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ABSTRACT
We study a fair divisionmodel where indivisible items arrive sequen-
tially, and must be allocated immediately and irrevocably. Previous
work on online fair division has shown impossibility results for
achieving approximate envy-freeness under the assumption that
agents have no information about future items. In contrast, we
assume that the algorithm has complete knowledge of the future,
and aim to ensure that the cumulative allocation at each round
satis�es approximate envy-freeness, which we de�ne as temporal
envy-freeness up to one item (TEF1). We focus on settings where
items are exclusively goods or exclusively chores. For goods, while
TEF1 allocations may fail to exist, we identify several special cases
where they do—two agents, two item types, generalized binary
valuations, unimodal preferences—and provide polynomial-time
algorithms for these cases. We also prove that determining the
existence of a TEF1 allocation is NP-hard. For chores, we obtain
analogous results for the special cases, but present a slightly weaker
intractability result. We also show that TEF1 is incompatible with
Pareto optimality, with the implication that it is intractable to�nd
a TEF1 allocation that maximizes any ?-mean welfare, even for two
agents.
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1 INTRODUCTION
Fair division, a topic at the intersection of economics and computer
science, has been extensively studied over the years, with applica-
tions ranging from divorce settlements and inheritance disputes
to load balancing [23, 57]. Typically, in fair division there is a set
of agents and a set of items, and the goal is to obtain a fair allo-
cation of items to agents. In our work, we study a model where
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these items are indivisible, so each must be wholly allocated to an
agent. Moreover, the items can provide either positive utility (in
which case they are called goods) or negative utility (in which case
they are called chores, or tasks). When allocating indivisible items,
a desirable and widely-studied fairness notion is envy-freeness up
to one item (EF1), a natural relaxation of envy-freeness (EF). In an
envy-free allocation, each agent values the bundle of items they re-
ceive at least as highly as every other agent’s bundle. However, this
desideratum is not always achievable for indivisible items (consider
two agents and a single item that they both value). In contrast, in
an EF1 allocation, the envy that agent A has towards another agent
B can be eliminated by removing a single item from B’s bundle (in
case of goods) or A’s bundle (in case of chores).

Most prior research studies fair division in the o�ine setting,
assuming that all of the items are immediately available and ready
to be allocated. However, there are various applications where the
items arrive and need to be allocated on the spot in a sequential
manner. For example, when the university administration places
an order for lab equipment, or when a company orders new ma-
chines for its franchises, the items may arrive over time due to their
availabilities and delivery logistics. In case of chores, collaborative
project management may require division of tasks over time. For a
variety of reasons, arriving items may have to be allocated immedi-
ately; there may not be any storage space to keep any unallocated
goods, or the central decision maker may desire a non-wasteful
allocation in the sense that items or tasks should not sit idle for
periods of time.

These applications can be captured by an online fair division
model, in which items arrive over time and must be immediately
and irrevocably allocated, though it is assumed that each item’s
valuation is not known until its arrival. Prior research has found that
a complete EF1 allocation of goods cannot be guaranteed under the
online fair division model1 [19]. However, this result relies on the
assumption that the algorithm has no information about the future.
In contrast, in our examples, the delivery services could provide the
estimated delivery dates, and there may be a pre-planned timeline
for the tasks. Motivated by these nuances, our work studies the
informed online fair division setting, assuming that the algorithm
can access the items’ valuations and arrival order upfront.

Note that the assumption of complete information about the
future trivially leads to a complete EF1 allocation at the end of the
allocation period: simply treat the instance as an o�ine problem

1In fact, the maximum pairwise envy is ⌦ (
p
C ) after C rounds in the worst case.
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and apply any algorithm known to satisfy EF1 (e.g., [8, 25, 53]).
However, this approach ignores the cumulative bundles of the items
throughout the allocation period, and, consequently, agents may
feel that their partial allocations are unfair for extended periods
of time. Inspired by this issue, we propose temporal EF1 (TEF1), an
extension of EF1 to the informed online fair division setting which
requires that at each round, the cumulative allocation satis�es EF1.

The main focus of our work is on achieving TEF1, so for the
informed online fair division of indivisible goods or chores, we aim
to answer the following existence and computational questions:

Which restricted settings guarantee the existence of a
TEF1 allocation, and can we compute such an allocation
in polynomial time in these settings? Is it computa-
tionally tractable to determine the existence2 of a TEF1
allocation? In terms of existence and tractability, is TEF1
compatible with natural notions of e�ciency?

1.1 Our Contributions
We outline our paper’s answers to these key questions as follows.

In Section 3, we show the existence of TEF1 allocations (for goods
or chores) in restricted settings, such as the case of two agents,
when there are two types of items, when agents have generalized
binary valuations, or when they have unimodal preferences. For
each of these cases, we provide an accompanying polynomial-time
algorithm. For the allocation of goods, we show that determining
whether there exists a TEF1 allocation is NP-hard; whereas for
chores, we show that given a partial TEF1 allocation, it is NP-hard
to determine if there exists a TEF1 allocation that allocates all
remaining chores.

