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ABSTRACT
This paper considers stochastic multi-armed bandit problems (MAB)

and presents a novel framework for constructing UCB-type algo-

rithms. The main ingredient of UCB-type algorithms is the esti-

mate of the confidence bound typically derived from statistical

assumptions. On the opposite, our approach derives the confidence

bounds from the convergence rate of the base convex optimization

method, which helps to solve auxiliary optimization problems in

every round. To show the relations between the convergence of the

optimization method and the novel UCB-type algorithm, we derive

the regret bounds corresponding to the convergence rates of the se-

lected optimization method. To illustrate the proposed framework,

we introduce a new algorithm, Clipped-SGD-UCB, for the MAB

with heavy-tailed reward distribution, where Clipped-SGD is used

as a base convex optimization method since its convergence for

the heavy-tail inexact oracle is known. We show theoretically and

empirically that in the case of symmetric noise in the reward distri-

bution, one can achieve an𝑂 (log𝑇
√︁
𝐾𝑇 log𝑇 ) regret bound instead

of𝑂

(
𝑇

1

1+𝛼 𝐾
𝛼
1+𝛼

)
. These bounds correspond to the cases where the

reward distribution satisfies E𝑋 ∈D [|𝑋 |1+𝛼 ] ≤ 𝜎1+𝛼 (𝛼 ∈ (0, 1]), i.e.
perform better than it is assumed by the general lower bound for

bandits with heavy-tails.

KEYWORDS
multi-armed bandits; UCB algorithm; heavy tails

ACM Reference Format:
Yuriy Dorn, Aleksandr Katrutsa, Ilgam Latypov, and Andrey Pudovikov.

2025. Fast UCB-type algorithms for stochastic bandits with heavy and super

heavy symmetric noise. In Proc. of the 24th International Conference on
Autonomous Agents andMultiagent Systems (AAMAS 2025), Detroit, Michigan,
USA, May 19 – 23, 2025, IFAAMAS, 9 pages.

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

1 INTRODUCTION
In this work, we consider the stochastic multi-armed bandit problem

(MAB) with a heavy-tailed reward distribution introduced by [4].

This problem is a special case of the classical MAB problem in-

troduced by [18]. The problem is formulated as follows: an agent

sequentially chooses one of the 𝐾 actions (arms) in every round

with a total number of rounds equal to𝑇 . For each arm 𝑖 = 1, . . . , 𝐾

there is a corresponding unknown probability distribution of re-

ward D𝑖 with a finite mean 𝜇𝑖 and finite (1 + 𝛼)-moment, where

𝛼 ∈ (0, 1], i.e. more formally there exists fixed 𝜎𝑖 > 0 such that

E𝑋 ∈D𝑖 [|𝑋 |1+𝛼 ] ≤ 𝜎1+𝛼
𝑖

. In every round 𝑡 , the agent selects an arm

𝐴𝑡 , and then the reward is sampled independently from D𝐴𝑡 . The

agent minimizes the regret accumulated throughout 𝑇 rounds

𝑅𝑇 = 𝑇 max

1≤𝑖≤𝐾
𝜇𝑖 −

𝑇∑︁
𝑡=1

E[𝜇𝐴𝑡 ] . (1)

It is well-known [4] that a regret lower bound is Ω
(
𝑇

1

1+𝛼 𝐾
𝛼
1+𝛼

)
.

In [4], the general template for constructing UCB-type algo-

rithms named Robust UCB is proposed. It requires a tractable and

robust mean estimation procedure and can be described as follows:

• For each arm 𝑖 findmean estimator 𝜇
𝑘𝑖
𝑖

based on𝑘𝑖 samples of

reward, such that |𝜇𝑘𝑖
𝑖

− 𝜇𝑖 | ≤ 𝑟 (𝑘𝑖 , 𝛿) holds with probability

at least 1 − 𝛿 and the confidence radius 𝑟 (𝑘𝑖 , 𝛿) decreases
with increasing number of samples 𝑘𝑖 .

• For each arm 𝑖 construct upper confidence bound (UCB) from

the mean estimator 𝜇
𝑘𝑖
𝑖

and the confidence radius 𝑟 (𝑘𝑖 , 𝛿)

𝑈𝐶𝐵𝑖 (𝑘𝑖 , 𝛿) = 𝜇𝑘𝑖𝑖 + 𝑟 (𝑘𝑖 , 𝛿), (2)

which is used as a high probability upper bound on mean

reward.

• Play arm 𝐴𝑡 such that 𝐴𝑡 = argmax1≤𝑖≤𝐾 𝑈𝐶𝐵𝑖 (𝑘𝑖 , 𝛿), ob-
serve reward and update 𝑈𝐶𝐵𝐴𝑡 (𝑘𝐴𝑡 , 𝛿).

In the vanilla UCB introduced by [2], the mean estimator 𝜇
𝑘𝑖
𝑖

is

computed via empirical mean 𝜇
𝑘𝑖
𝑖

= 1

𝑘𝑖

∑𝑇
𝑡=1 𝑋𝑡 I{𝐴𝑡=𝑖 } and confi-

dence interval 𝑟 (𝑘𝑖 , 𝛿) =
√︃

2𝑣 log 1/𝛿
𝑘𝑖

. In Robust UCB, the empirical

mean can be replaced by a truncated empirical mean, median of

means, or Catoni’s M-estimator to construct 𝜇
𝑘𝑖
𝑖

and confidence
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radius 𝑟 (𝑘𝑖 , 𝛿) = 𝑣1/𝛼
(
𝑐 log 1/𝛿
𝑘𝑖

) 𝛼
1+𝛼

with an appropriate choice of

parameters 𝑣 and 𝑐 .

However, the standard estimators used in the Robust UCB tem-

plate, like the truncated mean, require intensive computations and

reduce its practical relevance. Recently proposed algorithms in [1, 7]

have the same drawback. To address this issue, we introduce a novel

approach to constructing UCB-type algorithms for the MAB prob-

lem based on stochastic optimization algorithms.

A resulting algorithm has the same per-round complexity as a

stochastic algorithm used as a base and a regret rate as a standard

UCB-type algorithm. UCB estimation in every round can be done

independently for each arm, and one needs to update only a single

element of a vector with UCB values. Since the single UCB value

changes at each round, sorting these values can be done quickly.

To demonstrate the efficiency of our algorithm, we compare it

with the following SOTA algorithms in numerical experiments:

Clipped-INF-med-SMD [10], HTINF [9], Adaptive Robust UCB

algorithm [7] and classical Robust UCB [4].

The contributions of the presented study are the following.

• We propose a novel framework for constructing UCB-type

algorithms from the convergence bound of a base convex

optimization method.

• We establish relations between the convergence rate of the

base optimization method and the corresponding UCB-type

algorithm in terms of regret.

• We illustrate the introduced framework with the heavy-

tailed MAB problem, where Clipped-SGD is a base optimizer.

• The extensive numerical experiments confirm the perfor-

mance of our approach compared to alternatives.

1.1 Related works.
The Robust UCB algorithm from [4] is probably the first relevant

UCB-type algorithm for bandits with heavy tails. Its version with

a median of means estimator is very close to our approach and

demonstrates similar per-iteration convergence. However, the cru-

cial drawback of the Robust UCB algorithm is its high computational

costs. Our approach is less costly than Robust UCB.

