
From Natural Language to Extensive-Form Game Representations
Shilong Deng

University of Liverpool
Liverpool, United Kingdom

shilong.deng@liverpool.ac.uk

Yongzhao Wang
The Alan Turing Institute;
University of Liverpool

Liverpool, United Kingdom
yongzhao.wang@turing.ac.uk

Rahul Savani
The Alan Turing Institute;
University of Liverpool

Liverpool, United Kingdom
rahul.savani@liverpool.ac.uk

ABSTRACT
We introduce a framework for translating game descriptions in
natural language into game-theoretic extensive-form representations,
leveraging Large Language Models (LLMs) and in-context learning.
We find that a naive application of in-context learning struggles on
this problem, in particular with imperfect information. To address
this, we introduce GameInterpreter, a two-stage framework with
specialized modules to enhance in-context learning, enabling it to
divide and conquer the problem effectively. In the first stage, we
tackle the challenge of imperfect information by developing a module
that identifies information sets and the corresponding partial tree
structure. With this information, the second stage leverages in-context
learning alongside a self-debugging module to produce a complete
extensive-form game tree represented using pygambit, the Python
API of a recognized game-theoretic analysis tool called Gambit.
Using this python representation enables the automation of tasks
such as computing Nash equilibria directly from natural language
descriptions. We evaluate the performance of the full framework, as
well as its individual components, using various LLMs on games with
different levels of strategic complexity. Our experimental results show
that the framework significantly outperforms baseline approaches in
generating accurate extensive-form games, with each module playing
a critical role in its success.

KEYWORDS
Code Generation; Extensive-Form Games; Gambit; Game Transla-
tion; Large Language Models
ACM Reference Format:
Shilong Deng, Yongzhao Wang, and Rahul Savani. 2025. From Natural
Language to Extensive-Form Game Representations. In Proc. of the 24th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS,
9 pages.

1 INTRODUCTION
Recently, large language models (LLMs) have shown remarkable pro-
ficiency in handling complex tasks across various domains, including
code generation [4, 5, 20, 31] and question answering [15, 21, 37].
Their success has sparked interest in exploring their potential across
an even broader range of applications. Within the field of multi-agent
systems, a primary research direction focuses on developing LLMs’
capabilities for reasoning about games and making decisions directly

This work is licensed under a Creative Commons Attribution Interna-
tional 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025,
Detroit, Michigan, USA. © 2025 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

from textual information. For instance, Fu et al. [11] applied LLMs
to a bargaining game where LLMs serve as bargaining agents, en-
gaging in price negotiations across several rounds. In this scenario, a
successful bargaining agent must anticipate the behavior and private
information of others, which requires strong game reasoning skills.

Although there has been initial progress in this area, conducting
game-theoretic analysis directly from textual descriptions (such as
natural language game descriptions) remains challenging due to
the varying degrees of strategic complexity in games, including
imperfect information, chance events, and repeated interactions.
Broadly, there are two technical approaches to tackle this task. The
first approach involves training LLMs specifically to perform game-
theoretic analysis. This method enables LLMs to conduct analysis
directly but often requires extensive training data in games and
their descriptions, as well as significant computational resources.
The second approach utilizes LLMs to interpret game descriptions
and generate structured representations that can then be analyzed
using game-theoretic methods. Rather than equipping LLMs with full
reasoning abilities, this approach integrates LLMs into the automated
reasoning process, which can reduce computational demands.

In this work, we pursue the second approach, presenting GameIn-
terpreter, a framework that translates natural language game descrip-
tions into the “extensive-form”. An extensive-form game (EFG) is a
standard game-theoretic representation for sequential games [38]. It is
a rooted tree with additional information structure called information
sets, which group together decision nodes that are indistinguishable
to a player. Our framework relies on LLMs and in-context learning,
where the LLM uses context or examples in the input prompt to
complete tasks without the need for fine-tuning or further training.
However, due to the strategic complexities outlined above, directly
describing the task in the prompts for in-context learning is insuffi-
cient. Among these complexities, we particularly emphasize the issue
of imperfect information – that is, where at least one player does
not have full knowledge about the current state of the game – which
leads LLMs with naive in-context learning to produce incorrect game
representations, as demonstrated in our experiments.

To address this, we take a divide-and-conquer approach using a two-
stage process. In the first stage, we focus on any imperfect information
in the game, by guiding LLMs through examples of dealing with
imperfect information (e.g., identifying information sets) and the
corresponding partial tree structures. With this foundation, the second
stage leverages in-context learning to generate the complete EFG
for the target game. The EFG is created using pygambit, the Python
API for the widely used game-theoretic tool Gambit [32], which
also enables automating tasks such as computing Nash equilibria
from natural language descriptions. Additionally, we introduce a
self-debugging module that returns pygambit error messages to the

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

593

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

LLMs, which allows the LLM to correct the errors in its previous
answers and helps to ensure that a valid EFG is created.

We assess the performance of our framework, as well as its individ-
ual components, across various LLMs, on games featuring differing
levels of strategic complexity, covering different numbers of play-
ers, degrees of imperfect information, perfect/imperfect recall, and
various game tree depths. We use two datasets of game descriptions,
one newly designed for this paper, and another from a recent paper
by others Mensfelt et al. [26]. The LLMs we employ are GPT-3.5
[3], GPT-4 [1], and GPT-4o [29], and we evaluate their ability to
generate correct EFG files by incrementally adding modules until the
full framework pipeline is assembled. Our findings indicate that the
full pipeline significantly enhances performance across all LLMs,
with the best-performing model successfully solving all test games
in our custom dataset. Additionally, we confirm that each module
significantly contributes to better performance. The second dataset of
Mensfelt et al. [26] mainly comprises two-player simultaneous-move
games, with many different game descriptions for the same under-
lying bimatrix game; our full pipeline achieves 100% accuracy on
these games, demonstrating robustness to varying game descriptions.
Our main contributions are:
(1) An in-context LLM framework for translating game descriptions

in natural language into extensive-form representations;
(2) An imperfect information retrieval module that identifies infor-

mation sets and the corresponding partial tree structure;
(3) A self-debugging module;
(4) A comprehensive evaluation of our framework, which demon-

strate that it significantly outperforms baseline approaches.
A longer version of this paper is available, along with an associated

repository containing the inputs and outputs for our experiments [7].