In Section 4, we investigate the compatibility of TEF1 and Pareto-
optimality (PO). We show that even in the case of two agents, while
a TEF1 allocation is known to exist and can be computed in poly-
nomial time (for both goods and chores), existence is no longer
guaranteed if we mandate PO as well. Moreover, we show that in
this same setting, determining the existence of TEF1 and PO alloca-
tions is NP-hard. Our result also directly implies the computational
intractability of determining whether there exists a TEF1 allocation
that maximizes any ?-mean welfare objective (which subsumes
most popular social welfare objectives).

Finally, in Section 5, we consider the special case where the same
set of items arrive at each round, and show that even determining
whether repeating a particular allocation in two consecutive rounds
can result in a TEF1 allocation is NP-hard. We complement this
with a polynomial-time algorithm for computing a TEF1 allocation
in this case when there are just two rounds.

1.2 Related Work
Our work is closely related to online fair division, whereby items
arrive over time and must be irrevocably allocated to agents. The
key di�erence is that in the standard online setting, the algorithm
has completely no information on future items, whereas we assume
complete future information. Moreover, the goal in online fair divi-
sion models is typically to guarantee a fair allocation to agents at
the end of the time horizon, rather than at every round.

2Prior work by He et al. [47] has shown that a TEF1 allocation is not guaranteed to
exist for goods in the general setting with three or more agents.

As we focus on EF1, papers satisfying envy-based notions in on-
line allocations are particularly relevant. Aleksandrov et al. [2] con-
sider envy-freeness from both ex-ante and ex-post standpoints, giv-
ing a best-of-both-worlds style result by designing an algorithm for
goods which is envy-free in expectation and guarantees a bounded
level of envy-freeness. Additionally, Benadè et al. [19] �nd that
allocating goods uniformly at random leads to maximum pairwise
envy which is sublinear in the number of rounds. For further read-
ing, we refer the reader to the surveys by Aleksandrov and Walsh
[4] and Amanatidis et al. [6].

There has also been work on online fair division with partial
information on future items. Benadè et al. [19] study the extent to
which approximations of envy-freeness and Pareto e�ciency can be
simultaneously satis�ed under a spectrum of information settings,
ranging from identical agents and i.i.d. valuations to zero future in-
formation. An emerging line of work on learning-augmented online
algorithms has an alternate approach to partial future information:
the algorithms are aided by (possibly inaccurate) predictions, typ-
ically from a machine-learning algorithm. The focus is to design
algorithms which perform consistently well with accurate predic-
tions, and are robust under inaccurate predictions. These predictions
could be of each agent’s total utility for the entire item set [11, 12],
or for a random subset of : incoming items [20].

Unlike the aforementioned papers, our work considers a com-
pletely informed variant of the online fair division setting, which
has been studied by He et al. [47] for the allocation of goods. Similar
to our paper, their objective is to ensure that EF1 is satis�ed at each
round, but they allow agents to swap their bundles. When multiple
goods may arrive at each round, our setting also generalizes the
repeated fair division setting, in which the same set of goods arrives
at each round. For this model, Igarashi et al. [48] give results on
the existence of allocations which are envy-free and Pareto optimal
in the end, with the items in each round being allocated in an EF1
manner. However, they do not analyse whether the cumulative allo-
cation at each round can satisfy some fairness constraint, which is
the focus of our paper. Caragiannis and Narang [26] also consider a
model where the same set of items appear at each round, but each
agent gets exactly one item per round.

When the valuations are known upfront for the allocation of
chores, the model is similar to the� eld of work on job scheduling.
There have been numerous papers studying fair scheduling, but
the fairness is typically represented by an objective function which
the algorithm aims to minimize or approximate [17, 49, 64]. On the
other hand, there is little work on satisfying envy-based notions in
scheduling problems, but Li et al. [52] study the compatibility of
EF1 and Pareto optimality in various settings. While we consider
separately the cases of goods allocation and chores allocation, to
the best of our knowledge, there is no prior work which studies an
online fair division model with both goods and chores in the same
instance under any information assumption.

Similar temporal models that study concepts of achieving fair-
ness over time have also been recently considered in the social
choice literature [5, 27, 36, 38, 39, 51, 54, 58, 59, 70].

In a contemporary and independent work, Cookson et al. [32]
consider the same setting of temporal fair division but with a di�er-
ent approach. They only consider goods and prove positive result
in the three settings: when there are only two agents, when the
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identical set of goods appear in each timestep, and when agents
have an identical ranking over the items. They consider several
fairness notions and seek to achieve di�erent pairs of these notions
per-day and overall.

2 PRELIMINARIES
For each positive integer : , let [:] := {1, . . . , :}. We consider the
problem of fairly allocating indivisible items to agents over multiple
rounds. An instance of the informed online fair division problem is
a tuple I = h# ,) , {$C }C 2 [) ] , v = (E1, . . . , E=)i, where # = [=] is a
set of agents, ) is the number of rounds, for each C 2 [) ] the set $C
consists of items that arrive at round C , with$ = [C 2 [) ]$C , and for
each 8 2 # the valuation function E8 : $ ! R speci�es the values
that agent 8 assigns to items in $ .