Study [1] proposed an optimal algorithm that matches the lower

bound exactly in the first-order term. The proposed index concen-

trates faster compared to well-known truncated or trimmed em-

pirical mean estimators for the mean of heavy-tailed distributions.

However, this index is computationally demanding. The authors

of [12] propose an optimal algorithm if it is known that the reward

distribution has the 𝑝-th moment, but the bounding constant is

unknown. In addition, indices for all arms are recomputed in ev-

ery round, making these algorithms slow. Adaptive Robust UCB

algorithm [7] matches the lower bound and requires no additional

knowledge of the reward’s distribution parameters. However, the

estimate used there is computationally demanding.

In recent years, another idea, usually referred to as “best-of-

two-worlds” was proposed. The name implies that the proposed

algorithms achieve lower bounds in stochastic and adversarial MAB

settings. This idea assumes the application of techniques for adver-

sarial bandit [3] to stochastic MAB problems with a heavy-tailed

distribution of rewards, see [6, 9, 13, 20, 22]. Powered by recent

advances in online convex optimization (OCO) (see [8, 16]), this ap-

proach leads to optimal algorithms in both adversarial and stochas-

tic settings with instance-independent regret bound𝑂

(
𝑇

1

1+𝛼 𝐾
𝛼
1+𝛼

)
.

Despite optimality in regret rate, the "best-of-the-two-worlds"

framework has high per-iteration complexity. To adjust the target

distribution, this framework uses online mirror descent (OMD),

which can be computationally intensive. Since OMD performs op-

erations on the entire vector in every round, it slows down in high

dimensions. Moreover, for some prox functions, OMD updates re-

quire solving an optimization problem in every round (see [21]).

Thus, this issue of the "best-of-the-two-worlds" framework restricts

its usefulness for real-time risk-sensitive and highly loaded systems.

There are alternative problem statements for the multi-armed

bandits with heavy-tailed rewards. Study [14] considers Lipschitz

bandits and establishes the corresponding lower bounds. The au-

thors of [15] consider linear bandits, and optimal algorithms for

this setting (up to a logarithmic factor) were introduced in [19].

These problem statements are out of the scope of our work.

2 FROM STOCHASTIC OPTIMIZATION
METHODS TO UCB-TYPE ALGORITHMS.

This section presents the general framework for converting a sto-

chastic optimization method with the known convergence rate to

the UCB-type algorithm. The proposed framework is motivated

by the key observation that the typical mean estimators in UCB-

type algorithms are solutions to auxiliary optimization problems.

For example, the empirical mean estimator maximizes the likeli-

hood function for the standard normal noise model. Therefore, we

can equip every arm with the auxiliary stochastic optimization

problems that satisfy the following requirements:

1) the solution of the 𝑖-th optimization problem at the round

𝑡 coincides with the estimate of the 𝑖-th arm reward at the

same round:

𝜇𝑖 = argmin

𝑥
𝑓𝑖 (𝑥) (3)

2) a noise distribution induced by the inexact oracle used in

solving stochastic optimization problems coincides with the

noise model in MAB.

In this work, we consider a stochastic bandit problem with a reward

distribution that satisfies the following assumption.

Assumption 1. The random reward 𝑋 𝑡
𝑖
for any arm 𝑖 = 1, . . . , 𝐾

and at any round 𝑡 = 1, . . . ,𝑇 is computed as 𝑋 𝑡
𝑖
= 𝜇𝑖 + 𝜉𝑡𝑖 , where the

noise 𝜉𝑡
𝑖
with the probability density function 𝜌𝑡

𝑖
satisfies the following

conditions:
• it is i.i.d. random variable: 𝜌𝑡

𝑖
(𝑢) = 𝜌𝑖 (𝑢) for any 𝑢 ∈ R,

• it is symmetric: 𝜌 (𝑢) = 𝜌 (−𝑢) for any 𝑢 ∈ R,
• it has heavy tail: there are 𝜎 > 0 and 𝛼 > 0, such that
E[|𝜉𝑡

𝑖
|𝛼 ] ≤ 𝜎𝛼 .

To complete the presentation of our framework, we have to pro-

vide the approach to constructing the confidence radius 𝑟 (𝑘, 𝛿) used
in (2). This confidence radius is closely related to the convergence

of the selected basic stochastic optimization method. Formally, we

define the first-order and zero-order 𝑔(𝑘, 𝛿)-bounded optimization

methods below (see Definitions 2 and 3) and derive the proper form

of the confidence radius from their convergence rates.
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Definition 2. A first-order stochastic optimization method

𝑥𝑘+1 = A (𝑥0,G𝑁 (𝑥0), . . . , 𝑥𝑘 ,G𝑁 (𝑥𝑘 )) ,

where G𝑁 (𝑥𝑖 ) is the aggregated 𝑁 samples 𝑓 ′
𝜉1
(𝑥𝑖 ), . . . , 𝑓 ′𝜉𝑁 (𝑥𝑖 )

generated by inexact first-order oracle, is referred to as a 𝑔(𝑘, 𝛿)-
bounded for solving minimization problem min𝑥 𝑓 (𝑥) if for any
𝑘 ∈ N and 𝛿 > 0 inequality

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗) ≤ 𝑔(𝑘, 𝛿)

holds with a probability of at least 1 − 𝛿 .

Definition 3. A zero-order stochastic optimization method

𝑥𝑘+1 = B (𝑥0,H𝑁 (𝑥0), . . . , 𝑥𝑘 ,H𝑁 (𝑥𝑘 )) ,

where H𝑁 is the aggregated 𝑁 samples 𝑓 (𝑥𝑖 ) + 𝜉1, . . . , 𝑓 (𝑥𝑖 ) +
𝜉𝑁 generated by the stochastic zero-order oracle, is referred to as

a 𝑔(𝑘, 𝛿)-bounded zero-order algorithm for solving minimization

problem min𝑥 𝑓 (𝑥) if for any 𝑘 ∈ N and 𝛿 > 0 inequality

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥∗) ≤ 𝑔(𝑘, 𝛿)

holds with probability at least 1 − 𝛿 .

The value of 𝑁 used to aggregate the stochastic gradient samples

in Definition 2 corresponds to the bias and variance of the used

gradient estimator. Further, this parameter plays an important role

in the convergence analysis of a particular optimization method.

The same role this parameter plays in Definition 3, where the bias

and variance of the objective function can be estimated.

The known convergence rates 𝑔(𝑘, 𝛿) can be used to estimate

the confidence radius for the mean estimator. Below, we provide

the First-order UCB (FO-UCB) and Zero-order UCB (ZO-UCB)
algorithms constructed based on the 𝑔(𝑘, 𝛿)-bounded optimization

methods of the corresponding orders.

2.1 First-order UCB algorithms.
The ingredients for constructing FO-UCBmethod are the following.

(1) Objective function for the 𝑖-th arm is 𝑓𝑖 (𝑥) = 1

2
(𝑥 − 𝜇𝑖 )2.

Other functions are feasible if the condition (3) holds.