2 RELATED WORK
LLMs with Game Theory. Many papers have explored the use
of LLMs as agents to play games, ranging from simple matrix
games [2, 23, 30, 36], to much more complex environments [25,
33, 40]. Akata et al. [2] revealed the different behavioral patterns
of LLMs when playing in various types of games. Shi et al. [33]
examined the ability LLM agents to cooperate in the Avalon game,
and developed a memory-based module to facilitate the cooperation.
Xu et al. [40] tested LLM agents in the incomplete information
game Werewolf. They observed emergent strategic behaviors such as
deception during gameplay. Fan et al. [10] analyzed the rationality of
LLMs as agents, focusing on three specific aspects: building a clear
desire, refining beliefs about uncertainty, and taking optimal actions.
Silva [36] explored if LLMs can be used as an equilibrium solver
for games, and highlighted the difficulty of this for games with only
mixed-strategy equilibria, providing enhancements to address this.

Besides using LLMs as agents, game-theoretic approaches could
be utilized to improve the performance of LLMs. Gemp et al. [12]
introduced a method that feeds the outputs from game-theoretic
methods (e.g., an equilibrium distribution over instructions) to LLM
agents in dialogues that can be formed as EFGs. They demonstrated
that the integration with game-theoretic outputs could enhance the
LLM generations compared to a baseline LLM that lacks access to
game-theoretic supports. Ma et al. [24] studied the value alignment
problem in LLMs. They gamified the attacks and counterattacks

among LLMs and used equilibrium solutions to improve the level
of value alignment of LLMs. Similarly, Jatova et al. [16] framed the
generation of toxic content and defence against this as a strategic
game between a language model and an adversarial prompt generator,
with its equilibria shown to reduce harmful outputs.
Game Description Translation. We are aware of three works that
directly addresses the task of game description translation [6, 26, 27].
The earliest one by Mensfelt et al. [26] is contemporaneous and
independent work with ours. Rather than using EFGs, for representing
games, Mensfelt et al. [26] employed logic representations as used by
logic programming solvers. A further key difference between our work
and theirs lies in the scope of games analyzed. Mensfelt et al. [26]
focused on simultaneous-move games, with 110 bimatrix games of
size 2x21, one bimatrix game of size 3x3, and one sequential game that
corresponds to a bimatrix game of size 2x4. In their subsequent work,
Mensfelt et al. [27] examined 55 simultaneous-move 2x2 bimatrix
games. In contrast, our work explores more complex scenarios, with
multiple sequential moves and complicated (imperfect) information
structures. Both work leverage the ability of LLMs to generate code,
which we discuss next. The same framework was also adopted in
their follow-up work by Mensfelt et al. [27]. In this follow-up work,
they presented a necessary condition for automatically verifying
the correctness of the generated game. In addition to these two
works, Daskalakis et al. [6] converted the sequential decision-making
process described in the game derived from a story to an EFG. They
achieved this by utilizing LLMs to introduce additional decision
nodes, representing alternative choices players could have made in
the story. Once the EFG is constructed, Gambit is used to compute
the Nash equilibrium, providing a prediction of the players’ behavior.

More broadly, several studies have used LLMs to translate general
texts (i.e., not necessarily game descriptions) in natural language
into formal specifications (i.e., required format of a software system
or hardware component) [13, 18, 19, 41]. Hahn et al. [13] examined
the ability of fine-tuned language models to convert natural language
into formal specifications, which can be used in software verification,
theorem proving, and industrial hardware. Zhai et al. [41] and
Leong and Barbosa [19] focused on translating textual requirement
descriptions into Java formal specifications. Leite et al. [18] employed
LLMs to generate specifications for smart contracts.
LLMs for Code Generation. Code generation is the process of
automatically creating source code using LLMs based on natural
language task descriptions. Since the introduction of models like
Codex [4], Alphacode [20], Pangu-Coder [5], and LLaMa Coder [31],
general code generation has made significant advancements with the
emergence of models such as LLaMa 3 [9] and GPT-4 [1]. Building
on these models, many studies [17, 22, 35] further improved the
performance of code generation through reinforcement learning or
self-debugging prompts. In our work, we use code generation with
self-debugging to generate EFG representations with pygambit.

3 PRELIMINARIES
3.1 In-Context Learning
In-context learning refers to an LLM’s ability to learn new informa-
tion or skills by observing examples or instructions provided in its

1A 2x2 bimatrix game corresponds to an EFG with 3 nodes and 4 outcomes (i.e., leaves).

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

594

input, without any additional training or fine-tuning [8]. Suppose
we have an LLM, represented by a function M. It has been trained
to predict the next token or word, probabilistically mapping an in-
put prompt to an output. An input prompt is a sequence of tokens
𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛). Given 𝑧, the probabilities for the next token 𝑦 are
then M(𝑦 |𝑧) = 𝑃 (𝑦 |𝑧1, 𝑧2, . . . , 𝑧𝑛). For in-context learning, consider
an input prompt that contains a sequence (𝑄𝑖 , 𝐴𝑖) of examples, which
could be in the form of question-answer pairs, or these could be exam-
ples of how to solve examples of a specific task. We use these as con-
text to predict an answer𝐴𝑛+1 for a new question𝑄𝑛+1, with our prob-
abilistic answer being M(𝐴| (𝑄1, 𝐴1), (𝑄2, 𝐴2), . . . , (𝑄𝑛, 𝐴𝑛), 𝑄𝑛+1).
Importantly, with in-context learning, the model does not adjust its
weights, but instead uses the examples in its the context window to
to refine its conditional probability for the next token.

3.2 Extensive-Form Game Representations
Extensive-form representations explicitly capture sequential decision
making, in contrast to the strategic form, which condenses the
game into a payoff matrix, interpreted as a simultaneous-move
game. Therefore, EFGs are more expressive than strategic-form
games, making them our preferred target format game translation.
An extensive-form game consists of the following three elements:
Game tree: The central element of an EFG is a rooted, directed tree.
Each decision node in the tree is assigned to either one of the players
or to a “chance node,” which represents nature2. Directed edges are
known as moves or actions. A play of the game starts at the root
and advances through the tree as the player that owns the current
decision node chooses a move at the node (or a move is drawn from
a discrete probability distribution at a chance node). The play ends
when a terminal node (leaf) of the tree is reached.
Outcomes and payoffs: Every terminal node corresponds to an
outcome, with an associated payoff vector which prescribes the
payoff for each player under this outcome.
Information sets: An information set groups together nodes of a
given player, with the interpretation that a player knows they are at
some node in an information set, but not which one3. Information
sets allow us to model a player’s lack of knowledge of past moves
of other players including nature (or the same player in the case of
imperfect recall). If all information sets are singletons the game is
said to have perfect information, otherwise it is said to have imperfect
information.

