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ABSTRACT

Sortition is based on the idea of choosing randomly selected repre-

sentatives for decision making. The main properties that make sor-

tition particularly appealing are fairness — where every citizen has

an equal chance of being selected— and proportional representation

— where a randomly selected panel likely reflects the composition

of the entire population. When the population lies on a represen-

tation metric, we formally define proportional representation by

using a notion called the core. A panel is in the core if no group

of individuals is underrepresented proportional to its size. While

uniform selection is fair, it does not always return panels that are

in the core. Thus, we ask if we can design a selection algorithm that

satisfies fairness and ex post core simultaneously. We answer this

question affirmatively and present an efficient selection algorithm

that is fair and provides a constant-factor approximation to the

optimal ex post core. Moreover, we show that uniformly random

selection satisfies a constant-factor approximation to the optimal

ex ante core. We complement our theoretical results by conducting

experiments with real data.
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1 INTRODUCTION

The random selection of representatives from a given population

has been proposed to promote democracy and equality [30]. Sorti-

tion has gained significant popularity in recent years, mainly be-

cause of its use for forming citizens’ assemblies, where a randomly

selected panel of individuals deliberates on issues and makes recom-

mendations. Currently, citizens’ assemblies are being implemented

by more than 40 organizations in over 25 countries [17].

Recently, there has been a growing interest within the computer

science research community in designing algorithms that select
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representative panels fairly and transparently [11, 17–19]. Admit-

tedly, a straightforward method for selecting a representative panel

of size 𝑘 from a given population of size 𝑛 is to randomly select 𝑘

individuals uniformly [14]. We refer to this simple procedure as

uniform selection. As highlighted by Flanigan et al. [18], two main

reasons make this method particularly appealing:

(1) Fairness: Each citizen is included in the panel with the same

probability, satisfying the requirement of equal participation.

Specifically, each citizen is selected with a probability of 𝑘/𝑛
(2) Proportional Representation: The panel is likely to mirror the

structure of the population, since if 𝑥% of the population has

specific characteristics, then in expectation, 𝑥% of the panel

will consist of individuals with these characteristics.

Indeed, uniform selection seems to achieve proportional rep-

resentation ex ante (before the randomness is realized), since in

expectation the selected panel reflects the composition of the popu-

lation, especially when the size of the panel is very large. However,

one of the critiques of this sampling procedure is that with non-zero

probability, a panel that completely excludes certain demographic

groups can be selected [14]. To address such extreme cases, various

strategies have been proposed to ensure proportional representa-

tion ex post (after the randomness is realized) [27].

A common approach is stratified sampling [21], where individuals

are divided into disjoint groups, and a proportional number of

representatives is sampled uniformly at random from each group.

However, this approach becomes impractical when dealing with a

large predefined set of features, as the number of possible groups

can grow exponentially, and there may not be enough seats in the

panel to represent all of them. Amore general approach, extensively

used in practice, is to set quotas over individual or set of features [18,

31]. Similar to stratified sampling, when aiming for proportional

representation across all intersectional features, the number of

quotas can become exponential, making it infeasible to satisfy all

of them concurrently. Alternatively, one may opt for setting quotas

over a subset of intersectional features. For instance, quotas could be

set for gender and race simultaneously, alongwith additional quotas

for income. However, this might not ensure the representation of

specific subgroups, such as high-income black women.

The presence of the above challenges in existing strategies prompts

a need for alternative approaches for ensuring proportional rep-

resentation. This, in turn, highlights the necessity of rigorously

defining proportional representation first. Our work departs from

these observations, and we aim to address the following questions:

(1) What is a formal definition of proportional representation of a

population?

(2) To what extent does uniform selection satisfy proportional

representation?

(3) Is it possible to design selection algorithms that enhance repre-

sentation guarantees while maintaining fairness?
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1.1 Our approach

Proportional representation via core. We begin by tackling the

first question posed above, by borrowing a notion of proportional

representation used by recent works on multiwinner elections, fair

allocation of public goods and clustering [2, 7–9, 15], called the

core. The main idea of the core is: Every subset 𝑆 of the population

is entitled to choose up to |𝑆 |/𝑛 · 𝑘 representatives. Formally, a panel

𝑃 is called proportionally representative, or is said to be in the

core, if there does not exist a subset 𝑆 of the population that could

choose a panel 𝑃 ′, with |𝑃 ′ | ≤ |𝑆 |/𝑛 ·𝑘 , under which all of them feel

more represented. Note that this notion is not defined over prede-

fined groups using particular features, but it provides proportional

representation in the panel to every subset of the population.

Representation metric space. A conceptual challenge is to quan-

tify the extent to which a panel represents an individual. To address

this, we use the same approach as taken by Ebadian et al. [11] in

which it is assumed that the individuals lie in an underlying rep-

resentation metric space. The representation metric space can be

constructed as a function of features that are of particular interest

for an application at hand, such as gender, age, ethnicity and edu-

cation. Significantly, our results depend only on the existence of

such a metric space without further assumptions.

𝑞-cost. To measure how well an individual is represented by a

panel, we adopt the approach of Ebadian et al. [11], building on

work of Caragiannis et al. [6] in multiwinner elections. Specifically,

an individual’s cost for a panel is determined by her distance from

the 𝑞-th closest member in the panel, for some 𝑞 ∈ [𝑘]. We argue

this cost is more suitable for sortition than other well-known cost

functions, such as average cost, for two main reasons.

First, the 𝑞-cost does not consider the distance from every rep-

resentative. In sortition, where the goal is to represent an entire

population, it is reasonable to expect that some representatives will

be, or should be, distant from certain individuals. For example, a

Black woman on a panel may expect the presence of White men

with whom she does not identify. However, she would “require” at

least a few representatives with a similar background to her. The

𝑞-cost function captures this expectation by ensuring that at least

𝑞 representatives are close to each individual.

Second, the 𝑞-cost distinguishes whether an individual has a

few very similar representatives rather than many who are mod-

erately distant. Consider a 40-year-old evaluating two panels: the

first includes two 40-year-olds, a 20-year-old, and a 60-year-old;

the second has two 30-year-olds and two 50-year-olds. If distance

is measured by age difference, the average cost is the same for

both panels. However, the 𝑞-cost (for 𝑞 = 2) highlights a key dif-

ference: in the first panel, there are two representatives who are

exactly the same age as the individual, while in the second panel,

all representatives are somewhat distant in terms of age. Thus, the

𝑞-cost effectively differentiates between these two panels (with the

appropriate choice of 𝑞, though our results hold for all 𝑞).