We assume that agents have additive valuations, i.e., we extend
the functions E8 to subsets of $ by setting E8 (() =

Õ
>2( E8 ($) for

each ( ✓ $ . We write E instead of E8 when all agents have identical
valuation functions. We refer to the vector v = (E1, . . . , E=) as the
valuation pro�le. We de�ne the cumulative set of items that arrive
in rounds 1, . . . , C by $C :=

–
✓2 [C ] $✓ . Note that $ = $) .

We consider both goods allocation, where E8 (>) � 0 for each
8 2 # and > 2 $ , and chores allocation, where E8 (>)  0 for each
8 2 # and > 2 $ . For clarity, in the goods setting we use 6 instead
of > and refer to the items as goods, while in the chores setting we
use 2 instead of > and refer to the items as chores.

An allocation A = (�1, . . . ,�=) of items in $ to the agents is an
ordered partition of $ , i.e.,

–
82# �8 = $ and �8 \ � 9 = ? for all

8,9 2 # with 8 < 9 . For C 2 [) ], 8 2 # we write �C8 = �8 \$
C ; then

A
C = (�C1, . . . ,�

C
=) is the allocation after round C , with A = A

) .
For C < ) , we may refer to A

C as a partial allocation.
Our goal is to� nd an allocation that is fair after each round. The

main fairness notion that we consider is envy-freeness up to one
item (EF1), a well-studied notion in fair division.

De�nition 2.1. In a goods (resp., chores) allocation instance, an
allocation A = (�1, . . . ,�=) is said to be EF1 if for each pair of
agents 8,9 2 # there exists a good 6 2 � 9 (resp., chore 2 2 �8 ) such
that E8 (�8 ) � E8 (� 9 \ {6}) (resp. E8 (�8 \ {2})� E8 (� 9 )).

To capture fairness in a cumulative sense, we introduce the notion
of temporal envy-freeness up to one item (TEF1), which requires that
at every pre�x of rounds the cumulative allocation of items that
have arrived so far satis�es EF1.

De�nition 2.2 (Temporal EF1). For every C 2 [) ], an allocation
A

C = (�C1, . . . ,�
C
=) is said to be temporally envy-free up to one item

(TEF1) if for each ✓ 2 [C] the allocation A
✓ is EF1.

A key distinction between TEF1 and EF1 is that, while the EF1
property only places constraints on the� nal allocation, TEF1 re-
quires envy-freeness up to one item at every round.

However, He et al. [47, Thm. 4.2] show that for goods TEF1 al-
locations may fail to exist; they present an example with 3 agents
and 23 items, which can be generalized to = > 3 agents. For com-
pleteness, we include this counterexample along with an intuitive
explanation in the full version of the paper. We remark that the
construction of He et al. [47] cannot be translated to the chores
setting. Indeed, while we conjecture that a non-existence result of
this form also holds for chores, this remains an open question.

We assume that the reader is familiar with basic notions of classic
complexity theory [61]. All omitted proofs can be found in the full
version of the paper [37].

3 ON THE EXISTENCE OF TEF1 ALLOCATIONS
As some instances do not admit TEF1 allocations, our� rst goal
is to explore if there are restricted classes of instances for which
TEF1 allocations are guaranteed to exist. In this section we identify
several such settings.

To simplify the presentation, we will� rst demonstrate that it
usually su�ces to consider instances where only one item appears
at each round (i.e., ) =< and |$C | = 1 for all C 2 [) ]). Indeed, any
impossibility result for this special setting also holds for the general
case, and we will now argue that the converse is true as well.

L����3.1. Given an instance I with |$ | = < items, we can
construct an instance I=1 with the same set of items and exactly<
rounds so that |$C | = 1 for each C 2 [<] and if I=1 admits a TEF1
allocation, then so does I.

P����. Consider an arbitrary instanceI = h# ,) , {$C }C 2 [) ] , v =
(E1, . . . , E=)i. Renumber the items in a non-decreasing fashion with
respect to the rounds, so that for any two rounds C,A 2 [) ] with
C < A and items > 9 2 $C ,> 9 0 2 $A it holds that 9 < 9 0. We construct
I
=1 = h# ,< ,{e$C }C 2 [<] , vi by setting e$C = {>C } for each C 2 [<].

Let A be a TEF1 allocation for I=1. We construct an allocation B

for instance I by allocating all items in the same way as in A: if
A allocates at item 9 to agent 8 in round A , we identify a C 2 [) ]
such that

ÕC�1
✓=1 |$✓ | < A 

ÕC
✓=1 |$✓ | and place 9 into ⌫8 in round C .

To see that B satis�es TEF1, note that if BC violates EF1 for some
C 2 [) ], then for A =

ÕC
✓=1 |$✓ | the allocation A

A satis�es �A8 = ⌫C8
for all 8 2 # and hence violates EF1 as well. ⇤

In what follows, unless speci�ed otherwise, we simplify the
notation based on the transformation in the proof of Lemma 3.1: we
assume that |$C | = 1 for each C 2 ) and denote the unique item that
arrives in round C by >C (or 6C , or 2C , if we focus on goods/chores).

3.1 Two Agents
He et al. [47, Thm. 3.4] put forward a polynomial-time algorithm
that always outputs a TEF1 allocation for goods when = = 2; in
particular, this implies that a TEF1 allocation is guaranteed to exist
for = = 2. We will now extend this result to the case of chores.