(2) The corresponding inexact first-order oracle 𝑓 ′
𝑖
(𝑥, 𝜉) = 𝑥 −

𝜇𝑖 − 𝜉 , where 𝜉 is a random noise with distribution aligned

with the noise distribution for rewards, and the result of the

aggregation G𝑁 (𝑥) for the pre-defined parameter 𝑁 .

(3) A basic first-order optimization method A, which is 𝑔(𝑘, 𝛿)-
bounded.

In particular, assume that the aforementioned ingredients are

prepared, then we can compose the following UCB-type algorithm.

The mean estimator in every round is computed through the step

of the selected basic optimizer, and the corresponding confidence

radius is estimated as

√︁
𝑔(𝑘, 𝛿). Then, the UCB index similar to (2) is

computed and is used to select the next arm to play. The summary

of this scheme is presented in Algorithm 1.

Since our FO-UCB heavily relies on the selected 𝑔(𝑘, 𝛿)-bounded
first-order optimization method, it is natural to expect that the

convergence of the FO-UCB is closely related to the convergence

of the selected optimizer. Indeed, we present the convergence of

our FO-UCB with respect to the regret metric (1) in Theorem 4.

Algorithm 1 FO-UCB

Require: Basic first-order 𝑔(𝑘, 𝛿)-bounded optimization method

A, number of arms 𝐾 , period 𝑇 , initial estimates 𝑥0
1
= · · · =

𝑥0
𝐾
= 𝑥0, parameter 𝛿 , aggregation rule R, number of samples

for aggregation 𝑁 .

1: Run A for each arm 𝑖 = 1, . . . , 𝐾 independently to compute

𝑥1
𝑖
= A(𝑥0, 𝑓 ′(𝑥0, 𝜉)).

2: For each arm 𝑖 = 1, . . . , 𝐾 set 𝑘𝑖 = 1 and initialize𝑈𝐶𝐵𝑖 (𝑘𝑖 , 𝛿) =
𝑥1
𝑖
+

√︁
𝑔(1, 𝛿).

3: for 𝑡 = 1, . . . ,𝑇 do
4: Choose arm 𝑖𝑡 = argmax1≤𝑖≤𝐾 𝑈𝐶𝐵𝑖 (𝑘𝑖 , 𝛿).
5: Play 𝑖𝑡 arm 𝑁 times, observe 𝑁 rewards 𝜇𝑖𝑡 + [𝜉𝑡𝑖𝑡 ]1, . . . , 𝜇𝑖𝑡 +

[𝜉𝑡
𝑖𝑡
]𝑁 , where [𝜉𝑡

𝑖𝑡
] 𝑗 is the 𝑗-th sample of the noise.

6: Compute 𝑥
𝑘𝑖𝑡 +1
𝑖𝑡

= A(𝑥1
𝑖𝑡
,G𝑁 (𝑥1

𝑖𝑡
), . . . , 𝑥𝑘𝑖𝑡

𝑖𝑡
,G𝑁 (𝑥𝑘𝑖𝑡

𝑖𝑡
)),

where G𝑁 (𝑥𝑘𝑖𝑡
𝑖𝑡

) = R(𝑓 ′(𝑥𝑘𝑖𝑡
𝑖𝑡
, [𝜉𝑡

𝑖𝑡
]1), . . . , 𝑓 ′(𝑥

𝑘𝑖𝑡
𝑖𝑡
, [𝜉𝑡

𝑖𝑡
]𝑁 )),

where 𝑓 ′(𝑥𝑘𝑖𝑡
𝑖𝑡
, [𝜉𝑡

𝑖𝑡
] 𝑗 ) = 𝑥

𝑘𝑖𝑡
𝑖𝑡

− 𝜇𝑖𝑡 − [𝜉𝑡
𝑖𝑡
] 𝑗 .

7: Update UCB index of the played arm and preserve others:

𝑈𝐶𝐵𝑖 (𝑘𝑖 + 1, 𝛿) =
{
𝑈𝐶𝐵𝑖 (𝑘𝑖 , 𝛿), 𝑖 ≠ 𝑖𝑡 ,

𝑥
𝑘𝑖𝑡
𝑖𝑡

+
√︁
2𝑔(𝑘𝑖𝑡 , 𝛿), 𝑖 = 𝑖𝑡 .

8: Increase iteration counter for the played arm: 𝑘𝑖𝑡 := 𝑘𝑖𝑡 + 1.

9: end for

Theorem 4 (Convergence of FO-UCB). The regret of the FO-
UCB with 𝑔(𝑘, 𝛿)-bounded first-order algorithm for the MAB problem
with 𝐾 arms, functions 𝑓𝑖 (𝑥) = 1

2
(𝑥 − 𝜇𝑖 )2, period𝑇 , 𝛿 = 1

𝑇 2
satisfies

𝑅𝑇 ≤
∑︁
𝑖:Δ𝑖>0

Δ𝑖

(
𝑔−1

(⌈
Δ2

𝑖

8

⌉
,
1

𝑇 2

)
+ 2

)
, (4)

where Δ𝑖 = 𝜇𝑖∗−𝜇𝑖 , 𝑖∗ = argmax1≤𝑖≤𝐾 𝜇𝑖 , and𝑔−1 is such a function
that 𝑔(𝑔−1 (𝑘, 𝛿), 𝛿) = 𝑘 .

Proof. For proof, we follow the standard approach (see [11]).

Denote by Δ𝑖 = 𝜇𝑖∗ − 𝜇𝑖 , where 𝑖∗ = argmax1≤𝑖≤𝐾 𝜇𝑖 . Then, regret
can be computed as

𝑅𝑇 =

𝐾∑︁
𝑖=1

Δ𝑖E[𝑛𝑖 (𝑇 )],

where 𝑛𝑖 (𝑡) is the number of rounds before round 𝑡 when arm 𝑖

was chosen.

Let 𝐺𝑖 be a "good" event defined by

𝐺𝑖 =

{
𝜇𝑖∗ < min

1≤𝑡 ≤𝑇
𝑈𝐶𝐵(𝑖∗, 𝑛𝑖∗ (𝑡), 𝛿)

}
∩ {𝑈𝐶𝐵(𝑖, 𝑢𝑖 , 𝛿) < 𝜇𝑖∗ } ,

where the constant 𝑢𝑖 will be chosen later.

We show that if 𝐺𝑖 holds, then 𝑛𝑖 (𝑇 ) ≤ 𝑢𝑖 . We assume that this

is not true and 𝑛𝑖 (𝑇 ) > 𝑢𝑖 . Then, there exists a round 𝑡 ≤ 𝑇 such

that 𝑛𝑖 (𝑡 − 1) = 𝑢𝑖 and 𝐴𝑡 = 𝑖 . Then

𝑈𝐶𝐵(𝑖, 𝑛𝑖 (𝑡 − 1), 𝛿) = 𝑥𝑢𝑖
𝑖

+
√︁
2𝑔(𝑢𝑖 , 𝛿) < 𝜇𝑖∗ < 𝑈𝐶𝐵(𝑖∗, 𝑛𝑖∗ (𝑡 − 1), 𝛿).