1.2 Our Contribution

In a sortition setting, in addition to proportional representation of

all groups, it is important to ensure the fairness constraint which

is that all individuals have the same chance of being included in

the panel. For ensuring that, a selection algorithm should return a

distribution over panels of size 𝑘 . In this work we ask for selection

algorithms that are simultaneously in the ex post core, meaning that

every panel that the algorithm might return, is in the core, and

simultaneously is fair, meaning that each individual is included in

the panel with probability equal to 𝑘/𝑛.
In Section 3, we show that uniform selection, despite satisfying

fairness by its definition, falls short of achieving any reasonable

approximation to the ex post core for almost any 𝑞. Moreover, we

show that no fair selection algorithm returns always panels in the

ex post core. Therefore, we ask for selection algorithms that achieve

a multiplicative approximation of the ex post core with respect to

the cost improvement of all individuals eligible to choose a different

panel. We introduce an efficient selection algorithm, denoted as

FairGreedyCapture, that is fair and is in the 6-approximate ex

post core for every value of 𝑞 ∈ [𝑘], concurrently. Our algorithm
builds on an algorithm, called Greedy Capture, that was first intro-

duced by Chen et al. [7]. Roughly speaking, the original algorithm

partitions the 𝑛 individuals into at most 𝑘 parts and returns a de-

terministic representative from each part. In contrast to Greedy

Capture, FairGreedyCapture assigns each individual a probability

of being placed into one of 𝑘 parts, each of size 𝑛/𝑘 , and then selects
a random individual from each part. Then, leveraging Birkhoff’s

decomposition algorithm, we find a distribution over panels of size

𝑘 , where each panel contains at least one representative from each

part, and each individual is selected with a probability of 𝑘/𝑛. We

complement this result by showing that no fair selection algorithm

provides an approximation better than 2 to the ex post core.

In Section 4, we ask if uniform selection is in the ex ante core, for

all values of 𝑘 and 𝑞. In particular, we define a selection algorithm

to be in the ex ante core if, for any panel 𝑃 , the expected number of

individuals who feel more represented by 𝑃 than panels chosen from

the selection algorithms is less than |𝑃 |/𝑛 ·𝑘 . As before, we define a
multiplicative approximation with respect to the cost improvement

and we show that uniform selection provides an approximation of

4 to the ex ante core, while no fair selection algorithm provides an

approximation better than 2 to it.

In Section 5, we explore the question of whether, given a panel

𝑃 , there is any way to determine if it satisfies an approximation of

the ex post core for a value of 𝑞. This can be useful when a panel

has been sampled using a selection algorithm that does not provide

any guarantees for the ex post core. We show that given a panel 𝑃 ,

we can approximate, in polynomial time, how much it violates the

core up to constants.

Finally, in Section 6, we empirically evaluate the approximation

of uniform selection and FairGreedyCapture to the ex post core

on constructed metrics derived from two demographic datasets. We

notice that for large values of 𝑞, uniform selection achieves an ap-

proximation to the ex post similar to that of FairGreedyCapture.

However, for smaller values of 𝑞, when the individuals form cohe-

sive parts, uniform selection has often unbounded approximation.

1.3 Related Work

Ebadian et al. [11] recently considered the same question of measur-

ing the representation that a panel or a selection algorithm achieves

in a rigorous way. As we mentioned above, they also assume the
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existence of a representative metric space and use the distance of

the 𝑞-th closest representative in the panel to measure to what de-

gree a panel represents an individual. However, they use the social

cost (i.e. the sum of individual costs) to measure how much a panel

represents the whole population. In the full version [12], we show

that this measure of representation may fail to achieve the idea of

proportional representation.

As we discussed above, a method that is used in practice for

enforcing representation is by setting quotas over features. How-

ever, a problem that appears is that only a few people volunteer to

participate in a decision panel. As a result, the representatives are

selected from a pool of volunteers which usually does not reflect the

composition of the population, since for example highly educated

people are usually more willing to participate in a decision panel

than less educated people. Flanigan et al. [17] proposed selection

algorithms that, given a biased pool of volunteers, find distributions

that maximize the minimum selection probability of any volunteer

over panels that satisfy the desired quotas. In this work, similar to

Ebadian et al. [11] and Benadè et al. [4], we focus on the pivotal idea

of a sortition based democracy that relies on sampling representa-

tives directly from the underlying population [22]. However, later,

we discuss how our approach can be modified for being applied

in biased pools of volunteers. Benadè et al. [4] focused on the idea

of stratified sampling and asked how this strategy may affect the

variance of the representation of unknown groups. Flanigan et al.

[19] studied how the selection algorithms can become transparent

as well. In a more recent work, Flanigan et al. [20] studied the ma-

nipulability of different selection algorithms, i.e the incentives of

individuals to misreport their features.

The representation of individuals as having an ideal point in a

metric space has its roots to the spatial model of voting [1, 13]. The

idea of using the core as a notion of proportional representation

in a metric space was first introduced by Chen et al. [7], and later

revisited by Micha and Shah [28], in a clustering setting. In our

model, the clustering setting corresponds to the case where 𝑞 = 1

and there is no fairness constraint. Therefore, only the negative

results apply to our setting. Proportional representation in cluster-

ing has also been studied by Aziz et al. [3] and Kalayci et al. [23].

The definition by Aziz et al. [3] is quite similar to the core, with the

basic difference being that each dense group explicitly requires a

sufficient number of representatives. Kalayci et al. [23] consider a

version of the core where an agent’s cost for the panel is the sum

of the distance of each representative, and a group is incentivized

to deviate to another solution if the overall group can reduce the

sum of costs. A drawback of both the definition of the core we

use in this paper and Greedy Capture, which was mentioned by

Aziz et al. [3] and Kalayci et al. [23], is that a dense group might

end up being represented by just one individual. We stress that

while our notion of the core does not explicitly account for this

problem, FairGreedyCapture does not suffer from this weakness,

since from each dense region returns a proportional number of

representatives.

Proportional representation through core has been extensively

studied in the context of multiwinner elections as well [2, 15, 16, 26].

The problem of selecting a representative panel can be framed as

a committee election problem, where the candidates are drawn

from the same pool as the voters. While in these works, the voters

and the candidates do not lie in a metric space, but instead the

voters hold rankings over candidates, in our model, the rankings

could derive from the underlying metric space. Due to impossibility

results [8], relaxations of the core have been studied. The ex ante

core, as defined here, was introduced by Cheng et al. [8]. They

show that, without the fairness constraint, the ex ante core can be

guaranteed. In this work, we show that by imposing this fairness

constraint, an approximation to the ex ante 𝑞-core better than 2 is

impossible, for all 𝑞 ∈ [𝑘 − 1].