Intuitively, in each round the algorithm greedily allocates the
unique chore that arrives in that round to an agent that does not
envy the other agent in the current (partial) allocation. A counter
B keeps track of the last round in which A

B was envy-free; if for
some round C 2 [<] the allocation of a chore 2C results in both
agents envying each other in A

C
\ A

B , then the agents’ bundles in
A

C
\ A

B are swapped.

T������3.2. For = = 2, Algorithm 1 returns a TEF1 allocation
for chores, and runs in polynomial time.

P����. The polynomial runtime of Algorithm 1 is easy to verify:
there is only one for loop, with a counter that runs from 1 to<,
and each operation within the loop runs in O(<) time. Thus, we
focus on proving correctness.
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Algorithm 1 Returns a TEF1 allocation for chores when = = 2

Input: Set of agents # = {1, . . . , =}, set of chores $ = {21, . . . , 2<},
and valuation pro�le v = (E1, E2)
Output: TEF1 allocation A of chores in $ to agents in #
1: Initialize B  0 and A

0
 (?,?)

2: for C = 1, 2, . . . ,< do
3: if E1 (�C�11 \�B1) � E1 (�

C�1
2 \�B2) then

4: A
C
 (�C�11 [ {2C },�C�12 )

5: else
6: A

C
 (�C�11 ,�C�12 [ {2C })

7: end if
8: if E1 (�C1 \�

B
1) < E1 (�

C
2 \�

B
2) and E2 (�

C
2 \�

B
2) < E2 (�

C
1 \�

B
1)

then
9: A

C
 (�B1 [�

C
2 \�

B
2,�

B
2 [�

C
1 \�

B
1)

10: end if
11: if E1 (�C1 \�

B
1) � E1 (�

C
2 \�

B
2) and E2 (�

C
2 \�

B
2) � E2 (�

C
1 \�

B
1)

then
12: B  C
13: end if
14: end for
15: return A = (�<1 ,�

<
2 )

For each C 2 [<], we de�ne AC < C as the latest round before
C such that AAC is EF. This implies that if A✓

\ A
AC is EF1 for all

✓ = AC , AC + 1, . . . , C, then A
C is also EF1. Therefore, it su�ces to

show that AC
\ A

AC is EF1 for each C 2 [<]. We will prove this by
induction on C .

For C = 1, the claim is immediate, as any allocation of a single
chore is EF1. Now, suppose that C > 1. If C = AC + 1 the allocation
A

C
\A

AC consists of a single chore, so, again, the claim is immediate.
Otherwise, AC�1 = AC and by the induction hypothesis it holds that
A

C�1
\A

AC is EF1. Let A 0C be the earliest round ahead of AC such that
A

A 0C \ AAC is EF (if such a round exists). We divide the remainder
of the proof into two cases depending on whether a partial bundle
swap (as in line 9 of the algorithm) occurs at round A 0C .

Case 1: Round A 0C does not exist or no swap at round A 0C .
Suppose without loss of generality that E1 (�C�11 \�AC1 ) < E1 (�C�12 \

�AC2 ), i.e., agent 1 envies agent 2 inAC�1
\A

AC . Then agent 2 does not
envy agent 1 (otherwise we would swap the bundles, contradicting
the de�nition of AC ), and consequently receives 2C . If agent 2 envies
agent 1 after receiving 2C , this envy can be removed by removing
2C . We also know that AC

\ A
AC is EF1 w.r.t. agent 1 (who did not

receive a chore in round C ) because by our inductive assumption,
A

C�1
\ A

AC is EF1, concluding the proof of this case.
Case 2: Swap occurs at round A 0C . We assume that A 0C > C ,

because if A 0C = C , then A
C
\ A

AC is EF and therefore EF1. For each
8 2 {C � 1, C}, let B8

\ A
B refer to the algorithm’s allocation of the

chores $8
\$B before the bundle swap, and suppose without loss

of generality that E1 (⌫C�11 \ ⌫AC1 ) < E1 (⌫C�12 \ ⌫AC2 ). We therefore
must have E2 (⌫C�12 \ ⌫AC2 ) � E2 (⌫C�11 \ ⌫AC1 ) to avoid contradicting
the de�nition of AC . Since agent 2 is not envied by agent 1 in round
C �1, it receives chore 2C , so we have BC

\B
AC = (⌫C�11 \⌫AC1 , (⌫

C�1
2 \

⌫AC2 ) [ {2C }). This means that after the bundle swap is executed,
we have AC

\ A
AC = ((⌫C�12 \ ⌫AC2 ) [ {2C },⌫C�11 \ ⌫AC1 ). Recall that

E1 (⌫C�12 \ ⌫AC2 ) > E1 (⌫C�11 \ ⌫AC1 ), so 2C can be removed from agent
1’s bundle to eliminate their envy towards agent 2. Also, by the
inductive assumption, there exists a chore 2 2 �C�12 \�AC2 such that
E2 ((�C�12 \ �AC2 ) \ {2})� E2 (�C�11 \ �AC1 ). Observe that �C2 \ �

AC
2 =

�C�12 \ �AC2 and �C1 \ �
AC
1 = (�C�11 \ �AC1 ) [ {2C }. Combining this

with the inductive assumption, we have that there exists a chore
2 2 �C2 \�

AC
2 such that

E2 ((�
C
2 \�

AC
2 ) \ {2}) = E2 ((�C�12 \�AC2 ) \ {2})

� E2 (�
C�1
1 \�AC1 )

� E2 ((�
C�1
1 \�AC1 ) [ {2C })

= E2 (�C1 \�
AC
1 ) .