3.3 Code Generation with Gambit
Gambit is a software suite for game-theoretic analysis [32]. Gambit
can compute game-theoretic solutions such as Nash equilibria and
equilibrium refinements for strategic-form games and EFGs. It has a
Python API known as pygambit. With pygambit, we create an internal
representation of an EFG and export it to a standard file format,
specifically an .efg file. This file can then be analyzed or visualized
using Gambit or other compatible software. Figure 1 provides an
illustration.

The following pygambit functions for creating and manipulating
EFGs are used in our guidance examples within our framework:

2Chance nodes allow random behavior such as card deals in poker.
3Thus, all nodes in the information set must have exactly the same available moves.

import pygambit as gbt

Create a new game tree with two players: Firm 1 and Firm 2
g = gbt.Game.new_tree(players=["Firm 1", "Firm 2"], title="Entry Deterrence Game")
Firm 2 decides whether to Enter or Out
g.append_move(g.root, "Firm 2", ["Enter", "Out"])
If Firm to compete: 2 enters, then Firm 1 decides how Fight or Accommodate
g.append_move(g.root.children[0], "Firm 1", ["Fight", "Accommodate"])
...
Set outcomes for each terminal node
g.set_outcome(g.root.children[0].children[0], fight_payoff)
Save the EFG
efg = g.write(format='native‘）

EFG 2 R "Entry Deterrence Game" { "Firm 1" "Firm 2" }
p "" 2 1 "" { "Enter" "Out" } 0
p "" 1 1 "" { "Fight" "Accommodate" } 0
t "" 1 "Firm 1 Fights" { 1, 2 }
t "" 2 "Firm 1 Accommodates" { 2, 2 }
t "" 3 "Firm 2 Outs" { 3, 0 }

Execute

Visualize

pygambit Code

EFG File Extensive-Form Game

Figure 1: Example of generating and then visualizing an EFG
file for a simple Market Entry Game, via pygambit.

(1) new_tree(): create a trivial game tree with one node;
(2) append_move(): add a move at a terminal node;
(3) add_outcome(): introduce a new outcome to the game;
(4) set_outcome(): assign payofs to an outcome;
(5) set_chance_probs(): set chance node move probabilities;
(6) set_infoset(): assign a node to an information set.

4 THE GAME INTERPRETER FRAMEWORK
In Figure 2, we present the full GameInterpreter framework for
translating natural language game descriptions into EFG files. It
involves two stages: imperfect information retrieval and complete
EFG generation. In the first stage, we address the challenge of
handling imperfect information by employing in-context learning to
identify non-singleton information sets and their associated partial
tree structures. The inputs for this in-context learning, detailed further
below, include: general information about the task and the use of
the pygambit API, a description of the target game, and instructions
with examples for extracting imperfect information. At this stage, the
expected output is a code block. For imperfect information games,
the code block (should4) include a set of information sets defined by
the function set_infoset(), which groups decision nodes that a player
cannot distinguish between, accompanied by reasoning provided
in the code comments. For perfect information games, the output
contains only code comments, which includes a concluding statement
such as “there is no need to set any information sets in this game,”
along with reasoning for this conclusion.

Notably, generating these information sets provides insights into
the EFG tree structure. For example, Figure 3 shows an EFG with two
players. Player 1 moves first by choosing one of three actions: L, C,
or R. If either C or R is selected, then player 2 does not know which
was selected (i.e., imperfect information). In contrast, if player 1
chooses action L, the resulting subgame has perfect information.
After applying our method from stage one, the LLM can separate
the perfect information part of the tree from the part with imperfect
information. Then it will only assign nodes to information sets (using

4We cannot guarantee the LLM produces what it was asked to, but for brevity in the rest
of our description we simply say that the output “includes” rather that “should include”.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

595

Code Generation
Initialization

LLM
Code

Output

Pygambit API
Documentation

Code Examples

LLM

Game
Description

Imerperfect
Information
Examples

Code for
Imperfect

Information

Program
Execution

Executor

Error
Message

FailRegenerate

Success

Stage One: Imperfect
Information Retr ieval

Stage Two: Complete
EFG Generation

Imperfect
Infomation
Retrieval

Initialization

Imperfect
Infomation
Retrieval

EFG Generation

Game
Description

Self-Debugging

Figure 2: Full GameInterpreter pipeline with all modules included. The rectangles with a gray background represent the prompts
given to the LLM and details of these prompts are shown in Table 1.

set_infoset()) only in the imperfect information part, and it also
provides a textual description of the game’s tree structure5.

1

2

1 1 1 1 1 1

3
0

1
2

0
3

2
1

2
2

3
1

1
3

0
4

4
1

2
3

3
2

1
4

A

B

a b c d

C

c d

D E F G H I J K L M N O

2

Figure 3: EFG with imperfect information.

The second stage employs in-context learning to generate a com-
plete EFG file. The inputs for in-context learning in this stage also
contain the code generation initialization, instructions for generating
5Note that the node assignment already reveals insights into the tree structure such as
the action that leads to the node in the information set.

the entire EFG, and additionally the output from stage one. Besides,
a self-debugging module is introduced to help the LLM produce
runnable pygambit code. This module sends any error messages back
to the LLM for code revision, providing both a description of the
issue and instructions for resolving it, which are essential for fixing
mistakes in previous answers. This self-debugging approach, also
referred to as self-reflection, is discussed in detail by Shinn et al.
[34].