2 PRELIMINARIES

For 𝑡 ∈ N, let [𝑡] = {1, . . . , 𝑡}. We denote the population by [𝑛]. A
panel 𝑃 is defined as a subset of the population. The 𝑛 individuals

are embedded in an underlying representation metric space with a

distance function 𝑑 : [𝑛] × [𝑛] → R≥0, where 𝑑 (𝑖, 𝑗) quantifies the
dissimilarity between individuals 𝑖 and 𝑗 . The distance function

𝑑 is symmetric, meaning that 𝑑 (𝑖, 𝑗) = 𝑑 ( 𝑗, 𝑖), and it satisfies the

triangle inequality, i.e., 𝑑 (𝑖, 𝑗) ≤ 𝑑 (𝑖, ℓ) +𝑑 (ℓ, 𝑗). An instance of our

problem is fully specified by the set of individuals, the pairwise

distances among them, and an integer 𝑘 ∈ N denoting the desired

panel size.

We consider a class of cost functions to measure the cost of an

individual 𝑖 within a panel 𝑃 . For 𝑞 ∈ [𝑘], we define the 𝑞-cost

of 𝑖 for 𝑃 as the distance to her 𝑞-th closest member in the panel,

denoted by 𝑐𝑞 (𝑖, 𝑃 ;𝑑). When 𝑞 = 1, the cost of an individual is

equal to her distance from her closest representative in the panel,

and for 𝑞 = 𝑘 , the cost is equal to her distance from her furthest

representative in the panel. We denote by top𝑞 (𝑖, 𝑃 ;𝑑) the set of
the 𝑞 closest representatives of 𝑖 in a panel 𝑃 (with ties broken

arbitrarily). Additionally, 𝐵(𝑖, 𝑟 ;𝑑) represents the set of individuals
captured from a ball centered at 𝑖 with a radius of 𝑟 , i.e., 𝐵(𝑖, 𝑟 ;𝑑) =
{𝑖 ′ ∈ [𝑛] : 𝑑 (𝑖, 𝑖 ′) ≤ 𝑟 }. We may omit 𝑑 from the notation when

clear from the context.

A selection algorithm, denoted by A𝑘 , is parameterized by 𝑘 and

takes as input the metric 𝑑 and outputs a distribution over all panels

of size 𝑘 . We say that a panel is in the support of A𝑘 , if it is imple-

mented with positive probability under the distribution that A𝑘

outputs. We pay special attention to the uniform selection algorithm,

denoted byU𝑘 , that always outputs a uniform distribution over all

the subsets of the population of size 𝑘 .

Fairness. As mentioned above, one of the appealing properties

of uniform selection is that each individual is included in the panel

with the same probability. We call this property fairness and we say

that a selection algorithm is fair if:

∀𝑖 ∈ [𝑛], Pr𝑃∼A𝑘
[𝑖 ∈ 𝑃] = 𝑘/𝑛.

Core. Another appealing property of sortition is proportional

representation. Here, we utilize the concept of the core to evalu-

ate the proportional representation of a panel and, by extension,

of a selection algorithm. To formalize this, we introduce the 𝛼-𝑞-

preference count of a panel 𝑃 relative to another panel 𝑃 ′, denoted
as 𝑉𝑞 (𝑃, 𝑃 ′, 𝛼). For 𝛼 ≥ 1, this quantity represents the number of

individuals whose 𝑞-cost under 𝑃 exceeds 𝛼 times their 𝑞-cost under

𝑃 ′, i.e.,

𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) = |{𝑖 ∈ [𝑛] : 𝑐𝑞 (𝑖, 𝑃) > 𝛼 · 𝑐𝑞 (𝑖, 𝑃 ′)}|.
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A panel 𝑃 is in the 𝛼-𝑞-core, if for any panel 𝑃 ′, 𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) <

|𝑃 ′ | ·𝑛/𝑘 . For 𝛼 = 1, we say that the panel is in the 𝑞-core. We define

𝛼-𝑞-core for 𝛼 > 1, since even when 𝑞 = 1, a panel in the exact

𝑞-core is not guaranteed to exist [7, 28]. Intuitively, 𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) is
the number of individuals who feel 𝛼 times better represented in

𝑃 ′ than in 𝑃 . If this number is sufficiently large, the corresponding

set of individuals is eligible to deviate to 𝑃 ′. A panel 𝑃 is in the

𝛼-𝑞-core if no such set of individuals exist.

Ex post 𝑞-core. A selection algorithmA𝑘 is in the ex post 𝛼-𝑞-core

(or ex post 𝑞-core, for 𝛼 = 1) if every panel 𝑃 in the support of A𝑘

is in the 𝛼-𝑞-core, i.e., for all 𝑃 drawn from A𝑘 and all 𝑃 ′,

𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) < |𝑃 ′ | · 𝑛/𝑘.

Ex ante𝑞-core. A selection algorithmA𝑘 is in the ex ante𝛼-𝑞-core

(or ex ante 𝑞-core, for 𝛼 = 1) if for all 𝑃 ′:

E𝑃∼A𝑘
[𝑉𝑞 (𝑃, 𝑃 ′, 𝛼)] < |𝑃 ′ | · 𝑛/𝑘.

The idea of requiring a core-like property over the expected

number of preference counts was introduced by Cheng et al. [8]

in a multi-winner election setting. Essentially, it states that for

any panel 𝑃 ′, if, for any realized panel 𝑃 , we count the number of

individuals that reduce their cost by a multiplicative factor of at

least 𝛼 under 𝑃 ′, in expectation, this number is less than |𝑃 ′ | · 𝑛/𝑘 .
Therefore, in expectation, they are not eligible to choose it.

It is easy to see that ex post 𝛼-core implies ex ante 𝛼-core,

since if for each 𝑃 in the support of a distribution that A𝑘 re-

turns and each 𝑃 ′, it holds that 𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) < |𝑃 ′ | · 𝑛/𝑘 , then
E𝑃∼A𝑘

[𝑉𝑞 (𝑃, 𝑃 ′, 𝛼)] < |𝑃 ′ | · 𝑛/𝑘 .

3 FAIRNESS AND EX POST CORE

In this section, we investigate if there are selection algorithms

that are fair, and in addition, provide a constant approximation

to the ex post 𝑞-core. Unsurprisingly, uniform selection may fail

to provide any bounded approximation to the ex post 𝑞-core for

𝑞 ∈ [𝑘 − 1].1 This happens because each panel has a nonzero

probability of selection, and there may exist panels with arbitrarily

large violations of the 𝑞-core objective.

Theorem 1. For any 𝑞 ∈ [𝑘 − 1] and ⌊𝑛/𝑘⌋ ≥ 𝑘 , there exists an

instance such that uniform selection is not in the ex post 𝛼-𝑞-core for

any bounded 𝛼 .

All missing proofs can be found in the full version [12].

Therefore, we ask: For every 𝑞, is there any selection algorithm

that keeps the fairness guarantee of uniform selection and ensures

that every panel in its support is in the constant approximation of

the 𝑞-core? We answer this positively.