Hence, 𝐴𝑡 = argmax1≤ 𝑗≤𝐾 𝑈𝐶𝐵( 𝑗, 𝑛 𝑗 (𝑡 − 1), 𝛿) ≠ 𝑖 and we obtain

a contradiction.
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Next, we bound the probability of the complementary event:

𝐺𝑖 =

{
𝜇𝑖∗ > min

1≤𝑡 ≤𝑇
𝑈𝐶𝐵(𝑖∗, 𝑛𝑖∗ (𝑡), 𝛿)

}
∪

{
𝑥
𝑢𝑖
𝑖

+
√︁
2𝑔(𝑢𝑖 , 𝛿) > 𝜇𝑖∗

}
.

We can then determine the probability of the first term using a

union bound:

P

[
𝜇𝑖∗ > min

1≤𝑡 ≤𝑇
𝑈𝐶𝐵(𝑖∗, 𝑛𝑖∗ (𝑡), 𝛿)

]
= P

[
∪𝑠≤𝑇

{
𝜇𝑖∗ > 𝑈𝐶𝐵(𝑖∗, 𝑛𝑖∗ (𝑠), 𝛿)

}]
≤

∑︁
𝑠≤𝑇
P

[
𝜇𝑖∗ > 𝑈𝐶𝐵(𝑖∗, 𝑛𝑖∗ (𝑠), 𝛿)

]
≤ 𝛿𝑇 .

To bound the probability of the second term, we use the following

scheme:

P
[
𝑥
𝑢𝑖
𝑖

+
√︁
2𝑔(𝑢𝑖 , 𝛿) > 𝜇𝑖∗

]
= P

[
𝑥
𝑢𝑖
𝑖

− 𝜇𝑖 +
√︁
2𝑔(𝑢𝑖 , 𝛿) > 𝜇𝑖∗ − 𝜇𝑖

]
= P

[
𝑥
𝑢𝑖
𝑖

− 𝜇𝑖 > Δ𝑖 −
√︁
2𝑔(𝑢𝑖 , 𝛿)

]
= P

[
𝑥
𝑢𝑖
𝑖

− 𝜇𝑖 > Δ𝑖 −
√︁
2𝑔(𝑢𝑖 , 𝛿) | |𝑥𝑢𝑖

𝑖
− 𝜇𝑖 | >

√︁
2𝑔(𝑢𝑖 , 𝛿)

]
·

P
[
|𝑥𝑢𝑖
𝑖

− 𝜇𝑖 | >
√︁
2𝑔(𝑢𝑖 , 𝛿)

]
+

P
[
𝑥
𝑢𝑖
𝑖

− 𝜇𝑖 > Δ𝑖 −
√︁
2𝑔(𝑢𝑖 , 𝛿) | |𝑥𝑢𝑖

𝑖
− 𝜇𝑖 | ≤

√︁
2𝑔(𝑢𝑖 , 𝛿)

]
·

P
[
|𝑥𝑢𝑖
𝑖

− 𝜇𝑖 | ≤
√︁
2𝑔(𝑢𝑖 , 𝛿)

]
(choose 𝑢𝑖 :

√︁
2𝑔(𝑢𝑖 , 𝛿) = Δ𝑖 −

√︁
2𝑔(𝑢𝑖 , 𝛿))

≤ I · 𝛿 + 0 · (1 + 𝛿) = 𝛿.
Hence

E[𝑛𝑖 (𝑇 )] = E[𝑛𝑖 (𝑇 )I𝐺𝑖 ] + E[𝑛𝑖 (𝑇 )I�̂�𝑖 ] ≤ 𝑢𝑖 + 𝛿𝑇 (𝑇 + 1) .

Assuming 𝛿 = 1

𝑇 (𝑇+1) and taking 𝑢𝑖 = 𝑔
−1

(
Δ2

𝑖

8
, 𝛿

)
, where 𝑔−1 is

such that 𝑔
(
𝑔−1 (𝑥, 𝛿), 𝛿

)
= 𝑥 , we get

E[𝑛𝑖 (𝑇 )] ≤ 𝑔−1
(
Δ2

𝑖

8

,
1

𝑇 (𝑇 + 1)

)
+ 1.

Now, we can proceed with estimating regret.

𝑅𝑇 =
∑︁
𝑖:Δ𝑖>0

Δ𝑖E[𝑛𝑖 (𝑇 )] ≤
∑︁
𝑖:Δ𝑖>0

Δ𝑖

(
𝑔−1

(
Δ2

𝑖

8

,
1

𝑇 (𝑇 + 1)

)
+ 1

)
.

□

2.2 Zero-order UCB algorithms.
Similar to the first-order UCB, the following ingredients are needed

to construct a ZO-UCB.
(1) The objective function 𝑓𝑖 (𝑥) = |𝑥 − 𝜇𝑖 | is assigned to the 𝑖-th

arm. Other functions that satisfy the requirement (3) are also

feasible.

(2) The corresponding zero-order inexact oracle |𝑥 − 𝜇𝑖 − 𝜉 |,
where 𝜉 is a random noise whose distribution consistent with

the reward noise model and result of aggregationH𝑁 (𝑥) for
a pre-defined value of 𝑁 .

(3) A basic zero-order optimization method B which is 𝑔(𝑘, 𝛿)-
bounded

Then, one can construct the following UCB-type algorithm from

these ingredients.

Algorithm 2 ZO-UCB

Require: Basic zero-order 𝑔(𝑘, 𝛿)-bounded optimization method

B, number of arms 𝐾 , period 𝑇 , initial estimates 𝑥0
1
= · · · =

𝑥0
𝐾
= 𝑥0, parameter 𝛿 , aggregation rule R and the number of

samples for aggregation 𝑁 .

1: Run B for each arm 𝑖 = 1, . . . , 𝐾 independently to compute

𝑥1
𝑖
= B(𝑥0, 𝑓𝑖 (𝑥0, 𝜉)).

2: For each arm 𝑖 = 1, . . . , 𝐾 set 𝑘𝑖 = 1 and initialize𝑈𝐶𝐵𝑖 (𝑘𝑖 , 𝛿) =
𝑥1
𝑖
+ 𝑔(1, 𝛿).

3: for 𝑡 = 1, . . . ,𝑇 do
4: Choose arm 𝑖𝑡 = argmax1≤𝑖≤𝐾 𝑈𝐶𝐵𝑖 (𝑘𝑖 , 𝛿).
5: Play 𝑖𝑡 arm 𝑁 times, observe 𝑁 rewards 𝜇𝑖𝑡 +𝜉1, . . . , 𝜇𝑖𝑡 +𝜉𝑁 ,

where 𝜉 𝑗 is the 𝑗-th sample of the noise.

6: Compute 𝑥
𝑘𝑖𝑡 +1
𝑖𝑡

= B(𝑥1
𝑖𝑡
,H𝑁 (𝑥1

𝑖𝑡
), . . . , 𝑥𝑘𝑖𝑡

𝑖𝑡
,H𝑁 (𝑥𝑘𝑖𝑡

𝑖𝑡
)),

where H𝑁 (𝑥𝑘𝑖𝑡
𝑖𝑡

) = R(𝑥𝑘𝑖𝑡
𝑖𝑡

− 𝜇𝑖𝑡 − 𝜉1, . . . , 𝑥
𝑘𝑖𝑡
𝑖𝑡

− 𝜇𝑖𝑡 − 𝜉𝑛).