Table 1 outlines the prompt templates used for the inputs of in-
context learning. A detailed explanation of each template is provided
below.
Code Generation Initialization (CGI). The CGI is designed to
enhance the LLM’s understanding of how to use the pygambit
library, beyond its prior knowledge, by examining example code.
We provide two examples, each containing a game description and
the corresponding pygambit code for generating the EFG. We also
provide additional guidance through pygambit API documentation.
Imperfect Information Retrieval Initialization (IIRI). This ini-
tialization aims to guide the LLMs to extract imperfect information
from a game description and use the set_infoset() function to ex-
press the imperfect information. In the prompt, we present three

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

596

demonstrations. Each demonstration includes a game description,
the reasoning process for identifying imperfect information, and the
code that groups decision nodes using the set_infoset() function.
Imperfect Information Retrieval. The prompt for the retrieval
process includes specific guidance on the task of extracting incom-
plete information from a target game description. For example, we
request that set_infoset() is used, and also ask the LLM to provide
its reasoning, as in the Chain-of-Thought (CoT) methodology [39].
EFG Generation. Finally, in stage two, the EFG generation prompt
asks the LLM to create an EFG file based on the target game descrip-
tion. For imperfect information games, it explicitly incorporates the
output from stage one. For perfect information games, it utilizes the
conclusion of stage one that no imperfect information is present in
the games. Guidance on common pygambit bugs is provided and,
again, we ask the LLM to give its reasoning as in the CoT approach.
Self-debugging. The prompts are only used if an error is encountered
with the LLM’s pygambit code output. The prompts guide the LLMs
to correct these errors in a next attempt, and include two components:
the python interpreter’s error message and instructions on addressing
common bugs encountered when using the pygambit library. To
ensure a fair comparison, in all settings without self-debugging, if
errors are encountered, we provide the LLM with a prompt requesting
a new response without including any bug-related information or
additional instructions. This setup isolates the effect of self-debugging
when comparing to settings without it.

5 EXPERIMENTAL SETUP
In our experimental evaluation, we used two datasets: a custom dataset
created specifically for this study, which focuses on sequential games
with a single description provided for each underlying game, and
a dataset from Mensfelt et al. [26], which emphasizes bimatrix
(simultaneous-move) games and includes multiple descriptions for
the same underlying game. The latter dataset is particularly useful for
assessing the robustness of our method to variations in descriptions.
New custom dataset: Our 18 game descriptions in this dataset, each
correspond to a different underlying game. These games have a range
of different strategic complexities, as shown in Table 2, where we
display certain characteristics of these games: binary features such
as whether they are perfect information, or zero-sum; and numeric
features such as the maximum depth of the game tree and the number
of players, decision nodes, and leaves. The 18 games are chosen
to cover classic games from the literature such as Kuhn poker and
Tic-Tac-Toe. Some of these games were adapted from their standard
forms and others were not not taken from literature or teaching
materials, to mitigate the risk that the LLMs had memorized the
answers to our requests6. For example, our game “Nim with five
in one pile” is adapted from an .efg file obtained from the Gambit
website. However, we modified the payoffs by switching the game
from normal play to misère. Additionally, the three games listed
as “Extra” Games One, Two, and Three in Table 2 were created
by us and are not derived from any pre-existing materials available

6In our experiments, when we ask directly for an .efg file (Setting A below) or pygambit
code (Settings B,C,D below) as output, this could happen if the LLM had seen this file
or code during training. To address this concern, we carefully curated our test set to
include many games for which it is highly unlikely that corresponding pygambit code or
.efg files were present in the training data.

Inputs Prompts

Code
Generation

Initialization

Given a game description in natural language, you
will be asked to generate python code for the Gam-
bit API (pygambit) to construct a corresponding
extensive-form game in Gambit. Here are two ex-
amples of how to use pygambit library:
{CODE EXAMPLE ONE}
{CODE EXAMPLE TWO}
Below is the documentation for several relevant
functions in the pygambit library:
{API DOCUMENTATION}

Imperfect
Information

Retrieval
Initialization

A challenge of this task is to represent the imperfect
information in the game with pygambit. Given the
game description below, please infer the imperfect
information structure in the game. Make sure that
if there are multiple decision nodes of a player
who cannot tell among these nodes which node
they are at, then these nodes are all grouped in the
same information set. In short, an information set
belongs to a player and should contain all nodes of
that player such that the player will know that they
are at one of these nodes but they will not know
exactly which one they are at.
{IMPERFECT INFO EXAMPLE ONE}
{IMPERFECT INFO EXAMPLE TWO}
{IMPERFECT INFO EXAMPLE THREE}

Imperfect
Information

Retrieval

{GAME DESCRIPTION}
You MUST ONLY include the necessary
set_infoset() functions in the Python code block.
Do NOT include any other code in the code block.
Think step by step and write your reasoning in
comments (step-by-step thought process) within
the code.

EFG
Generation

{GAME DESCRIPTION}
The CODE for representing the imperfect informa-
tion of the game is as follows:
{CODE FOR IMPERFECT INFORMATION}
{GUIDANCE ON CODE}
Then, could you write python code to generate the
EFG for this game using the pygambit library in the
example?
Let’s think step by step and write the reasoning in
the code comments.

Error Message

Your code contains an error. Please review and fix
it before trying again.
{ERROR MESSAGE}
{GENERAL GUIDANCE ON ERRORS}

Table 1: Input prompts of the framework.

online. Also, games like Colonial Control and Tic-Tac-Toe did not
historically have EFG files or pygambit code available on the web, so
the LLM could not rely on memorization to translate these games.
Dataset from Mensfelt et al. [26]. This dataset consists of 112
descriptions in total, which correspond to: 110 bimatrix games of
size 2x2, 1 bimatrix game of size 3x3, and 1 is a sequential game
that corresponds to a 2x4 bimatrix game. The 110 bimatrix games
are based on five classic games: Battle of the Sexes, Hawk-Dove,
Matching Pennies, Prisoner’s Dilemma, and Stag Hunt. Each classic

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

597

game is presented in two formats: one with numerical payoffs and
one without. For each format, there are a total of 11 descriptions,
including one standard explanation from the game theory literature
and 10 variations generated using GPT-4o, which reinterpret these
games as diverse real-life scenarios.
Baselines. We evaluate the effectiveness of each module in our
framework by experimenting with various settings, both including
and excluding the modules. In our most basic setting, we task the LLM
with generating an EFG file directly based on a game description,
without requiring it to utilize the pygambit API. We then investigate
four settings that require the pygambit API:
• Setting A: The setting that utilizes minimal EFG generation

prompts in Table 1, without incorporating additional information
for imperfect information retrieval;

• Setting B: Setting A with self-debugging;
• Setting C: Setting A with imperfect information retrieval;
• Setting D (Full Pipeline): Setting A with both self-debugging

and imperfect information retrieval.
Figure 4 provides an illustration. For each of these settings, we
combine them with three different LLMs. Additionally, we compare
our setting D, the full pipeline, with the approach by Mensfelt et al.
[26], which uses logic programming to represent target games.