We present a selection algorithm, called FairGreedyCapture𝑘 ,

that is fair and in the ex post 6-𝑞-core, for every 𝑞 ∈ [𝑘]. We high-

light that the algorithm does not need to know the value of 𝑞.

Our algorithm leverages the basic idea of the Greedy Capture al-

gorithm introduced by Chen et al. [7], which returns a panel in

the (1 +
√
2) ≊ 2.42-approximation of the 1-core. Briefly, Greedy

Capture begins with an empty panel and gradually expands a ball

around each individual at a uniform rate. When a ball captures at

1
For 𝑞 = 𝑘 , we show in the full version that all panels lie in the 2 approximation of the

𝑘-core; hence, any algorithm including uniform selection provides an ex post 2-𝑘-core.

ALGORITHM 1: FairGreedyCapture𝑘

Input: [𝑛], 𝑑
Output: 𝑃ℓ and 𝜆ℓ , for ℓ ∈ [𝐿], where each 𝑃ℓ represents a

panel of size 𝑘 and 𝜆ℓ is its probability of selection

/* Create a (𝑘/𝑛)-fractional allocation by
distributing a 𝑘/𝑛 fraction of each individual
among 𝑘 balls, such that each ball contains a
total fractional amount equal to 1. */

𝑋 ← [0]𝑘×𝑛 ; 𝛿 ← 0; 𝑗 ← 1; {𝑦𝑖 ← 𝑘/𝑛}𝑖∈[𝑛] ;
while

∑
𝑖∈[𝑛] 𝑦 𝑗 > 0 do

Gradually increase 𝛿 until the following condition holds;

while ∃𝑖 ∈ [𝑛], such that

∑
𝑖′∈𝐵 (𝑖,𝛿) 𝑦𝑖′ ≥ 1 do

while 𝑋 𝑗 =
∑
𝑖∈[𝑛] 𝑋 𝑗,𝑖 < 1 do

Pick 𝑖 ′ ∈ 𝐵(𝑖, 𝛿) with 𝑦𝑖′ > 0;

𝑋 𝑗,𝑖′ ← min(1 − 𝑋 𝑗 , 𝑦𝑖′);
𝑦𝑖′ ← 𝑦𝑖′ − 𝑋 𝑗,𝑖′ ;

end

𝑗 ← 𝑗 + 1;
end

end

/* Apply Birkhoff’s decomposition */

𝑋 ′ ← [1/𝑛] (𝑛−𝑘)×𝑛 ;

Let 𝑌 =

[
𝑋

𝑋 ′

]
;

Compute a decomposition of 𝑌 =
∑𝐿
ℓ=1 𝜆ℓ𝑌

ℓ
using the

Birkhoff’s decomposition (Theorem 2);

for ℓ = 1 to 𝐿 do

𝑃ℓ ←
{
𝑖 ∈ [𝑛] | 𝑌 ℓ

𝑗,𝑖
= 1 for some 𝑗 ≤ 𝑘

}
end

return distribution over 𝐿 panels {𝑃ℓ }ℓ∈[𝐿] where 𝑃ℓ is
selected with probability 𝜆ℓ

least ⌈𝑛/𝑘⌉ individuals for the first time, we “open” the ball by se-

lecting its center for the panel and removing all captured individuals

from further consideration. The process continues, expanding balls

around all individuals— including those already opened. The algo-

rithm keeps growing balls on all individuals, including the opened

balls. As these opened balls grow, any newly captured individuals

are immediately disregarded. This algorithm is deterministic and

need not satisfy fairness. Additionally, the final panel may contain

fewer than 𝑘 individuals.

At a high level, FairGreedyCapture𝑘 (see Algorithm 1) oper-

ates as follows: it greedily opens 𝑘 balls using the basic idea of the

Greedy Capture algorithm, ensuring each ball contains sufficiently

many individuals. In contrast to Greedy Capture, which selects ball

centers as representatives, our algorithm probabilistically selects

precisely one individual from each of the 𝑘 balls.

Before, we describe the algorithm in more detail, we define a

(𝑘/𝑛)-fractional allocation as a non-negative 𝑘 × 𝑛 matrix 𝑋 ∈
[0, 1]𝑘×𝑛 where entries in each row sums to 1 and entries in each

column sum to 𝑘/𝑛, i.e., for each 𝑖 ∈ [𝑛],∑𝑗 ∈[𝑘 ] 𝑋 𝑗,𝑖 = 𝑘/𝑛, and for
each 𝑗 ∈ [𝑘], ∑𝑖∈[𝑛] 𝑋 𝑗,𝑖 = 1. The algorithm, during its execution,

generates a (𝑘/𝑛)-fractional allocation 𝑋 of individuals in [𝑛] into
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𝑘 balls, where 𝑋 𝑗,𝑖 denotes the fraction of individual 𝑖 assigned to

ball 𝑗 . We say that an individual 𝑖 is assigned to ball 𝑗 , if 𝑋 𝑗,𝑖 > 0.

An individual can be assigned to more than one ball.

The (𝑘/𝑛)-fractional allocation𝑋 is generated as follows. Denote

the unallocated part of each individual 𝑖 by 𝑦𝑖 . Start with 𝑦𝑖 = 𝑘/𝑛.
This corresponds to the fairness criterion that we allocate a 𝑘/𝑛
probability of selection to each individual. Algorithm 1 grows a

ball around every individual in [𝑛] at the same rate. Suppose a ball

captures individuals whose combined unallocated parts sum to at

least 1. Then, we open this ball and from individuals 𝑖 ′ captured
by this ball with 𝑦𝑖′ > 0, we arbitrarily remove a total mass of

exactly 1 and assign it to the ball. This can be done in various ways,

e.g., greedily pick an individual 𝑖 ′ with positive 𝑦𝑖′ and allocate

min{1 − ∑
𝑖∈[𝑛] 𝑋 𝑗,𝑖 , 𝑦𝑖′} fraction of it to the corresponding row

(i.e. ball). This procedure terminates when the 𝑘/𝑛 fraction of each

individual is fully allocated. Note that since each time a ball opens,

a total mass of 1 is deducted from𝑦𝑖 -s and, for each 𝑖 ∈ [𝑛],𝑦𝑖 starts
with a fraction of 𝑘/𝑛, exactly 𝑘 balls are opened.

Sampling panels from the (𝑘/𝑛)-fractional allocation. Next, we
show a method of decomposing 𝑋 , the (𝑘/𝑛)-fractional allocation,
to a distribution over panels of size 𝑘 that each contain at least one

representative from each ball. We employ the Birkhoff’s decom-

position [5]. This theorem applies over square matrices that are

bistochastic. A matrix is bistochastic if every entry is nonnegative

and the elements in each of its rows and columns sum to 1.

