎 𝑚𝜎 ] +𝑣 where

𝑣 is the dual variable. Replacing 𝜙(𝑚) by (25) yields

max

𝑚≥0:

∑
𝜎 𝑚𝜎=1

[
min

𝑤≥0

∑︁
𝜎

𝑚𝜎 (log𝑢𝜎 (𝑤 ) − 1 − 𝑣) +

∑︁
𝑙

𝑏𝑙𝑤𝑙

]
+𝑣 . (32)

By viewing (𝑚𝜎 ) as Lagrange multipliers, we can interpret the

maximization term as the dual of

min

∑︁
𝑙

𝑏𝑙𝑤𝑙

s.t. log𝑢𝜎 (𝑤 ) − 1 ≤ 𝑣, 𝜎 ∈ Π,

over𝑤 ≥ 0.

Replacing themaximization in (32) with the above problem yields (26).

□

Proof of Proposition 1. To show that (𝑥,𝑤 ) is equilibrium we

will use Theorem 1 but for the equivalent problem of (11),

max log

(∑︁
𝜎

𝑟𝜎𝑥𝜎

)
−

∑︁
𝜎,𝑖,𝑎

𝜋𝜎𝑖𝑎𝑡𝑖𝑎𝑥𝜎 (33)

s.t.

∑︁
𝑙

𝜋𝜎𝑖𝑎𝛼𝑙,𝑖𝑎𝑥𝜎 ≤ 𝑏𝑙 , 𝑙 = 1, . . . , 𝐿,

over 𝑥𝜎 ≥ 0, 𝜎 ∈ Π,

obtained by the change of variables in (21).

Now, let (𝑤, 𝑣),𝑚 be a primal and a dual solution, respectively

of (26).

The complementary slackness conditions for the inequalities

in (26) imply 𝑒𝑣+1
= 𝑢𝜎 (𝑤 ) whenever𝑚𝜎 > 0, and so

𝑒𝑣+1
=

∑︁
𝜎

𝑚𝜎𝑒
𝑣+1

=

∑︁
𝜎

𝑚𝜎𝑢𝜎 (𝑤 ) =

∑︁
𝜎

𝑚𝜎
𝑟𝜎

𝜏𝜎 (𝑤 )

=

∑︁
𝜎

𝑥𝜎𝑟𝜎 ,

by also using (20).

Thus, the inequalities (26) are rewritten as

𝑟𝜎∑
𝜎 ′ 𝑟𝜎 ′𝑥𝜎 ′

≤ 𝜏𝜎 (𝑤 ) =

∑︁
𝑖,𝑎

𝜋𝜎𝑖𝑎

(
𝑡𝑖𝑎 +

∑︁
𝑙

𝛼𝑙,𝑖𝑎𝑤𝑙

)
, (34)

with the inequality being an equality if𝑚𝜎 > 0, equivalently 𝑥𝜎 > 0.

This and the fact that (22) holds (since 𝑤 ∈ 𝑊 (𝑚)), imply (𝑥𝜎 )

maximizes (33) and𝑤 is an optimal dual variable. Therefore, (𝑥,𝑤 )

is an equilibrium, by Theorem 1.

Conversely, let (𝑥,𝑤 ) be an equilibrium and (𝑥𝜎 )𝜎 any set of

nonnegative coefficients such that (21) holds. (Such coefficients

always exist, e.g., see [19].) By Theorem 1, 𝑥,𝑤 is a primal and dual

optimal solution, respectively, of (11). The KKT conditions of (33)

imply (34) holds, so

𝑟𝜎𝑥𝜎∑
𝜎 ′ 𝑟𝜎 ′𝑥𝜎 ′

= 𝜏𝜎 (𝑤 )𝑥𝜎 = 𝑚𝜎 .

Summation by parts over 𝜎 ∈ Π yields

∑
𝜎 𝑚𝜎 = 1, and so𝑚 is a

probability distribution.

Since (20), (22) hold, we have 𝑤 ∈ 𝑊 (𝑚) by the definition of

the latter. By Lemma 2, 𝑤 is an optimal solution of (25) and so it

maximizes the Lagrangian of (26)

𝐿(𝑤, 𝑣 ;𝑚) =

∑︁
𝜎

𝑚𝜎 (log𝑢𝜎 (𝑤 ) − 1 − 𝑣) +

∑︁
𝑙

𝑏𝑙𝑤𝑙 + 𝑣, (35)

with respect to its first argument. Defining 𝑣 = log (∑𝜎 𝑟𝜎𝑥𝜎 ) − 1,

makes (𝑤, 𝑣) a feasible point in (26) since

log𝑢𝜎 (𝑤 ) − 1 = log

𝑟𝜎

𝜏𝜎 (𝑤 )

− 1 ≤ log

∑︁
𝜎 ′

𝑟𝜎 ′𝑥𝜎 ′ − 1 = 𝑣, (36)

for all 𝜎 , where the inequality is due to (34). Finally, if𝑚𝜎 > 0 then

𝑥𝜎 > 0, so the constraint in (36) is active, i.e., the complementary

slackness condition of (26) hold. Therefore the KKT conditions are

satisfied and so𝑤,𝑚 is and optimal primal-dual pair. □
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