Basic
Prompts

CGI
Prompts

Output Code for
EFG Creation

CGI
Prompts

IIRI
Prompts

DataFlow

Basic Setting

GameInterpreter Setting A

GameInterpreter Setting B

GameInterpreter Setting D: Full Pipeline

CGI
Prompts

Output IIR Code
and Comments

CGI
Prompts

IIRI
Prompts

GameInterpreter Setting C

EFG
Format File

Self-Debug

Output Code for
EFG Creation

Output Code for
EFG Creation

Self-Debug

Output Code for
EFG Creation

EFG
Format File

EFG
Format File

EFG
Format File

Output IIR Code
and Comments

EFG
Format File

Figure 4: The five approaches we evaluated.

Evaluation. When translating game descriptions into extensive-form
representations, a key task is to ensure that the generated EFG is
consistent with the description. Formally, a game description corre-
sponds to a family of EFGs that are consistent with that description;
this family can vary in size, and could possibly even by infinite, de-
pending on the specificity of the game details provided. For instance,
if a game description includes inequalities or relationships between
payoffs but lacks precise values, many payoff assignments may be
consistent with it, with different corresponding EFGs. Similarly, for
descriptions of simultaneous-move games (e.g., bimatrix games), a
consistent EFG could depict either of the two players acting first, with
imperfect information modeling the simultaneity of their choices.

For checking the consistency, we manually assess whether the
game tree, information sets, and payoffs in the generated EFG are
consistent with the target game description. This requires firstly
checking the generated tree structure, including which players move
at which nodes, starting from the root, along with how the actions
at the nodes lead to moves of other players; this is informed by
the labels for moves that are provided in the generated EFG files.
For information sets, we ensure that nodes indistinguishable to a
given player are grouped within the same information set. Finally,
for payoffs, if specific values are provided in the game description,
we check that the generated payoffs at the appropriate terminal nodes
(outcomes) match these values. If the game description only implies
relative payoff strengths, we verify that the payoffs are consistent
with the implied constraints.

We use 𝑝𝑎𝑠𝑠@𝑘 (the solve rate given 𝑘 “samples”, that is, inde-
pendently generated EFG files), as proposed by Chen et al. [4], to
measure the success of our translations for a specific target game
description. Specifically, we execute GameInterpreter 𝑘 = 5 times in
our experiments, and we record the total number of generated EFGs,
𝑠 ∈ [1, . . . , 5], that are consistent with the target game description. As
described in more detail in Section 6, in our experimental analysis, we
distinguish between the case where at least one sample was correct
(i.e., 𝑠 ≥ 1), so we “𝑝𝑎𝑠𝑠@5”, and the case where all samples were
correct (i.e., 𝑠 = 5), referred to as “𝑝𝑎𝑠𝑠 𝑎𝑙𝑙 5”, which is stricter than
𝑝𝑎𝑠𝑠@5. While improvements under 𝑝𝑎𝑠𝑠 𝑎𝑙𝑙 5 are more desirable,
we also evaluate 𝑝𝑎𝑠𝑠@5 to highlight any relative merits of different
settings we investigate, particularly in cases where the strictness of
𝑝𝑎𝑠𝑠 𝑎𝑙𝑙 5 might hide differences in performance.
Parameters. We use the OpenAI API to access various LLMs, in
particular: gpt-4-0125-preview, gpt-4o, and gpt-3.5-turbo. All of
these models have two key hyperparameters that relate to how the
next tokens are chosen, namely the temperature and 𝑝 threshold for
top-𝑝 sampling; both take values in [0, 1]. In top-𝑝 sampling [14],
also known as nucleus sampling, the threshold 𝑝 is used to restrict
sampling of the next token to only the smallest set of most-likely
candidates whose cumulative probability exceeds 𝑝. We set 𝑝 as 1
(i.e., we do not restrict the next tokens at all). We set the temperature
of LLMs to 0, which minimizes the amount of randomness in the
chosen tokens (a choice of 1 would maximize it); note that setting
the temperature to 0 makes the output as deterministic as possible,
but, even with a fixed prompt, the output of these LLMs still often
varies in repeat trials with the temperature set to 0, which has been
attributed to issues like multi-GPU inference with varying GPU clock
times. When comparing our method to the work by Mensfelt et al.
[26], we match their experimental settings and adjust the temperature
to 1. The maximal number of attempts for self-debugging is set to 3.

6 EXPERIMENTAL RESULTS
Overview. Table 3 displays the performance of all settings across the
18 games of our custom dataset. A grey tick indicates that between 1
and 4 of the 5 generated samples were successfully solved, a red cross
means none were solved, and a green tick indicates that all 5 samples
were solved. Thus a grey tick indicates a 𝑝𝑎𝑠𝑠@5 and a green tick
indicates a 𝑝𝑎𝑠𝑠 𝑎𝑙𝑙 5 (which is by definition also a 𝑝𝑎𝑠𝑠@5).

For all LLMs, setting D, the full pipeline, outperformed its counter-
parts. Among the LLMs, GPT-4o achieved the highest performance,

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

598

Game Names Game Features
Perfect Info Zero-Sum Max Depth #Players #Nodes #Leaves

A Three-Player Game ✗ ✓ 4 3 7 8

An Imperfect Recall Game ✗ ✓ 3 2 7 8

Absent-Minded Driver ✗ ✗ 2 1 2 3

Bach or Stravinsky ✗ ✗ 2 2 3 4

Bagwell ✗ ✗ 3 2 7 8

Kuhn Poker ✗ ✓ 4 2 25 30

Extra Game One ✗ ✗ 5 2 16 21

Extra Game Two ✗ ✗ 5 3 22 24

Market Signalling Game ✗ ✗ 3 2 7 8

Nuclear Crisis ✗ ✗ 4 2 5 6

Rock, Paper, Scissors ✗ ✓ 2 2 4 9

Centipede ✓ ✗ 4 2 4 5

Colonial Control ✓ ✗ 3 2 4 5

Extra Game Three ✓ ✓ 4 2 17 24

Market Entry Model ✓ ✗ 2 2 2 3

Nim (with five in one pile) ✓ ✓ 5 2 12 8

Simple Bargaining Game ✓ ✗ 5 2 5 3

Tic-Tac-Toe ✓ ✓ 3 2 5 5

Table 2: The games in our custom dataset used in our evaluation, along with their features.

succeeding for 𝑝𝑎𝑠𝑠@5 for all 18 games, while GPT-4 also performed
well, succeeding on 15 of the games, and failing only Kuhn poker,
Nim, and Extra Game Two, which we note are three of the largest
games that we considered. In the basic setting, as well as in settings
A and B, we found that imperfect information games, like “A Three-
Player Game”, are challenging to solve. This motivates our approach
using a first stage for imperfect information retrieval. Their poor
performance shows that the LLMs had not effectively memorized
the solutions for our custom dataset.