Therefore, AC
\ A

AC is EF1 in this case.
We have shown thatAC

\A
AC is EF1 regardless of whether the al-

location has undergone a bundle swap, so by induction, Algorithm 1
returns a TEF1 allocation for chores. ⇤

Next, we consider temporal envy-freeness up to any item (TEFX),
the temporal variant of the stronger notion of envy-freeness up to
any item (EFX).

De�nition 3.3. In a goods (resp., chores) allocation instance, an
allocation A = (�1, . . . ,�=) is said to be EFX if for all pairs of
agents 8,9 2 # , and all goods 6 2 � 9 (resp., chores 2 2 �8 ) we have
E8 (�8 ) � E8 (� 9 \ {6}) (resp. E8 (�8 \ {2})� E8 (� 9 )).

De�nition 3.4 (Temporal EFX). For every C 2 [) ], an allocation
A

C = (�C1, . . . ,�
C
=) is said to be temporal envy-free up to any item

(TEFX) if for each ✓  C the allocation A
✓ is EFX.

Unfortunately, TEFX allocations (for goods or chores) may not
exist, even for two agents with identical valuations, and even when
there are only two types of items.

P����������3.5. A TEFX allocation for goods or chores may not
exist, even for = = 2 with identical valuations and two types of items.

3.2 Other Restricted Settings
The next natural question we ask is whether there are other special
cases where EF1 allocation is guaranteed to exist. We answer this
question a�rmatively by demonstrating the existence of EF1 allo-
cations in three special cases, each supported by a polynomial-time
algorithm that returns such an allocation.

Two Types of Items. The� rst setting we consider is one where
items can be divided into two types, and each agent values all items
of a particular type equally. Formally, let (1, (2 ✓ $ be a partition
of the set of items, so that (1 \ (2 = ?, and (1 [ (2 = $ . Then, for
any A 2 {1, 2}, two items >,> 0 2 (A , and agent 8 2 # , we have that
E8 (>) = E8 (>0).

Settings with only two types of items/tasks arise naturally in
various applications, such as distributing food and clothing dona-
tions from a charity, or allocating cleaning and cooking chores
in a household. This preference restriction has been studied for
chores in o�ine settings [9, 43], and we remark that agents may
have distinct valuations for up to 2= di�erent items, unlike the
extensively studied bi-valued preferences [33, 42] which involve
only two distinct item values.
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We show that for this setting, a TEF1 allocation for goods or
chores always exists and can be computed in polynomial time.
Intuitively, the algorithm treats the two item types independently:
items of the� rst type are allocated in a round-robin manner from
agent 1 to =, while items of the second type are allocated in reverse
round-robin order from agent = to 1. Then, our result is as follows.

T������3.6. When there are two types of items, a TEF1 allocation
for goods or chores exists and can be computed in polynomial time.

Generalized Binary Valuations. The next setting we consider is
one where agents have generalized binary valuations (also known
as restricted additive valuations [1, 24]). This class of valuation
functions generalizes both identical and binary valuations, which
are both widely studied in fair division [46, 62, 66]. Formally, we
say that agents have generalized binary valuations if for every agent
8 2 # and item > 9 2 $ , E8 (> 9 ) 2 {0, ? 9 }, where ? 9 2 R \ {0}.

We show that for this setting, a TEF1 allocation can be computed
e�ciently, with the following result. We remark that the resulting
allocation also satis�es Pareto-optimality (De�nition 4.1).

T������3.7. When agents have generalized binary valuations,
a TEF1 allocation for goods or chores exists and can be computed in
polynomial time.

Unimodal Preferences. The last setting that we consider is the
class of unimodal preferences, which consists of the widely stud-
ied single-peaked and single-dipped preference structures in social
choice [7, 22] and cake cutting [21, 68]. We adapt these concepts for
the online fair division setting with a single item at each timestep.

De�nition 3.8. A valuation pro�le v is single-peaked if for each
agent 8 2 # , there is an item >8⇤ where for each 9,: 2 [<] such
that 9 < : < 8⇤, E8 (> 9 )  E8 (>: )  E8 (>8⇤ ), and for each 9,: 2 [<]

such that 8⇤ < 9 < : , E8 (>8⇤ ) � E8 (> 9 ) � E8 (>: ).

De�nition 3.9. A valuation pro�le v is single-dipped if for each
agent 8 2 # , there is an item >8⇤ where for each 9,: 2 [<] such
that 9 < : < 8⇤, E8 (> 9 ) � E8 (>: ) � E8 (>8⇤ ), and for each 9,: 2 [<]

such that 8⇤ < 9 < : , E8 (>8⇤ )  E8 (> 9 )  E8 (>: ).