Theorem 2 (Birkhoff-vonNeumann). Let𝑌 be a𝑛×𝑛 bistochas-
tic matrix. There exists a polynomial time algorithm that computes a

decomposition 𝑌 =
∑𝐿
ℓ=1 𝜆ℓ𝑌

ℓ
, with 𝐿 ≤ 𝑛2 −𝑛 +2, such that for each

ℓ ∈ [𝐿], 𝜆ℓ ∈ [0, 1], 𝑌 ℓ
is a permutation matrix and

∑𝐿
ℓ=1 𝜆ℓ = 1.

We cannot directly apply the theorem above, since the (𝑘/𝑛)-
fractional allocation𝑋 is not bistochastic nor a square matrix. How-

ever, we can complete𝑋 into a square matrix𝑌 =

[
𝑋

𝑋 ′

]
by adding

𝑛 − 𝑘 rows 𝑋 ′ = [1/𝑛] (𝑛−𝑘)×𝑛 where all entries are 1/𝑛. Note that
the resulting matrix 𝑌 is bistochastic. Indeed, each row of both 𝑋

and 𝑋 ′ sums to 1 by their definition; further, as each column of 𝑋

sums to 𝑘/𝑛 and that it is followed by 𝑛 −𝑘 of 1/𝑛 entries in 𝑋 ′, the
columns also sum to 1. Note that there are various choices of𝑋 ′ that
makes 𝑌 a bistochastic matrix, but here we use the uniform matrix

for simplicity. Then, the algorithm applies Theorem 2 and computes

the decomposition 𝑌 =
∑𝐿
ℓ=1 𝜆ℓ𝑌

ℓ
. For each permutation matrix 𝑌 ℓ

,

we create a panel 𝑃ℓ consisting of the individuals that have been

assigned to the first 𝑘 rows, i.e. 𝑃ℓ contains all 𝑖-s with 𝑌 ℓ
𝑗,𝑖

= 1

for some 𝑗 ≤ 𝑘 . Finally, the algorithm returns the distribution that

selects each panel 𝑃ℓ with probability equal to 𝜆ℓ .

To prove that FairGreedyCapture𝑘 is fair and ex post 𝑂 (1)-𝑞-
core, we need the next two lemmas.

Lemma 1. Let 𝑆 ⊆ [𝑛], 𝑃 ′ be a panel, and𝑚 = ⌊|𝑃 ′ |/𝑞⌋.
(1) There exists a partitioning of 𝑆 into𝑚 disjoint sets 𝑇1, . . . ,𝑇𝑚

and an individual 𝑖∗
ℓ
∈ 𝑇ℓ such that for all ℓ ∈ [𝑚] and 𝑖 ∈ 𝑇ℓ ,

𝑐𝑞 (𝑖, 𝑃 ′) ≤ 𝑐𝑞 (𝑖∗ℓ , 𝑃
′) and top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃

′) ≠ ∅.
(2) There exists a partitioning of 𝑆 into𝑚 disjoint sets 𝑇1, . . . ,𝑇𝑚

and an individual 𝑖∗
ℓ
∈ 𝑇ℓ such that for all ℓ ∈ [𝑚] and 𝑖 ∈ 𝑇ℓ ,

𝑐𝑞 (𝑖, 𝑃 ′) ≥ 𝑐𝑞 (𝑖∗ℓ , 𝑃
′) and top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃

′) ≠ ∅.

Lemma 2. For any panel 𝑃 and any 𝑖, 𝑖 ′ ∈ [𝑛], it holds that
𝑐𝑞 (𝑖, 𝑃) ≤ 𝑑 (𝑖, 𝑖 ′) + 𝑐𝑞 (𝑖 ′, 𝑃).

Proof of Lemma 2. Consider a ball centered at 𝑖 ′ with radius

𝑐𝑞 (𝑖 ′, 𝑃). This ball contains at least 𝑞 representatives of 𝑃 . Hence,

𝑐𝑞 (𝑖, 𝑃) is less than or equal to the distance of 𝑖 to one of the 𝑞

representatives that are included in 𝐵(𝑖 ′, 𝑐𝑞 (𝑖 ′, 𝑃)) which is at most

𝑑 (𝑖, 𝑖 ′) + 𝑐𝑞 (𝑖 ′, 𝑃). □

Now, we are ready to prove the next theorem.

Theorem 3. For every 𝑞 ∈ [𝑘], FairGreedyCapture𝑘 is fair and

in the ex post 6-𝑞-core.

Proof. Seeing that the algorithm is fair is straightforward. For

a matrix 𝐴, let 𝐴[1 : 𝑘, :] be the submatrix induced by keeping

its first 𝑘 rows. First, note that for each panel 𝑃 ℓ we choose the

individuals that have been assigned to𝑌 ℓ [1 : 𝑘, :] and second, recall
that 𝑌 [1 : 𝑘, :] = 𝑋 . The fairness of the algorithm follows by the

facts that 𝑌 [1 : 𝑘, :] = 𝑋 =
∑𝐿
ℓ=1 𝜆ℓ𝑌

ℓ [1 : 𝑘, :] and for each 𝑖 ∈ [𝑛],∑𝑘
𝑗=1 𝑋 𝑗,𝑖 = 𝑘/𝑛.
We proceed by showing that FairGreedyCapture𝑘 is in the ex

post 6-𝑞-core, for all 𝑞 ∈ [𝑘]. First, note that if an individual 𝑖 is

assigned to a ball 𝑗 in some 𝑌 ℓ
, then we must have 𝑋 𝑗,𝑖 > 0. Now,

since each individual 𝑖 ∈ [𝑛] is assigned to a ball 𝑗 ∈ [𝑘] in the

permutation, we get that at least one individual is selected from

each ball.

Let 𝑃 be any panel that the algorithm may return. Suppose for

contradiction that there exists a panel 𝑃 ′ such that 𝑉𝑞 (𝑃, 𝑃 ′, 6) ≥
|𝑃 ′ | · 𝑛/𝑘 . Thus, there exists 𝑆 ⊆ [𝑛] with |𝑆 | ≥ |𝑃 ′ | · 𝑛/𝑘 such that

∀𝑖 ∈ 𝑆, 𝑐𝑞 (𝑖, 𝑃) > 6 · 𝑐𝑞 (𝑖, 𝑃 ′). (1)

Let 𝑇1, . . . ,𝑇𝑚 be a partition of 𝑆 with respect to 𝑃 ′, as given in

the first part of Lemma 1. Since𝑚 ≤ ⌊|𝑃 ′ |/𝑞⌋ and |𝑆 | ≥ |𝑃 ′ | · 𝑛/𝑘 ,
we conclude that there exists a part, say 𝑇ℓ , that has size at least