Across all settings, GPT-3.5 underperforms GPT-4 and GPT-4o,
and it does not benefit from the addition of imperfect information
retrieval and self-debugging. Ultimately, we see that setting D, the
full pipeline, yields the best performance across all configurations.
Performance of Self-Debugging. Table 4 presents the 𝑝𝑎𝑠𝑠@5
and 𝑝𝑎𝑠𝑠 𝑎𝑙𝑙 5 metrics (extracted from Table 3) with and without
the self-debugging module for each LLM. Under 𝑝𝑎𝑠𝑠@5, both
GPT-3.5 and GPT-4o show improvements, while GPT-4 remains
unchanged. Under 𝑝𝑎𝑠𝑠 𝑎𝑙𝑙 5, both GPT-4 and GPT-4o improve,
whereas GPT-3.5 fails in all games with or without self-debugging,
with the performance constrained by the limitations of the LLM itself.
These findings show that the self-debugging module contributes to
an overall enhancement in the framework’s performance.
Performance of Imperfect Info Retrieval. In Table 5, we exam-
ine the impact of the imperfect information retrieval module by
comparing setting B with the full pipeline, under the 𝑝𝑎𝑠𝑠@5 and
stricter 𝑝𝑎𝑠𝑠 𝑎𝑙𝑙 5 metrics (extracted from Table 3). We distinguish
between imperfect information games and perfect information games
to analyze the module’s effect on each category. Table 5 shows that
the imperfect information retrieval module significantly enhances
the performance of GPT-4 and GPT-4o, increasing the number of

imperfect information games passed under 𝑝𝑎𝑠𝑠@5. Notably, GPT-
4o benefits the most from the module. In contrast, for GPT-3.5, no
performance improvement was observed, suggesting that LLM itself
is at fault. Finally, we note that for GPT-4 and GPT-4o, translation
of perfect information games was also better with the module. We
attribute this to use of details of the reasoning process generated in
stage one, which aids the LLM in stage two by improving its ability
to identify game types and the associated tree structures.
Experiments with Mensfelt et al. [26] Games. We further evaluate
the performance of our framework using the 112 game descriptions
from Mensfelt et al. [26]. For a comparison with their experimental
results, we adopt their approach to regeneration attempts: rather than
always performing a fixed number of attempts, they stop on the first
successful attempt, or give up after 5 failed attempts.

Mensfelt et al. [26] used a logic programming approach. Across the
five underlying bimatrix games in their dataset, they achieved 100%
accuracy for the Hawk-Dove and Stag Hunt games, but encountered
errors for descriptions of the Prisoner’s Dilemma, Battle of the Sexes,
and Matching Pennies games. With the same setup, our approach
correctly translated all 112 of their game descriptions. For 102 of
these 112 cases, the first correct translation was on the first attempt,
the remaining 10 were correctly translated on the second attempt.
This demonstrates the robustness of our method to variations in game
descriptions in the context of 2x2 games (as future work, it would
be good to explore this for more complex games too). We note that
we were able to immediately apply our approach to their setting
because EFGs are more general than bimatrix games. In contrast,
their approach cannot be directly applied to generate EFG files, so
we could not test it on EFG file generation with our custom dataset.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

599

Games Basic Setting Setting A Setting B Setting C Setting D
3.5 4 4o 3.5 4 4o 3.5 4 4o 3.5 4 4o 3.5 4 4o

A Three-Player Game ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓[4] ✓[2] ✗ ✓[4] ✓[2]
An Imperfect Recall Game ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓[4] ✓[2] ✗ ✓[4] ✓[4]
Absent-Minded Driver ✗ ✗ ✗ ✗ ✓[1] ✗ ✗ ✓[2] ✗ ✗ ✓[4] ✗ ✗ ✓[4] ✓[2]
Bach or Stravinsky ✗ ✗ ✗ ✗ ✗ ✗ ✓[1] ✗ ✗ ✗ ✓[4] ✓ ✓[1] ✓[4] ✓

Bagwell ✗ ✗ ✗ ✗ ✗ ✓[4] ✗ ✗ ✓[4] ✗ ✓[1] ✓[4] ✗ ✓[1] ✓[4]
Kuhn Poker ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓[2] ✗ ✗ ✓[2]
Extra Game One ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓[3] ✓[4] ✗ ✓[4] ✓[4]
Extra Game Two ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓

Market Signalling Game ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓[2] ✓[4] ✗ ✓[2] ✓

Nuclear Crisis ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓[2] ✓[2] ✗ ✓[2] ✓[2]
Rock, Paper, Scissors ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓[2] ✓[3] ✗ ✓[2] ✓

Centipede ✗ ✗ ✗ ✗ ✓[2] ✓ ✗ ✓[4] ✓ ✗ ✓[4] ✓ ✗ ✓ ✓

Colonial Control ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Extra Game Three ✗ ✓[1] ✗ ✗ ✓ ✓[2] ✗ ✓ ✓[2] ✗ ✓[3] ✓ ✗ ✓ ✓

Market Entry Model ✗ ✓[2] ✓[2] ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓

Nim (with five in one pile) ✗ ✗ ✗ ✗ ✗ ✓[4] ✗ ✗ ✓[4] ✗ ✗ ✓ ✗ ✗ ✓

Simple Bargaining Game ✗ ✗ ✓[3] ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓[3] ✓ ✗ ✓ ✓

Tic-tac-toe ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓[4] ✓ ✗ ✓ ✓

Table 3: Results of EFG file generation under various settings. A red cross indicates that none of the generated samples passed; a green
tick shows that all five generated samples passed; a grey tick signifies that between 1 and 4 generated samples passed, with the exact
number of successes shown in brackets. Perfect information games (top) and imperfect information games (bottom) are separated.

Metrics GPT-3.5 GPT-4 GPT-4o
Setting C Setting D Setting C Setting D Setting C Setting D

𝑝𝑎𝑠𝑠@5 0 1 15 15 17 18
𝑝𝑎𝑠𝑠 𝑎𝑙𝑙 5 0 0 2 6 9 11

Table 4: Performance with and without self-debugging.