In other words, under single-peaked (resp. single-dipped) valua-
tions, agents have a speci�c item >8⇤ that they prefer (resp. dislike)
the most, and prefer (resp. dislike) items less as they arrive further
away in time from >8⇤ .

Note that this restricted preference structure is well-de�ned
for the setting of a single item arriving per round, but may not
be compatible with a generalization to multiple items per round
as described in Lemma 3.1 (unless the items in each round are
identically-valued by agents).3

Unimodal preferences may arise in settings where agents place
higher value on resources at the time surrounding speci�c events.
For example, in disaster relief, the demand for food and essential
supplies peaks as a natural disaster approaches, then declines once
the immediate crisis passes. Similarly, in project management, the
workload for team members intensi�es (in terms of required time
and e�ort) as the project nears its deadline, but signi�cantly de-
creases during the� nal stages, such as editing and proofreading.
3Speci�cally, in the multiple items per round case, if the bundles of items at each
timestep are unimodally valued, the single-item per round transformation of the
instance may not necessarily be unimodal.

Unimodal preferences also generalizes other standard preference
restrictions studied in fair division and voting models, such as
settings where agents have monotonic valuations [40] or identical
rankings [62].

We propose e�cient algorithms for computing a TEF1 alloca-
tion for goods when agents have single-peaked valuations, and for
chores when agents have single-dipped valuations.

T������3.10. When agents have single-peaked valuations, a
TEF1 allocation for goods exists and can be computed in polynomial
time. When agents have single-dipped valuations, a TEF1 allocation
for chores exists and can be computed in polynomial time.

We note that while a simple greedy algorithm performs well in
the case of single-peaked valuations for goods and single-dipped
valuations for chores, it fails in the reverse scenario—single-dipped
valuations for goods and single-peaked valuations for chores. This
is due to the fact that, in the latter case, the position of the dip
or peak becomes critical and signi�cantly complicates the way
we allocate the item. We leave the existence of polynomial-time
algorithm(s) for the reverse scenario as an open question.

3.3 Hardness Results for TEF1 Allocations
The non-existence of TEF1 goods allocations for = � 3 prompts us
to explore whether we can determine if a given instance admits a
TEF1 allocation for goods. Unfortunately, we show that this problem
is NP-hard, with the following result.

T������3.11. Given an instance of the temporal fair division
problem with goods and = � 3, determining whether there exists a
TEF1 allocation is NP-hard.

P����. We reduce from the 1����3�SAT problem which is NP-
hard. An instance of this problem consists of a conjunctive normal
form formula � with three literals per clause; it is a yes instance
if there exists a truth assignment to the variables such that each
clause has exactly one True literal, and a no instance otherwise.

Consider an instance of 1����3�SAT given by the CNF � which
contains = variables {G1, . . . , G=} and< clauses {⇠1, . . . , ⇠<}. We
construct an instance I with three agents and 2= + 2 goods. For
each 8 2 [=], we introduce two goods C8 , 58 . We also introduce two
additional goods B and A . Let the agents’ (identical) valuations be
de�ned as follows:

E (6) =

8>>>>><
>>>>>:

5<+=�8
+
Õ

9 :G8 2⇠ 9
5<� 9 , if 6 = C8 ,

5<+=�8
+
Õ

9 :¬G8 2⇠ 9
5<� 9 , if 6 = 58 ,Õ

92 [<] 59�1, if 6 = A ,Õ
82 [=] 5<+8�1

+ 2 ⇥
Õ

92 [<] 59�1, if 6 = B .

Intuitively, for each variable index 8 2 [=], we associate with it
a unique value 5<+=�8 . For each clause index 9 2 [<], we also
associate with it a unique value 5<� 9 . Note that no two indices
(regardless of whether its a variable or clause index) share the same
value. Then, the value of each good C8 comprises of the unique value
associated with 8 , and the sum over all unique values of clauses
⇠ 9 which G8 appears as a positive literal in; whereas the value of
each good 58 comprises of the unique value associated with 8 , and
the sum over all unique values of clauses ⇠ 9 which G8 appears as a
negative literal in. We will utilize this in our analysis later.
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Then, we have the set of goods $ = {B,C 1, 51, C2, 52, . . . , C=, 5=, A }.
Note that E ($) = E (B) + E (A ) +

Õ
82 [=] E (C8 ) +

Õ
82 [=] E (58 ). Also

observe that
Õ
82 [=] 5<+=�8 =

Õ
82 [=] 5<+8�1. Now, as each clause

contains exactly three literals, we have’
82 [=]

’
9 :G8 2⇠ 9

5<� 9 +
’
82 [=]

’
9 :¬G8 2⇠ 9

5<� 9 = 3 ⇥
’

92 [<]

59�1 .

Then, combining the equations above, we get that

E ($) = 3 ⇥
’
82 [=]

5<+8�1
+ 6 ⇥

’
92 [<]

59�1 . (1)

Let the goods be in the following order:

B,C 1, 51, C2, 52, . . . , C=, 5=, A .

We� rst prove the following result.

L����3.12. There exists a truth assignment U such that each
clause in � has exactly one True literal if and only if there exists an
allocation A such that E (�1) = E (�2) = E (�3) for instance I.