7: Update UCB index of the played arm and preserve others:

𝑈𝐶𝐵𝑖 (𝑘𝑖 + 1, 𝛿) =
{
𝑈𝐶𝐵𝑖 (𝑘𝑖 , 𝛿), 𝑖 ≠ 𝑖𝑡 ,

𝑥
𝑘𝑖𝑡
𝑖𝑡

+ 𝑔(𝑘𝑖𝑡 , 𝛿), 𝑖 = 𝑖𝑡 .

8: Increase iteration counter for the played arm: 𝑘𝑖𝑡 := 𝑘𝑖𝑡 + 1.

9: end for

Simple example. The simplest example of the suggested ZO-UCB

is the Robust UCB algorithm from [4]. In particular, one can consider

the basic zero-order method B as an identity operator and use the

Median of Means (MoM) aggregation rule R. In this case, ZO-UCB

is reduced to the Robust UCB algorithm, which could be further

improved with non-trivial zero-order method B.

Now, we discuss the convergence properties of the introduced

ZO-UCB algorithm. Similar to Theorem 4, we present the conver-

gence of a Zero-Order UCB algorithm in terms of the convergence

of a basic zero-order method B in Theorem 5.

Theorem 5 (Convergence of ZO-UCB). The regret of the ZO-
UCB with 𝑔(𝑘, 𝛿)-bounded first-order algorithm for the MAB problem
with 𝐾 arms, functions 𝑓𝑖 (𝑥) = |𝑥 − 𝜇𝑖 |, period 𝑇 , 𝛿 = 1

𝑇 2
satisfies

𝑅𝑇 ≤
𝐾∑︁
𝑖=1

Δ𝑖

(
𝑔−1

(⌈
Δ𝑖
2

⌉
,
1

𝑇 2

)
+ 2

)
,

where notations are the same as in Theorem 4.

The proof of this theorem follows a similar scheme as the proof

of Theorem 4 from Section 2.1. The complete proof is presented in

supplementary materials [5].

Remark 6. Note that Theorems 4 and 5 do not mean that ZO-UCB
achieves better regret bound compared to FO-UCB since bounding
functions𝑔(𝑘, 𝛿) for first-order and zero-order algorithms are different
and therefore they result in different convergence of algorithms.
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Thus, we have obtained the general convergence rates for UCB-

type algorithms constructed based on the 𝑔(𝑘, 𝛿)-bounded first-

order and zero-order basic optimization methods. In the next sec-

tion, we provide the example of constructing the particular instance

of FO-UCB algorithm based on the particular 𝑔(𝑘, 𝛿)-bounded
first-order optimization method. The resulting FO-UCB algorithm

demonstrates faster convergence in both runtime and the number

of rounds compared to alternatives.

3 CLIPPED-SGD-UCB: EXAMPLE OF THE
FIRST-ORDER UCB ALGORITHM.

As we can see from Theorem 4, to make a good first-order UCB-

type algorithm, one needs a 𝑔(𝑘, 𝛿)-bounded first-order algorithm

with the known convergence rate and feasible stochastic first-order

oracle. The feasibility here means that the noise model in the ora-

cle is consistent with the noise model in the MAB problem. Since

we focus on the heavy-tail MAB problem, we consider the basic

optimization method, which is efficient for the stochastic oracle

with a heavy-tailed noise distribution. We find that clipped-SGD
method [17] satisfies these requirements and can be used to con-

struct the FO-UCB algorithm for the heavy-tailed MAB problem.

3.1 Clipped-SGD method to minimize convex
function with heavy-tailed noise in
stochastic gradient.

In this section, we briefly describe the clipped-SGD method [17]

with the median of means gradient estimator and highlight that it

is appropriate for constructing the first-order UCB-type algorithm.

The clipped-SGD method generates the sequence approaching

the optimal point according to the following update rule:

𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘clip(𝑓 ′Ξ𝑘 (𝑥
𝑘 ), 𝜆𝑘 ), (5)

where 𝑓 ′
Ξ𝑘

(𝑥𝑘 ) is an estimator satisfying Assumption 7 and sam-

pled independently from previous iterations. Also, the function

clip(g, 𝜆𝑘 ) = min{1, 𝜆𝑘/∥g∥2}g for the predefined sequence {𝜆𝑘 }∞𝑘=1
with 𝜆𝑘 > 0, and learning rate𝛾𝑘 > 0. Particular values of 𝜆𝑘 and𝛾𝑘
are specified in Section 4.

Assumption 7. There exists 𝑁 ∈ N, aggregation rule R and
(possibly dependent on 𝑇 ) constants 𝑏 ≥ 0, 𝜎 ≥ 0 such that for an
𝑥 ∈ R i.i.d. samples 𝑓 ′

𝜉1
(𝑥), . . . , 𝑓 ′

𝜉𝑁
(𝑥) from the oracle G(𝑥) satisfy

the following relations:��E [
𝑓 ′Ξ (𝑥)

]
− 𝑓 ′(𝑥)

�� ≤ 𝑏 E
[��𝑓 ′Ξ (𝑥) − E [

𝑓 ′Ξ (𝑥)
] ��2] ≤ 𝜎2,

where 𝑓 ′Ξ (𝑥) = R(𝑓 ′
𝜉1
(𝑥), . . . , 𝑓 ′

𝜉𝑁
(𝑥)) and expectations are taken

w.r.t. 𝑓 ′
𝜉1
(𝑥), . . . , 𝑓 ′

𝜉𝑁
(𝑥).

Also, we select the aggregation rule R equal to the smoothed

median of means, see Definition 8.

Definition 8. Let 𝜁 be a random element in R and let 𝜃 > 0 be an

arbitrary number. For any positive integers𝑚 and 𝑛, the smoothed

median of means SMoM𝑚,𝑛 (𝜁 , 𝜃 ) is defined as follows:

SMoM𝑚,𝑛 (𝜁 , 𝜃 ) = Med (𝜐1, . . . , 𝜐2𝑚+1) , (6)

where, for each 𝑗 ∈ {0, . . . , 2𝑚},
𝜐 𝑗 = Mean(𝜁 𝑗𝑛+1, . . . , 𝜁 ( 𝑗+1)𝑛) + 𝜃 𝜂 𝑗+1,

𝜁1, . . . , 𝜁 (2𝑚+1)𝑛 are i.i.d. samples of 𝜁 , and 𝜂1, . . . , 𝜂2𝑚+1 ∼ N(0, 1)
are independent standard Gaussian random variables.

According to [17], the smoothed median of means aggregation

rule satisfies Assumption 7 for samples 𝑓 ′
𝜉1
(𝑥), . . . , 𝑓 ′

𝜉𝑁
(𝑥), where

𝑁 = (2𝑚 + 1)𝑛 for some pre-defined integers𝑚 and 𝑛. We also need

the following assumption for technical reasons.

Assumption 9. There exists a set 𝑄 ⊆ R and constant 𝐿 > 0 such
that for all 𝑥,𝑦 ∈ 𝑄

∥ 𝑓 ′(𝑥) − 𝑓 ′(𝑦)∥ ≤ 𝐿∥𝑥 − 𝑦∥, ∥ 𝑓 ′(𝑥)∥2 ≤ 2𝐿 (𝑓 (𝑥) − 𝑓∗) ,
where 𝑓∗ = inf𝑥 ∈𝑄 𝑓 (𝑥) > −∞.