Game Types Metrics GPT-3.5 GPT-4 GPT-4o
Setting B Setting D Setting B Setting D Setting B Setting D

Imperfect info
(11 games)

𝑝𝑎𝑠𝑠@5 1 1 1 9 2 11
𝑝𝑎𝑠𝑠 𝑎𝑙𝑙 5 0 0 0 0 1 4

Perfect info
(7 games)

𝑝𝑎𝑠𝑠@5 0 0 6 6 7 7
𝑝𝑎𝑠𝑠 𝑎𝑙𝑙 5 0 0 5 6 5 7

All games
(18 games)

𝑝𝑎𝑠𝑠@5 1 1 7 15 9 18
𝑝𝑎𝑠𝑠 𝑎𝑙𝑙 5 0 0 5 6 6 12

Table 5: Performance with and without IIR.

7 CONCLUSION AND DISCUSSION
We introduced a two-stage framework for translating game descrip-
tions in natural language into EFG representations, leveraging LLMs,
in-context learning, and code generation with pygambit. The first
stage addresses imperfect information via a module that identifies
information sets and the corresponding partial game tree structure.
In the second stage, the output from stage one is used, along with a
self-debugging module, to generate a complete EFG using pygambit.
We evaluate the framework’s overall performance, as well as its
individual components, across three LLMs on 18+112=130 game
descriptions spanning 21 different games7. Our experimental results
show that the framework significantly outperforms baseline models
in generating accurate EFGs, with each module playing a critical
role in its success.
7Bach or Stravinksy is the Battle of the Sexes from Mensfelt et al. [26], and Rock Paper
Scissors appears in both datasets, so we have 18-2+5=21 distinct games overall.

One potential direction for future work is to move beyond manual
consistency checks and develop a robust, automated check. Specifi-
cally, automated validation may require a “suite” of checks covering
various aspects of consistency. For instance, 𝛼-rank [28] could be
applied to compare rankings of strategies between target and gener-
ated EFGs; more generally different types of strategic equivalence
could used to design checks. Other checks could involve game fea-
ture extraction, such as identifying the number of players, possible
outcomes, and information sets. Note that it is essential to design
these checks carefully to avoid introducing sources of error.

Another direction of further work relates to the fact that many
games are actually parameterized8. A natural extension of our frame-
work would take a description of a parameterized game family, and
would then generate, instead of a single EFG file, a python function,
for example, using pygambit, that takes game parameters as inputs
and generates a corresponding EFG file. The development of such an
extension would benefit from the previously mentioned automated
checking of the consistency of an EFG file (given a parameterized
game description and a specific choice of parameters).

Finally, we believe it is important to explore game description
translation for larger and more complex games. In our custom dataset,
Kuhn Poker, with 25 decision nodes and 30 terminal nodes, was
the largest game. To tackle larger games, two significant challenges
must be addressed: the generation method’s capacity to handle
the increased complexity and our ability to accurately validate the
method’s outputs. Progress on either direction mentioned above
could help with this: solving parametrized games could be part of
a divide and conquer approach to translating complex games, and
robust automated checking of translation outputs would help with the
second challenge. Additionally, alternatives to in-context learning
such as supervised fine-tuning could also be effective for solving
such problem if a suitable game dataset is available.
8For instance, parameters include the number of stages in the Centipede game, the pile
sizes in Nim, or both the number of stages and the discount factor in bargaining games.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

600

REFERENCES
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774
(2023).

[2] Elif Akata, Lion Schulz, Julian Coda-Forno, Seong Joon Oh, Matthias Bethge, and
Eric Schulz. 2023. Playing repeated games with Large Language Models. arXiv
preprint arXiv:2305.16867 (2023).

[3] Tom B Brown. 2020. Language Models are Few-Shot Learners. arXiv preprint
arXiv:2005.14165 (2020).

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating Large Language Models Trained on Code. arXiv preprint
arXiv:2107.03374 (2021).

[5] Fenia Christopoulou, Gerasimos Lampouras, Milan Gritta, Guchun Zhang, Yinpeng
Guo, Zhongqi Li, Qi Zhang, Meng Xiao, Bo Shen, Lin Li, et al. 2022. PanGu-
Coder: Program Synthesis with Function-Level Language Modeling. arXiv preprint
arXiv:2207.11280 (2022).

[6] Constantinos Daskalakis, Ian Gemp, Yanchen Jiang, Renato Paes Leme, Christos
Papadimitriou, and Georgios Piliouras. 2024. Charting the Shapes of Stories with
Game Theory. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS).

[7] Shilong Deng, Yongzhao Wang, and Rahul Savani. 2025. From Natural Language
to Extensive-Form Game Representations. arXiv preprint arXiv:2501.17282
(2025). Code and results repo: https://github.com/zczlsde/GameInterpreter.

[8] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu
Sun, Jingjing Xu, and Zhifang Sui. 2022. A Survey on In-context Learning. arXiv
preprint arXiv:2301.00234 (2022).

[9] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783
(2024).

[10] Caoyun Fan, Jindou Chen, Yaohui Jin, and Hao He. 2024. Can Large Language
Models Serve as Rational Players in Game Theory? A Systematic Analysis. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 17960–
17967.

[11] Yao Fu, Hao Peng, Tushar Khot, and Mirella Lapata. 2023. Improving Language
Model Negotiation with Self-Play and In-Context Learning from AI Feedback.
arXiv preprint arXiv:2305.10142 (2023).

[12] Ian Gemp, Roma Patel, Yoram Bachrach, Marc Lanctot, Vibhavari Dasagi, Luke
Marris, Georgios Piliouras, Siqi Liu, and Karl Tuyls. 2024. Steering Language Mod-
els with Game-Theoretic Solvers. In Agentic Markets Workshop at International
Conference on Machine Learning (AMW@ICML).

[13] Christopher Hahn, Frederik Schmitt, Julia J Tillman, Niklas Metzger, Julian Siber,
and Bernd Finkbeiner. 2022. Formal Specifications from Natural Language. arXiv
preprint arXiv:2206.01962 (2022).

[14] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The
Curious Case of Neural Text Degeneration. In Proceedings of the International
Conference on Learning Representations ICLR.

[15] Dengrong Huang, Zizhong Wei, Aizhen Yue, Xuan Zhao, Zhaoliang Chen, Rui Li,
Kai Jiang, Bingxin Chang, Qilai Zhang, Sijia Zhang, et al. 2023. DSQA-LLM:
Domain-Specific Intelligent Question Answering Based on Large Language Model.
In Proceedings of International Conference on AI-generated Content (AIGC).
170–180.