P����. For the ‘if’ direction, consider an allocation A such that
E (�1) = E (�2) = E (�3). Then, we have that $ = �1 [ �2 [ �3
and E (�1) = E (�2) = E (�3) = 1

3E ($). Since agents have identi-
cal valuations, without loss of generality, let B 2 �1. Then, since
E (�1

1) = E (B) =
1
3E ($), agent 1 should not receive any more goods

after B , and each remaining good should go to agent 2 or 3.
Again, without loss of generality, we let A 2 �2. Then since

E (�2) = 1
3E ($), we have that

E (�2 \ {A }) =
©≠
´
’
82 [=]

5<+8�1
+ 2 ⇥

’
92 [<]

59�1™Æ
¨
�

’
92 [<]

59�1

=
’
82 [=]

5<+8�1
+

’
92 [<]

59�1 .

Note that this is only possible if for each 8 2 [<], C8 and 58 are
allocated to di�erent agents. The reason is because the only way
agent 1 can obtain the� rst term of the above bundle value (less
good A ) is if he is allocated exactly one good from each of {C8 , 58 }
for all 8 2 [=].

Then, from the goods that exist in bundle �2, we can construct
an assignment U : for each 8 2 [=], let G8 = True if C8 2 �2 and
G8 = False if 58 2 �2. Then, from the second term in the expression
of E (�1 \ {A }) above, we can observe that each clause has exactly
one True literal (because the sum is only obtainable if exactly one
literal appears in each clause, and our assignment will set each of
these literals to True).

For the ‘only if’ direction, consider a truth assignment U such
that each clause in � has exactly one True literal. Then, for each
8 2 [=], let

✓8 =

(
C8 if G8 = True under U,
58 if G8 = False under U .

We construct the allocation A = (�1,�2,�3) where

�1 = {B}, �2 = {✓1, . . . , ✓=, A }, and �3 = $ \ (�1 [�2) .

Again, observe that
Õ
82 [=] 5<+=�8 =

Õ
82 [=] 5<+8�1. Also note

that E (�1) = 1
3E ($). Then, as each clause has exactly one True

literal, E (�2) =
Õ
82 [=] 5<+8�1

+ 2 ⇥
Õ

92 [<] 59�1, and together

with (1), we get that E (�3) = 2
3E ($) � E (�1) = E (�1) and hence

E (�1) = E (�2) = E (�3), as desired. ⇤

Now consider another instance I0 that is similar to I, but with
an additional 21 goods {61, . . . , 621}. Let agents’ valuations over
these new goods be de�ned as follows:

v 61 62 63 64 65 66 67
1 90 80 70 100 100 100 15
2 90 70 80 100 100 100 95
3 80 90 70 100 100 100 25

68 69 610 611 612 613 614
1 10000 11000 12000 20000 20000 20000 20000
2 10000 11000 12000 20000 20000 20000 20000
3 10000 11000 12000 20000 20000 18500 20000

615 616 617 618 619 620 621
1 20000 20000 20000 20000 20000 19010 18005
2 20000 20000 20000 12000 12000 19085 14106
3 20000 20000 20000 20000 20000 19010 19496

Then, we have the set of goods $0 = $ [ {61, . . . , 621}.
Let the goods be in the following order:

B,C 1, 51, C2, 52, . . . , C=, 5=, A ,61, . . . , 621 .

We now present the� nal lemma that will give us our result.

L����3.13. If there exists a partial allocationA2=+2 over the�rst
2= + 2 goods such that E (�2=+2

1 ) = E (�2=+2
2 ), then there exists a TEF1

allocation A. Conversely, if there does not exist a partial allocation
A

2=+2 over the�rst 2= + 2 goods such that E (�2=+2
1 ) = E (�2=+2

2 ),
then there does not exists a TEF1 allocation A.

We use a program as a gadget to verify the lemma (see the full
version of the paper), leveraging its output to support its correctness.
Speci�cally, if there exists a partial allocation A

2=+2 over the�rst
2= + 2 goods such that E (�2=+2

1 ) = E (�2=+2
2 ), then our program

will show the existence of a TEF1 allocation by returning all such
TEF1 allocations. If there does not exist such a partial allocation,
our program essentially does an exhaustive search to show that a
TEF1 allocation does not exist. This lemma shows that there exists
a TEF1 allocation over $ 0 if and only if E (�2=+2

1 ) < E (�2=+2
2 ), and

by Claim 3.12, this implies that a TEF1 allocation over $ 0 exists if
and only if there is a truth assignment U such that each clause in �
has exactly one True literal. ⇤

However, we note that the above approach cannot be extended
to show hardness for the setting with chores. Nevertheless, we are
able to show a similar, though weaker, intractability result for the
case of chores in general. The key di�erence is that we assume that
we can start from any partial TEF1 allocation.

T������3.14. For every C 2 [) ], given any partial TEF1 allo-
cation A

C for chores, deciding if there exists an allocation A that is
TEF1 is NP-hard.