Now we are ready to present the particular case of a theorem

from [17] to show that clipped-SGD can be considered as an exam-

ple of the first-order 𝑔(𝑘, 𝛿)-bounding algorithm to solve auxiliary

optimization problems assigned to the arms.

Theorem 10. Consider the unconstrained minimization problem,
where objective function 𝑓 (𝑥) = 1

2
(𝑥 − 𝜇)2 is 1-strongly convex and

satisfies Assumption 9. The first-order inexact oracle G gives an unbi-
ased gradient estimate. Also, we assume that the aggregation rule R
satisfies Assumption 7. Then, there exists𝐶 > 0 such that the clipped-

SGD method with 𝛾𝑘 ≡ 𝛾 = min

(
1

400𝐿 ln
4(𝐾+1)
𝛿

,
ln( (𝐾+1)𝑅2)

𝐾+1

)
and

clipping hyperparameter 𝜆𝑘 =
exp(−𝛾 (1+𝑘/2))𝑅
120𝛾 ln

4(𝐾+1)
𝛿

provides the iterates

such that after 𝑘 = 1, . . . , 𝐾 iterations the following bound holds with
probability at least 1 − 𝛿

𝑓 (𝑥𝑘 ) − 𝑓 ∗ ≤ 𝐶
ln

4(𝐾+1)
𝛿

ln
2 ((𝐾 + 1)𝑅2)

𝑘 + 1

where 𝐾 is sufficiently large and 𝑅 ≥ ∥𝑥0 − 𝑥∗∥2.

The proof of this theorem is presented in supplementary materi-

als [5].

Corollary 11. Let Assumptions 7 and 9 hold on 𝑄 = 𝐵2𝑅 (𝑥∗),
where 𝑅 ≥ ∥𝑥0 − 𝑥∗∥. Suppose that 𝑓 ′

Ξ𝑘
(𝑥𝑘 ) satisfies Assumption 7,

and 𝛾 = min

(
1

400𝐿 ln
4(𝐾+1)
𝛿

,
ln( (𝐾+1)𝑅2)

𝐾+1

)
𝜆𝑘 ≡ exp(−𝛾 (1+𝑘/2))𝑅

120𝛾 ln
4(𝐾+1)
𝛿

.

Then clipped-SGD is 𝐶
ln

4(𝐾+1)
𝛿

ln
2 ( (𝐾+1)𝑅2)

𝑘+1 -bounding first-order al-
gorithm.

Now we are ready to present the resulting first-order UCB-type

algorithm based on the briefly introduced clipped-SGD method.

3.2 Clipped-SGD-UCB algorithm and its
convergence.

The combination of the general framework presented inAlgorithm 1

with a particular basic first-order optimization method (5) leads to

the clipped-SGD-UCB algorithm. This algorithm focuses on the

rewards that satisfy Assumption 1. Since we use the smoothed me-

dian of means (SMoM) estimator of the gradient, the single estimate

of the reward is not enough. According to Definition 8, we need

𝑁 = (2𝑚 + 1)𝑛 reward estimates to construct samples 𝑓 ′
𝜉1
, . . . , 𝑓 ′

𝜉𝑁
and generate the resulting gradient estimate. The resulting clipped-
SGD-UCB algorithm is presented in Algorithm 3.
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Algorithm 3 Clipped-SGD-UCB

Require: Number of arms 𝐾 , period 𝑇 , two positive integers 𝑚

and 𝑛 such that the number of rewards samples 𝑁 = (2𝑚 + 1)𝑛,
initial estimates 𝑥0

1
= · · · = 𝑥0

𝐾
= 𝑥0, clipping regime {𝜆𝑡 }∞𝑡=1,

learning rate schedule {𝛾𝑡 }∞𝑡=1, parameter 𝛿 .

1: Run Clipped-SGD-UCB for each arm 𝑖 = 1, . . . , 𝐾 indepen-

dently for 𝑁 times and compute 𝑓 ′
Ξ1
(𝑥0
𝑖
) and 𝑥1

𝑖
= 𝑥0

𝑖
−

𝛾0clip(𝑓 ′Ξ1
(𝑥0
𝑖
), 𝜆0).

2: For each arm 𝑖 (𝑖 = 1, . . . , 𝐾) set 𝑛𝑖 (𝐾) = 1 and compute

𝑈𝐶𝐵(𝑖, 𝑛𝑖 (𝐾), 𝛿) = 𝑥1𝑖 +
√︁
𝑔(1, 𝛿).

3: for 𝑡 = 1, . . . ,𝑇 do
4: Choose arm 𝑖𝑡 = argmax1≤𝑖≤𝐾 𝑈𝐶𝐵(𝑖, 𝑛𝑖 , 𝛿).
5: Play 𝑖𝑡 arm 𝑁 times, observe rewards and compute

∇
Ξ
𝑛𝑖𝑡
𝑖𝑡

𝑓𝑖𝑡 (𝑥
𝑛𝑖𝑡
𝑖𝑡

) with smooth median of means aggregation

rule, see Definition 8.

6: Compute 𝑥
𝑛𝑖𝑡 +1
𝑖𝑡

= 𝑥
𝑛𝑖𝑡
𝑖𝑡

− 𝛾𝑛𝑖𝑡 clip(∇Ξ
𝑛𝑖𝑡
𝑖𝑡

𝑓𝑖 (𝑥
𝑛𝑖𝑡
𝑖𝑡

), 𝜆𝑛𝑖𝑡 ).
7: Set 𝑛𝑖𝑡 (𝑡 + 1) = 𝑛𝑖𝑡 (𝑡) + 1 (increase counter by one).

8: Set

𝑈𝐶𝐵(𝑖, 𝑛𝑖 (𝑡 + 1), 𝛿) =
{
𝑈𝐶𝐵(𝑖, 𝑛𝑖 (𝑡), 𝛿), 𝑖 ≠ 𝑖𝑡 ,

𝑥
𝑛𝑖𝑡
𝑖𝑡

+
√︁
2𝑔(𝑛𝑖𝑡 (𝑡 + 1), 𝛿), otherwise.

9: end for

Theorem 12 (Convergence of Clipped-SGD-UCB). The regret
of the Clipped-SGD-UCB for multi-armed bandit problem with

• 𝐾 arms
• period 𝑇

• 𝛾 = min

(
1

400𝐿 ln
4(𝐾+1)
𝛿

,
ln( (𝐾+1)𝑅2)

𝐾+1

)
• 𝜆𝑘 =

exp(−𝛾 (1+𝑘/2))𝑅
120𝛾 ln

4(𝐾+1)
𝛿

• symmetric distribution of rewards

satisfies:

𝑅𝑇 ≤ 4 log((𝑇 + 1)𝑇𝑅2)
√︃
𝐶 log(4𝑇 (𝑇 + 1)2)𝑇𝐾 +

∑︁
𝑖

Δ𝑖

𝑅𝑇 ≤
∑︁
𝑖:Δ𝑖>0

[
Δ𝑖 +

8𝐶 log(4𝑇 (𝑇 + 1
2)) log2 ((𝑇 + 1)𝑇𝑅2)
Δ𝑖

]
Proof. From Theorem 4, we get

𝑅𝑇 ≤
∑︁
𝑖:Δ𝑖>0

Δ𝑖

(
𝑔−1

(
Δ2

𝑖

8

,
1

𝑇 (𝑇 + 1)

)
+ 1

)
.