[16] Lucas Jatova, Jacob Smith, and Alexander Wilson. 2024. Employing Game Theory
for Mitigating Adversarial-Induced Content Toxicity in Generative Large Language
Models. TechRxiv (2024).

[17] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven
Chu Hong Hoi. 2022. CodeRL: Mastering Code Generation through Pretrained
Models and Deep Reinforcement Learning. In Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), Vol. 35. 21314–21328.

[18] Gabriel Leite, Filipe Arruda, Pedro Antonino, Augusto Sampaio, and AW Roscoe.
2024. Extracting Formal Smart-Contract Specifications from Natural Language
with LLMs. In Proceedings of the International Conference on Formal Aspects of
Component Software (FACS), Vol. 15189. 109–126.

[19] Iat Tou Leong and Raul Barbosa. 2023. Translating Natural Language Requirements
to Formal Specifications: A Study on GPT and Symbolic NLP. In Proceedings of
the IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops (DSN-W). 259–262.

[20] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. 2022.
Competition-Level Code Generation with AlphaCode. Science 378, 6624 (2022),
1092–1097.

[21] Zhenyu Li, Sunqi Fan, Yu Gu, Xiuxing Li, Zhichao Duan, Bowen Dong, Ning
Liu, and Jianyong Wang. 2024. FlexKBQA: A Flexible LLM-Powered Framework
for Few-Shot Knowledge Base Question Answering. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI). 18608–18616.

[22] Jiate Liu, Yiqin Zhu, Kaiwen Xiao, QIANG FU, Xiao Han, Yang Wei, and Deheng
Ye. 2023. RLTF: Reinforcement Learning from Unit Test Feedback. Transactions
on Machine Learning Research (2023).

[23] Nunzio Lorè and Babak Heydari. 2023. Strategic Behavior of Large Language
Models: Game Structure vs. Contextual Framing. arXiv preprint arXiv:2309.05898
(2023).

[24] Chengdong Ma, Ziran Yang, Minquan Gao, Hai Ci, Jun Gao, Xuehai Pan, and
Yaodong Yang. 2023. Red Teaming Game: A Game-Theoretic Framework for Red
Teaming Language Models. arXiv preprint arXiv:2310.00322 (2023).

[25] Shaoguang Mao, Yuzhe Cai, Yan Xia, Wenshan Wu, Xun Wang, Fengyi Wang,
Tao Ge, and Furu Wei. 2023. ALYMPICS: Language Agents Meet Game Theory.
arXiv preprint arXiv:2311.03220 (2023).

[26] Agnieszka Mensfelt, Kostas Stathis, and Vince Trencsenyi. 2024. Autoformal-
ization of Game Descriptions using Large Language Models. arXiv preprint
arXiv:2409.12300 (2024).

[27] Agnieszka Mensfelt, Kostas Stathis, and Vince Trencsenyi. 2024. Autoformalizing
and Simulating Game-Theoretic Scenarios using LLM-augmented Agents. arXiv
preprint arXiv:2412.08805 (2024).

[28] Shayegan Omidshafiei, Christos Papadimitriou, Georgios Piliouras, Karl Tuyls,
Mark Rowland, Jean-Baptiste Lespiau, Wojciech M Czarnecki, Marc Lanctot,
Julien Perolat, and Remi Munos. 2019. 𝛼-rank: Multi-agent evaluation by evolution.
Scientific Reports 9, 9937 (2019), 29.

[29] OpenAI. 2024. GPT-4o System Card. https://cdn.openai.com/gpt-4o-system-
card.pdf Accessed: 2024-10-13.

[30] Kristijan Poje, Mario Brcic, Mihael Kovac, and Marina Bagic Babac. 2024. Effect
of Private Deliberation: Deception of Large Language Models in Game Play.
Entropy 26, 6 (2024), 524.

[31] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code Llama: Open Foundation Models for Code. arXiv preprint arXiv:2308.12950
(2023).

[32] Rahul Savani and Theodore L. Turocy. 2024. Gambit: The package for computation
in game theory, Version 16.2.0. http://www.gambit-project.org Version 16.2.0.

[33] Zijing Shi, Meng Fang, Shunfeng Zheng, Shilong Deng, Ling Chen, and Yali Du.
2023. Cooperation on the Fly: Exploring Language Agents for Ad Hoc Teamwork
in the Avalon Game. arXiv preprint arXiv:2312.17515 (2023).

[34] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. 2024. Reflexion: Language Agents with Verbal Reinforcement
Learning. In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS). 8634–8652.

[35] Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K. Reddy. 2023.
Execution-based Code Generation using Deep Reinforcement Learning. Transac-
tions on Machine Learning Research (2023).

[36] Alonso Silva. 2024. Large Language Models Playing Mixed Strategy Nash
Equilibrium Games. arXiv preprint arXiv:2406.10574 (2024).

[37] Yiming Tan, Dehai Min, Yu Li, Wenbo Li, Nan Hu, Yongrui Chen, and Guilin Qi.
2023. Can ChatGPT Replace Traditional KBQA Models? An In-Depth Analysis
of the Question Answering Performance of the GPT LLM Family. In Proceedings
of the International Semantic Web Conference (ISWC), Vol. 14265. 348–367.

[38] Bernhard von Stengel. 2021. Game Theory Basics. Cambridge University Press.
[39] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei

Xia, Ed H. Chi, Quoc V Le, and Denny Zhou. 2022. Chain of Thought Prompting
Elicits Reasoning in Large Language Models. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), Vol. 35. 24824–24837.

[40] Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu,
and Yang Liu. 2023. Exploring Large Language Models for Communication
Games: An Empirical Study on Werewolf. arXiv preprint arXiv:2309.04658
(2023).

[41] Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang,
Shiqing Ma, Lin Tan, and Xiangyu Zhang. 2020. C2S: Translating Natural
Language Comments to Formal Program Specifications. In Proceedings of the
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (FSE). 25–37.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

601

https://github.com/zczlsde/GameInterpreter
https://cdn.openai.com/gpt-4o-system-card.pdf
https://cdn.openai.com/gpt-4o-system-card.pdf
http://www.gambit-project.org

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 In-Context Learning
	3.2 Extensive-Form Game Representations
	3.3 Code Generation with Gambit

	4 The Game Interpreter Framework
	5 Experimental Setup
	6 Experimental Results
	7 Conclusion and Discussion
	References