𝑞 · 𝑛/𝑘 . From Lemma 1, we know that there exists 𝑖∗
ℓ
∈ 𝑇ℓ such that

for each 𝑖 ∈ 𝑇ℓ it holds that 𝑐𝑞 (𝑖, 𝑃 ′) ≤ 𝑐𝑞 (𝑖∗ℓ , 𝑃
′) and top𝑞 (𝑖, 𝑃 ′) ∩

top𝑞 (𝑖∗ℓ , 𝑃
′) ≠ ∅. Therefore, we can conclude that for each 𝑖 ∈ 𝑇ℓ ,

𝑑 (𝑖∗
ℓ
, 𝑖) ≤ 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃

′), as follows: Pick an arbitrary representative

in top𝑞 (𝑖, 𝑃 ′) ∩ top𝑞 (𝑖∗ℓ , 𝑃
′) and denote it as 𝑟𝑖 . Then,

𝑑 (𝑖, 𝑖∗ℓ ) ≤ 𝑑 (𝑖, 𝑟𝑖 ) + 𝑑 (𝑟𝑖 , 𝑖∗ℓ ) ≤ 𝑐𝑞 (𝑖, 𝑃 ′) + 𝑐𝑞 (𝑖∗ℓ , 𝑃
′) ≤ 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃

′).

This implies that the ball centered at 𝑖∗
ℓ
with a radius of 2 ·𝑐𝑞 (𝑖∗ℓ , 𝑃

′)
captures all individuals in 𝑇ℓ .

Now, consider all the balls that FairGreedyCapture𝑘 opens

and contain individuals from 𝑇ℓ . Since |𝑇ℓ | ≥ 𝑞 · 𝑛/𝑘 and each ball

is assigned a total fraction of 1, there are at least 𝑞 such balls. Next,

we claim that at least 𝑞 of them have radius at most 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃
′).

Suppose for contradiction that at most 𝑞 − 1 of them have radius

at most 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃
′). This means that a total fraction of at least 1

from individual in 𝑇ℓ is assigned to balls with radius strictly larger

than 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃
′). However, the ball centered at 𝑖∗

ℓ
with radius

2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃
′) would have captured this fraction, and therefore we

reach a contradiction.

Next, denote with 𝐵1, . . . , 𝐵𝑞 , 𝑞 balls that are opened, and each

contain individuals from 𝑇ℓ and have radius at most 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃
′).

Due to the definition of FairGreedyCapture𝑘 , each panel that

is returned, contains at least one representative from each ball.
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Therefore, each ball 𝐵 𝑗 contains at least one representative, denoted

by 𝑟 𝑗 . Now, note that since each 𝐵 𝑗 contains at least one individual

from 𝑇ℓ , denoted by 𝑖 𝑗 , we have that

∀𝑗 ∈ [𝑞], 𝑑 (𝑖∗ℓ , 𝑟 𝑗 ) ≤ 𝑑 (𝑖∗ℓ , 𝑖 𝑗 ) + 𝑑 (𝑖 𝑗 , 𝑟 𝑗 ) ≤ 6 · 𝑐𝑞 (𝑖∗ℓ , 𝑃
′),

where the first inequality follows from the triangle inequality and

the last inequality follows from the facts that for each 𝑖 ∈ 𝑇ℓ ,

𝑑 (𝑖∗
ℓ
, 𝑖) ≤ 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃

′), and each 𝐵 𝑗 has radius at most 2 · 𝑐𝑞 (𝑖∗ℓ , 𝑃
′)

and both 𝑖 𝑗 and 𝑟 𝑗 belong to this ball. Therefore, there are at least 𝑞

representatives in 𝑃 that have distance at most 6 · 𝑐𝑞 (𝑖∗ℓ , 𝑃
′) from

𝑖∗
ℓ
. But then, 𝑐𝑞 (𝑖∗ℓ , 𝑃) ≤ 6 · 𝑐𝑞 (𝑖∗ℓ , 𝑃

′) which contradicts Eq. (1). □

As discussed, the ex post 𝛼-𝑞-core implies the ex ante 𝛼-𝑞-core

which means that FairGreedyCapture𝑘 is also in the ex ante 6-

𝑞-core for all 𝑞 ∈ [𝑘]. In the next section, we show that no fair

algorithm provides an approximation better than 2 to the ex ante

𝑞-cost, for any 𝑞. Therefore, we get that no fair selection algorithm

provides an approximation better than 2 to the ex post 𝑞-core either.

Thus, FairGreedyCapture𝑘 is optimal within a factor of 3.

3.1 Ex Post Core and Quotas over Features

In the introduction, we discussed a common approach used to

ensure proportional representation, which involves setting quotas

based on individual or groups of features. For instance, a quota

might mandate that at least 45% of representatives are female.While

the concept of the core aims to achieve proportional representation

across intersecting features, it may not guarantee the same across

individual features. This raises the question of whether it’s possible

to achieve both types of representation to the degree that is possible.

We argue that this is feasible and show how the core requirement

can be translated into a set of quotas.

FairGreedyCapture𝑘 generates 𝑘 balls, with each individual

assigned to one or more balls. A sufficient condition to achieve an

ex post𝑂 (1)-𝑞-core is to have at least one representative from each

ball. This condition can be transformed into quotas by introducing

an additional feature, 𝑏𝑖 , for each individual 𝑖 , indicating the balls

they belong to. We then impose quotas ensuring that for each ball

𝑗 ∈ [𝑘], the panel includes at least one individual belonging to that

ball. In other words, we can think of each ball as a subpopulation

from which we want to draw a representative. We can then utilize

the methods proposed by Flanigan et al. [17] to identify panels that

meet these quotas, along with others as much as possible, while

maximizing fairness. Note that framing proportional representation

as a set of quotas also allows us to use the algorithms of the afore-

mentioned paper for sampling from a biased pool of volunteers.

4 UNIFORM SELECTION AND EX ANTE CORE

We have already discussed that uniform selection fails to provide

any reasonable approximation to the ex post 𝑞-core, for almost

all values of 𝑞. However, as we mentioned in the introduction, it

seems to satisfy the ex ante 𝑞-core, at least when 𝑘 is very large. In

this section, we ask whether indeed uniform selection satisfies a

constant approximation of the ex ante 𝑞-core, in a rigorous way,

for all values of 𝑞 and 𝑘 . We show that uniform selection is in the

ex ante 4-𝑞-core, for every 𝑞.2 The main reason is that, for 𝑞 = 𝑘 , it

suffices to show that the grand coalition does not deviate ex ante.

2
In fact, for 𝑞 = 𝑘 , uniform selection is in the ex ante 𝑘-core (see the full version).

ALGORITHM 2: Auditing Algorithm

Input: 𝑃 , [𝑛], 𝑑 , 𝑘 , 𝑞,
Output: 𝛼

for 𝑗 ∈ [𝑛] do
𝑃 𝑗 ← { 𝑗} ∪ {𝑞 − 1 closest neighbors of 𝑗}
𝛼 𝑗 ← ⌈𝑞𝑛/𝑘⌉ largest value among

{
𝑐𝑞 (𝑖,𝑃 )/𝑐𝑞 (𝑖,𝑃 𝑗 )

}
𝑖∈[𝑛]

end

return 𝛼 ← argmax𝑗 ∈[𝑛] 𝛼 𝑗

Since each panel is selected with non-zero probability, the marginal

probabilities of deviation is strictly less than one, and the ex ante

𝑘-core is satisfied.