In case 𝑔(𝑘, 𝛿) = 𝐶 log(4(𝑇+1)/𝛿) log2 ( (𝑇+1)𝑅2)
𝑘

we get 𝑔−1 (𝑥, 𝛿) =
𝐶 log(4(𝑇+1)/𝛿) log2 (𝑇+1)𝑅2

𝑥 , and

𝑅𝑇 ≤
∑︁
𝑖:Δ𝑖>0

[
Δ𝑖 +

8𝐶 log(4𝑇 (𝑇 + 1
2)) log2 ((𝑇 + 1)𝑇𝑅2)
Δ𝑖

]
.

We get instance-dependent bound. Now let Δ > 0 be some fixed

value. Then we can bound regret in the following way:

𝑅𝑇 =
∑︁
𝑖:Δ𝑖>0

Δ𝑖E[𝑛𝑖 (𝑇 )] =
∑︁

𝑖:Δ𝑖<Δ

Δ𝑖E[𝑛𝑖 (𝑇 )] +
∑︁

𝑖:Δ𝑖 ≥Δ
Δ𝑖E[𝑛𝑖 (𝑇 )]

≤ 𝑇Δ + 8𝐶 log(4𝑇 (𝑇 + 1)2) log2 ((𝑇 + 1)𝑇𝑅2)𝐾 log𝑇

Δ
+

∑︁
𝑖

Δ𝑖 .

If Δ =
log( (𝑇+1)𝑇𝑅2)

√
8𝐶 log(4𝑇 (𝑇+1)2)𝐾√
𝑇

then the following bound

holds

𝑅𝑇 ≤ 4 log((𝑇 + 1)𝑇𝑅2)
√︃
𝐶 log(4𝑇 (𝑇 + 1)2)𝑇𝐾 +

∑︁
𝑖

Δ𝑖 .

□

Remark 13. If the algorithm uses a batch of samples to perform a
single step with the batch size 𝑏, the regret will increase in 𝑏 times, but
the number of iterations will be 𝑇

𝑏
. Thus adaptive part of the bound

will not change, and only the fixed part will increase, i.e. each arm
will require at least 2𝑏 samples instead of 2.

4 NUMERICAL EXPERIMENTS.
We demonstrate the superior performance of the proposed algo-

rithm in the following environments. Themain feature of the test en-

vironment is the structure of the noise that models the uncertainty

of the observed rewards. In the simulations of the multi-armed ban-

dit, one can obtain a reward estimate 𝑟𝑖 = 𝜇𝑖 + 𝜉 corresponding to
the 𝑖-th arm, where 𝜇𝑖 is the ground-truth reward and 𝜉 is the noise,

whose distribution is the key feature of the testing environments.

We focus on super-heavy and heavy tail noise distributions. The

additional feature of the environment is the number of arms and

the distribution of the corresponding ground-truth rewards. The

closer these rewards are, the more challenging the MAB problem

is. To better illustrate the algorithms’ performance, we adjust the

particular instances of such environments for the considered noise

structure and provide details in the corresponding sections.

We consider as baselines the Robust UCB [4] that uses the me-

dian of means to estimate rewards (RUCB-Median), the Adaptively
Perturbed Exploration with a p-Robust Estimator (APE) [13], HT-
INF [9] and Clipped-INF-med-SMD [10]. In our experiments, we

found that APE works better with overestimated values of the noise

moment 𝑝 . Therefore, we consider 𝑝 = 1.25 + 𝛼 and 𝑝 = 2.

We compare these baselines with algorithms derived from Algo-

rithm 3 with different aggregation rules. In particular, SGD-UCB
corresponds to the values𝑚 = 0, 𝑛 = 1 and uses the single sample

to estimate the gradient similar to vanilla SGD. SGD-UCB-Median
corresponds to the values𝑚 = 1, 𝑛 = 1, takes three samples, and

uses their median to estimate the gradient. SGD-UCB-SMoM corre-

sponds to the values𝑚 = 1, 𝑛 = 2 and uses SMoM (6) as a gradient

estimate. The parameters𝑚 and 𝑛 are used in Algorithm 3 to gen-

erate batch size 𝑏 and construct gradient estimate according to

Definition 8. The source code for reproducing our results is in the

GitHub repository https://github.com/IAIOnline/fast_SGD_UCB.

Initialization of reward estimates. To initialize the reward esti-

mate for every arm we use the following procedure. Every arm is

pulled 𝑝 times (𝑝 is an odd number), and the median of the obtained

rewards is used as initialization 𝑥1
𝑖
in Algorithm 3. In this setup,

we skip line 1 in pseudocode presented in Algorithm 3. From our
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experience, we recommend using 𝑝 = 1 for Gaussian rewards noise

and 𝑝 = 3 for heavy and super-heavy tail rewards nose.

4.1 Super-heavy tail MAB.
This section considers the super-heavy tail distributions of the noise

used in the rewards uncertainty simulation. A distribution has a

super-heavy tail if the expectation of the corresponding random

variable does not exist. We test Cauchy distributions with the CDF

𝑝𝐶 (𝑥) = 1

𝜋𝛾 [1+( 𝑥
𝛾
)2 ] , where 𝛾 = 1, Fréchet distribution with the

CDF 𝑝𝐹 (𝑥) = 𝑒−𝑥
−𝛽
, where 𝛽 = 1, the mixture of Cauchy (𝛾 = 1)

and exponential distributions with the CDF 𝑝𝐶𝐸 (𝑥) = 0.7 · 𝑝𝐶 (𝑥) +
0.3 ·𝑒−(𝑥+1) I{𝑥 ≥ −1} and the mixture of Cauchy (𝛾 = 1) and Pareto

distributions with the CDF 𝑝𝐶𝑃 = 0.7 · 𝑝𝐶 (𝑥) + 0.3 · 3

(𝑥+1.5)4 I{𝑥 ≥
−1.5}. Note that the latter two mixtures of distributions represent

the asymmetric distributions. Although we do not consider the

asymmetric noise above, we demonstrate the performance of the

proposed framework for such noise distributions empirically.

To simulate multi-armed bandit, we use three environments: 10

arms and the ground-truth reward of the 𝑖-th arm 𝜇𝑖 = 𝑖, 𝑖 = 0, . . . , 9,

10 arms and the ground-truth reward of the 𝑖-th arm 𝜇𝑖 = 𝑖/10, 𝑖 =
0, . . . , 9, and 100 arms and the ground-truth reward of the 𝑖-th arm

𝜇𝑖 = 𝑖/50, 𝑖 = 0, . . . , 99. We refer to these environments as Env1,
Env2 and Env3, respectively. Due to space limitations, only the

first two environments and some distributions are presented in

the article. Figures with all three environments for all considered

distributions are presented in the supplementary materials [5].