Theorem 4. For any 𝑞 ∈ [𝑘], uniform selection is in the ex ante

4-𝑞-core. That is, for any panel 𝑃 ′, E𝑃∼U𝑘

[
𝑉𝑞 (𝑃, 𝑃 ′, 4)

]
< |𝑃 ′ | ·𝑛/𝑘.

In the next theorem, we show that for any 𝑞 < 𝑘 , no selection

algorithm that is fair, is guaranteed to achieve ex ante 𝛼-𝑞-core

with 𝛼 < 2. Hence uniform selection is optimal up to a factor of 2.

Theorem 5. For any 𝑞 ∈ [𝑘 − 1], when 𝑛 ≥ 2𝑘2/(𝑘 − 𝑞), there
exists an instance such that no selection algorithm that is fair is in

the ex ante 𝛼-𝑞-core with 𝛼 < 2.

5 AUDITING EX POST CORE

In this section, we turn our attention to the following question:

Given a panel 𝑃 , how much does it violate the 𝑞-core, i.e. what

is the maximum value of 𝛼 such that there exists a panel 𝑃 ′ with
𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) ≥ |𝑃 ′ | · 𝑛/𝑘? This auditing question can be very useful

in practice for measuring the proportional representation of a panel

formed using a method that does not guarantee any panel to be in

the approximate core, such as uniform selection.

Chen et al. [7] ask the same question for the case where the cost

of an individual for a panel is equal to her distance from her closest

representative in the panel, i.e. when 𝑞 = 1. In this case, it suffices

to restrict our attention to panels of size 1, which are subsets of

the population that individuals may prefer to be represented by.

In other words, given a panel 𝑃 , we can simply consider every

individual as a potential representative and check if a sufficiently

large subset of the population prefers this individual to be their

representative over 𝑃 . Thus, we can find the maximum 𝛼 such that

there exists 𝑃 ′, with𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) ≥ 𝑛/𝑘 as follows: For each 𝑗 ∈ [𝑛],
calculate 𝛼 𝑗 which is equal to the ⌈𝑛/𝑘⌉ largest value among the

set {𝑐𝑞 (𝑖, 𝑃)/𝑐𝑞 (𝑖, { 𝑗})}𝑖∈[𝑛] containing the 𝑞-cost ratios of 𝑃 to 𝑃 ′.
Then, 𝛼 is equal to the maximum value among all 𝛼 𝑗 ’s.

For 𝑞 > 1, this question is more challenging. We approximate

the maximum 𝛼 by generalizing the above procedure as follows:

For each 𝑗 ∈ [𝑛], define 𝑃 𝑗 as the panel containing 𝑗 and its 𝑞 − 1
closest neighbors. Compute 𝛼 𝑗 as the ⌈𝑞 · 𝑛/𝑘⌉ largest value in

{𝑐𝑞 (𝑖, 𝑃)/𝑐𝑞 (𝑖, 𝑃 𝑗 )}𝑖∈[𝑛] . Finally, return the maximum value among

all 𝛼 𝑗 ’s as 𝛼 . Algorithm 2 executes this procedure. We show that the

maximum 𝛼 such that there exists a panel 𝑃 ′ with 𝑉𝑞 (𝑃, 𝑃 ′, 𝛼) ≥
|𝑃 ′ | · 𝑛/𝑘 is at most 3 · 𝛼 + 2.

Theorem 6. There exists an efficient algorithm that for every panel

𝑃 and 𝑞 ∈ [𝑘] returns 𝛼-𝑞-core violation that satisfies 𝛼 ≤ 𝛼 ≤ 3𝛼 +2,
where 𝛼 is the maximum amount of 𝑞-core violation of 𝑃 .
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6 EXPERIMENTS

In previous sections, we examined uniform selection from a worst-

case perspective and found that it cannot guarantee panels in the

core for any bounded approximation ratio. But, what about the av-

erage case? In this section, we aim to address this question through

empirical evaluations of both algorithms using real databases.

6.1 Datasets

In accordance with themethodology proposed by Ebadian et al. [11],

we utilize the same two datasets used by the authors as a proxy for

constructing the underlying metric space. These datasets capture

various characteristics of populations across multiple observable

features. It is reasonable to assume that individuals feel closer to

others who share similar characteristics. Therefore, we construct a

random metric space using these datasets.

Adult. The first is the Adult dataset, extracted from the 1994

Current Population Survey by the US Census Bureau and avail-

able on the UCI Machine Learning Repository under a CC BY 4.0

license [10, 24]. Our analysis focuses on five demographic features:

sex, race, workclass, marital.status, and education.num. The
dataset is comprised of 32,561 data points, each with a sample

weight attribute (fnlwgt). We identify 1513 unique data points by

these features and treat the sum of the weights associated with

each unique point as a distribution across them.

ESS. The second dataset we analyze is the European Social Sur-

vey (ESS), available under a CC BY 4.0 license [29]. Conducted

biennially in Europe since 2001, the survey covers attitudes to-

wards politics and society, social values, and well-being. We used

the ESS Round 9 (2018) dataset, which has 46,276 data points and

1451 features across 28 countries. On average, each country has

around 250 features (after removing non-demographic and country-

unrelated data), with country-specific data points ranging from

781 to 2745. Each ESS data point has a post-stratification weight

(pspwght), which we use to represent the distribution of the data

points. Our analysis focuses on the ESS data for the United Kingdom

(ESS-UK), which includes 2204 data points.

6.2 Representation Metric Construction

In line with the work of Ebadian et al. [11], we apply the same

approach to generate synthetic metric preferences, which are used

to measure the dissimilarity between individuals based on their

feature values. Our datasets consist of two types of features: cate-

gorical features (e.g. sex, race, and martial status) and continuous

features (e.g. income). We define the distance between individuals 𝑖

and 𝑗 with respect to feature 𝑓 as follows:

𝑑 (𝑖, 𝑗 ; 𝑓 ) B
{
1[𝑓 (𝑖) ≠ 𝑓 ( 𝑗)], if 𝑓 is a categorical feature;

|𝑓 (𝑖)−𝑓 ( 𝑗) |
max𝑖′, 𝑗′ |𝑓 (𝑖′)−𝑓 ( 𝑗 ′) | , if 𝑓 is a continuous feature,

where the normalization factor for continuous features ensures that

𝑑 (𝑖, 𝑗 ; 𝑓 ) ∈ [0, 1] for all 𝑖 , 𝑗 , and 𝑓 , and that the distances in different
features are comparable. Next, we define the distance between two

individuals as the weighted sum of the distances over different

features, i.e. 𝑑 (𝑖, 𝑗) =
∑

𝑓 ∈𝐹 𝑤 𝑓 ·𝑑 (𝑖, 𝑗 ; 𝑓 ), where the weights𝑤 𝑓 ’s

are randomly generated. Each unique set of randomly generated

feature weights results in a new representation metric.

We generate 100 sets of randomly-assigned feature weights per

dataset, calculate a representation metric for each set, and report

the performance metrics averaged over 100 instances. Given that

our datasets are samples of a large population (i.e. millions) and

represented through a relatively small number of unique data points

(i.e. few thousands), we assume that each data point represents a

group of at least 𝑘 people, which takes a maximum value of 40 in

our study. To empirically measure ex post core violation, for each

of the 100 instances, we sample one panel from an algorithm and

compute the core violation using Algorithm 2. We note that this is

not exactly equal to the worst-case core violation, but a very good

approximation of it.

6.3 Results

6.3.1 Results for ex post core violation. In Adult dataset, we observe
an unbounded ex post core violation for Uniform when 𝑞 ≤ 4.

Specifically, for 𝑞 ∈ {1, 2, 3}, we observed unbounded core violation
in 84%, 9%, and 36% of the instances respectively. This happens

since ∼8.3% of the population is mapped to a single data point

and that Uniform fails to select 𝑞 individuals from this group.

When 𝑞 ≤ 3, we have 𝑞/𝑘 ≤ 8.4%, and this cohesive group is

entitled to select at least 𝑞 members of the panel from themselves,

which results in 𝑞-cost of 0 for them and an unbounded violation

of the core. However, FairGreedyCapture captures this cohesive

group and selects at least 𝑞 representatives from them. Furthermore,

we see significantly higher ex post core violation for Uniform

compared to FairGreedyCapture for smaller values of 𝑞 (up to

12) and comparable performance for larger values of 𝑞. This is

expected as FairGreedyCapture tends to behave more similarly

to Uniform as 𝑞 increases because it selects from fewer yet larger

groups (⌊𝑘/𝑞⌋ + 1 groups of size 𝑞𝑛/𝑘).
We observe a similar pattern in ESS-UK that Uniform obtains

worse ex post core violations when 𝑞 is smaller and similar perfor-

mance as FairGreedyCapture for larger values of 𝑞. However, in

contrast to Adult, we do not observe similar unbounded violations

for Uniform in ESS-UK. The reason is that ESS-UK consists of 250

features (compared to the 5we used fromAdult) and any data points

represent at most 0.2% of the population. Thus, no group is entitled

to choose enough representatives from their own to significantly

improve their cost or make it 0. The decline in core violation for

𝑞 = 𝑘 happens as it measures the minimum improvement in cost

over the whole population, which is more demanding than lower

values of 𝑞. Lastly, FairGreedyCapture performs consistently for

all values of 𝑞 and achieves an ex post core violation less than 1.6

and 1.25 in Adult and ESS-UK respectively.

6.3.2 Evaluating approximation to optimal social cost. As we men-

tioned in the introduction, Ebadian et al. [11] use a different ap-

proach to measure the representativeness of a panel by considering

the social cost (sum of 𝑞-costs) over a panel. In particular, they

define the representativeness of an algorithm as the worst-case

ratio between the optimal social cost and the (expected) social cost

obtained by the algorithm. Ebadian et al. [11], in their empirical

analysis, measure the average approximation to the optimal so-

cial cost of an algorithm A over a set of instances I, defined as
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Figure 1: Ex post core violation of FairGreedyCapture and Uniform with 𝑘 = 40.
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Figure 2: Approximation to the optimal social cost of FairGreedyCapture and Uniform with with 𝑘 = 40.

1

|I |
∑
𝐼 ∈I

min𝑃

∑
𝑖∈[𝑛] 𝑐𝑞 (𝑖,𝑃 )∑

𝑖∈[𝑛] 𝑐𝑞 (𝑖,A(𝐼 ))
. Since finding the optimal panel is a

hard problem and the dataset and panel sizes are large, Ebadian

et al. [11] use a proxy for the minimum social cost, specifically,

an implementation of the algorithm of Kumar and Raichel [25]

for the fault-tolerant 𝑘-median problem that achieves a constant

factor approximation of the optimal objective — which is equiv-

alent to minimizing the 𝑞-social cost. We use the same approach

and report the average approximation to the optimal social cost of

FairGreedyCapture and Uniform.

In Figure 2, the reader can see the performance of the two dif-

ferent algorithms over this objective. For ESS-UK, we observe

a similar behaviour from the two algorithms, while for Adult,

FairGreedyCapture outperforms Uniform for 𝑞 ∈ [3], which
is again due to FairGreedyCapture capturing the cohesive group.

All considered, we observe that FairGreedyCapture can maintain

at least the same level or even better optimal social cost approx-

imation as Uniform would, while achieving significantly better

empirical core guarantees in the two datasets.

7 DISCUSSION

This work introduces a notion of proportional representation, called

the core, within the context of sortition. The core serves as a mea-

sure to ensure proportional representation across intersectional

features. While uniform selection achieves an ex ante 𝑂 (1)-𝑞-core,
it fails to provide a reasonable approximation to the ex post 𝑞-

core. To overcome this limitation, we propose a selection algorithm,

FairGreedyCapture, that retains the benefits of uniform selec-

tion — namely, fairness and an ex ante 𝑂 (1)-𝑞-core — while also

satisfying the ex post 𝑂 (1)-𝑞-core criterion.
It is worth emphasizing that the limitations of uniform selection

in satisfying ex post guarantees stem from the possibility of select-

ing non-proportionally representative panels. In the full version,

we explore a natural variation where the core property is required

to hold over the expected 𝑞-costs of panels chosen from a selection

algorithm. We demonstrate that this variation is incomparable with

the ex post 𝑞-core. More importantly, uniform selection fails to offer

any meaningful multiplicative approximation for this variation.

Several directions remain for future work. One immediate chal-

lenge is closing the gaps between our lower and upper bounds for

both the ex ante and ex post core. Furthermore, Micha and Shah

[28] show that for 𝑞 = 1, Greedy Capture [7] offers better guaran-

tees in Euclidean space. This raises an interesting question: can

FairGreedyCapture achieve better guarantees when the metric

𝑑 is defined by common distance functions such as 𝐿2, 𝐿1, or 𝐿∞

norms? Lastly, in this work, we assume that all individuals share a

common metric space. However, in practice, individuals may prior-

itize different features. Ensuring representation across subjective

metric spaces is an intriguing direction for future research.
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