Convergence comparison. To compare the convergence of the

considered algorithms, we test the three environments mentioned

above. Due to the space limitation, we only provide plots corre-

sponding to the Cauchy distribution (𝛾 = 1) of the reward noise

𝜉 . The similar plots corresponding to the super-heavy tail distri-

butions are presented in supplementary materials [5]. We use the

hyperparameters of the algorithms, which give the best conver-

gence. Figure 1 shows that the proposed algorithms outperform

RUCB-Median and APE algorithms in Env1 and Env2. HTINF and

Clipped-INF-med-SMD show worse performance; therefore, for

clarity, we exclude them from Figure 1. We show in the next para-

graph (see Table 1) that our algorithms are significantly faster in

terms of runtime since the per iteration costs are much smaller.

Runtime comparison. In addition to the convergence compari-

son presented in Figure 1, we also provide the runtime compari-

son for the considered algorithms. This experiment is essential for

highlighting the difference in the costs per step in the discussed

algorithms. We assign to every algorithm the budget for total pulls

of arms equal to 10
4
. We track the mean regret 𝑅𝑇 /𝑇 and measure

the runtime to achieve the target values of this metric. We test the

target metrics 𝑅𝑇 /𝑇 equal 0.1 and 0.05. If an algorithm does not

achieve the target mean regret within the assigned budget, we con-

sider such a run as a fail. We run 100 trials for every algorithm and

show in Table 1 the 90% percentile of their running time. HTINF
and Clipped-INF-med-SMD do not reach the target mean regret

within the assigned budget and we exclude them from Table 1.

Runtime vs # arms. We compare how performance of the algo-

rithms depends on the number of arms. We consider scenarios
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Figure 1: The convergence of the regret metric (the first row)
and the mean regret metric (the second row) for the consid-
ered algorithms with Cauchy distribution (𝛾 = 1) of a reward
noise. APE uses 𝛼 = 0. We report the averaged values over 120
trials and standard deviation area via shaded regions. Our al-
gorithms show faster convergence compared to competitors.

Table 1: Runtime comparison of the considered algorithms
to achieve the given values of 𝑅𝑇 /𝑇 for the Env1 with Cauchy
distribution (𝛾 = 1) as a reward noise. Our algorithms more
often reach the targetmean regret within the assigned budget
and are significantly faster than RUCB-Median and APE. We
highlight the best values for runtime, and # fails with bold.

Algorithms Runtime for 𝑅𝑇 /𝑇 = 0.1, ms. # fails Runtime for 𝑅𝑇 /𝑇 = 0.05, ms # fails

SGD-UCB-SMoM 11.5 8 19.3 17
SGD-UCB-Median 15.5 13 27.5 18

SGD-UCB 23.1 12 45.9 17
RUCB-Median 55.5 24 113.9 25

APE, 𝑝 = 2 265.8 21 432.7 99

with 𝐾 ∈ {10, 102, 103, 5 · 103} arms, and run every algorithm for

𝑇 = 15 · 103 steps. The reported timings are measured after the

single run and shown in Figure 2. They demonstrate that the pro-

posed algorithms are consistently faster than the baselines over

the considered range of arms. This result aligns with the algorithm

construction, where only an update for a 1D optimization problem

is performed in every round.

4.2 Heavy-tail MAB.
For the heavy-tail MAB problem, we use the similar environments

as in the previous section and Fréchet distribution with the CDF

𝑝𝐹 (𝑥) = 𝑒−𝑥
−𝛽
, where 𝛽 = 1.1, to model the noise in the re-

ward estimates. Figure 3 shows that our algorithms (SGD-UCB and
SGD-UCB-Median) provide smaller mean regret for the considered

number of steps in Env2 than RUCB-Median and UCB. Env1 is espe-

cially challenging for the proposed algorithms. The RUCB-Median
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Figure 2: Dependence of runtime on the numbers of arms for
𝑇 = 15 · 103 steps. Our algorithms outperform baselines due
to efficient gradient estimation and faster optimization steps.
RUCB-Median and APE slow down with larger number of arms
due to usage of the rewards history. Clipped-INF-med-SMD
and HTINF solve optimization problems in every round and
become slower with a larger number of arms. HTINF is shown
only for 10 arms since it extremely slows for larger values.

and APE provide smaller regret values in the considered number

of steps. However, the difference between the regret given by the

RUCB-Median, APE and the SGD-UCB is not large and the correspond-
ing mean regret values are already almost the same.We do not show

regret andmean regret forHTINF andClipped-INF-med-SMD since

they perform much worse than the shown algorithms.

4.3 MAB problem with hardly distinguished
arms

To evaluate the robustness of the algorithms, we consider the bandit

with arms, whose rewards are hardly distinguishable. In this exper-

iment, we include the UCB algorithm [2] to baselines. For Gaussian

MAB we consider two arms such that the corresponding rewards

are {0,Δ}. The values of Δ vary from 0 to 1 with a step size of 0.04.

For heavy tail MAB, we consider Cauchy distribution (𝛾 = 1) with

5 arms such that the corresponding rewards are {0, 0, 0, 0,Δ}. The
values of Δ vary from 0 to 10 with a step size of 0.4. We run 300 trial

simulations for each environment for 2000 steps and average the fi-

nal regret on trials. The result of the robustness analysis is presented

in Figure 4. It shows that UCB is optimal for Gaussian MAB, and our

algorithms are close to the RUCB-Median algorithm in terms of the

expected regret for close arms rewards. We exclude HTINF, APE
and Clipped-INF-med-SMD from this experiment since they were

developed for the heavy tail rewards distribution. In the heavy tail

environment, our algorithms show smaller expected regrets than

competitors as arms become more distinguishable. We do not plot

UCB since expected regret grows crucially and suffers readability.

5 CONCLUSION AND FUTUREWORK.
We suggested a new framework to construct UCB-type algorithms

for stochastic multi-armed bandits with heavy tails. The main

ingredient is to use 𝑔(𝑘, 𝛿)-bounded algorithms for optimization
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Figure 3: The convergence of regret metric (the first row) and
the mean regret metric (the second row) for the considered
algorithms with Fréchet distribution (𝛽 = 1.1) of a reward
noise. APE uses 𝛼 = 0.1. We report the averaged values over
120 trials and the corresponding standard deviation area via
shaded regions. Our algorithms converge faster in Env2 and
slower than RUCB-Median in Env1.
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Figure 4: (a) Mean regret for the considered algorithms in
Gaussian MAB with two arms with rewards {0,Δ}. Our algo-
rithms distinguish arms with close rewards similar to the
competitors. (b) Mean regret for the considered algorithms
in heavy tail MAB with five arms with rewards {0, 0, 0, 0,Δ}.
Our algorithms distinguish arms with close rewards even if
the noise is generated from the Cauchy distribution (𝛾 = 1).

problems with inexact oracle. As the main example, we propose

Clipped-SGD-UCB algorithm and its particular instances SGD-
UCB, SGD-UCB-Median and SGD-UCB-SMoM. The proposed

algorithms show convergence even in the case of noise, which

has no expectation. Future work includes the construction of the

efficient algorithms fine-tuned for the proposed framework. Find-

ing non-trivial zero-order algorithms appropriate to the proposed

framework is also a promising research direction.
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