P����. We reduce from the NP-hard problem P��������. An
instance of this problem consists of a multiset ( of positive integers;
it is a yes-instance if ( can be partitioned into two subsets (1 and
(2 such that the sum of the numbers in (1 equals the sum of the
numbers in (2, and a no-instance otherwise.
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Consider an instance of P�������� given by a multiset set ( =
{B1, . . . , B<} of< positive integers. Then, we construct a set ( 0 =
{B01, . . . B

0
<} such that for each 9 2 [<], B09 = B< �  where  :=

max{B1, . . . , B<} + Y for some small Y > 0. We then scale members
of ( 0 such that they sum to �2, i.e.,

Õ
B0 2( 0 B

0 = �2.
Next, we construct an instance with four agents and<+4 chores

$ = {11,12,13,14, 21, . . . , 2<}, where agents have the following
valuation pro�le v for 9 2 {1, . . . ,<}:

v 11 12 13 14 21 . . . 2 9 . . . 2 <

1 �1 0 0 0 �1 . . . �1 . . . �1

2 �1 �1 �1 �1 B01 . . . B 0
9 . . . B 0

<

3 �1 �1 �1 �1 B01 . . . B 0
9 . . . B 0

<

4 0 0 0 �1 �1 . . . �1 . . . �1

Also, suppose we are given the partial allocationA
4 where for each

8 2 {1, 2, 3, 4}, chore 18 is allocated to agent 8 , as illustrated in the
table above. Note that the partial allocation A

4 is TEF1.
We� rst establish the following two lemmas. The� rst lemma

states that after chores 11,12,13,14 are allocated, in order to main-
tain TEF1, each remaining chore in {21, . . . , 2<} cannot be allocated
to either agent 1 or agent 4. The result is as follows.

L����3.15. In any TEF1 allocation, agents 1 and 4 cannot be
allocated any chore in {21, . . . , 2<}.

The second lemma states that in any TEF1 allocation, the sum
of values that agents 2 and 3 obtain from the chores in {21, . . . , 2<}

that are allocated to them must be equal. We formalize it as follows.

L����3.16. In any TEF1 allocation, let ⇠2,⇠3 be the subsets of
{21, . . . , 2<} that were allocated to agents 2 and 3 respectively. Then,
E2 (⇠2) = E3 (⇠3).

We will now prove that there exists an allocation A satisfying
TEF1 if and only if the set ( can be partitioned into two subsets of
equal sum.

For the ‘if’ direction, suppose ( = {B1, . . . , B<} can be parti-
tioned into two subsets (1, (2 of equal sum. This means that ( 0 =
{B01, . . . , B

0
<} can be correspondingly partitioned into two subsets

( 01, (
0
2 of equal sum (of �1 each). Let⇠1,⇠2 be the partition of chores

in {21, . . . , 2<} with values corresponding to the partitions ( 01, (
0
2

respectively. Then we allocate all chores in ⇠1 to agent 2 and all
chores in ⇠2 to agent 3. By Lemma 3.15, we have that agents 1 and
4 cannot envy any other agent at any round. Also, for any round
C 2 [) ] and 8,9 2 {2, 3} where 8 < 9 , E8 (�C8 \ {18 }) � �1 � E8 (�

C
9 ),

and for all 8 2 {2, 3} and : 2 {1, 4}, E8 (�C8 \ {18 }) � �1 = E8 (�C: ).
Thus, the allocation A that, for each 8 2 {1, 2, 3, 4}, allocates 18 to
agent 8 and for each 9 2 {2, 3}, allocates ⇠ 9 to agent 9 , is TEF1.

For the ‘only if’ direction, suppose we have an allocationA satis-
fying TEF1. By Lemma 3.15, it must be that any chore in {21, . . . , 2<}

is allocated to either agent 2 or 3. Let⇠2,⇠3 be the subsets of chores
in {21, . . . , 2<} that are allocated to agents 2 and 3 respectively,
under A. Then, by Lemma 3.16, we have that E2 (⇠2) = E3 (⇠3).
By replacing the chores with their corresponding values, we get a
partition of ( 0 into two subsets of equal sums, which in turn gives
us a partition of ( into two subsets of equal sum. ⇤

4 COMPATIBILITY OF TEF1 AND EFFICIENCY
In traditional fair division, many papers have focused on the exis-
tence and computation of fair and e�cient allocations for goods
or chores, with a particular emphasis on simultaneously achieving
EF1 and Pareto-optimality (PO) [16, 25]. In this section, we explore
the compatibility between TEF1 and PO. We begin by de�ning PO
as follows.

De�nition 4.1 (Pareto-optimality). We say that an allocation A

is Pareto-optimal (PO) if there does not exist another allocation
A
0 such that for all 8 2 # , E8 (�08 ) � E8 (�8 ), and for some 9 2 # ,

E 9 (�09 ) > E 9 (� 9 ). If such an allocation A
0 exists, we say that A0

Pareto-dominates A.

Observe that for any A that is PO, any partial allocation A
C

for C  [) ] is necessarily PO as well. We demonstrate that PO is
incompatible with TEF1 in this setting, even under very strong
assumptions (of two agents and two types of items), as illustrated
by the following result.

P����������4.2. For any = � 2, a TEF1 and PO allocation for
goods or chores may not exist, even when there are two types of items.

Despite this non-existence result, one may still wish to obtain a
TEF1 and PO outcome when the instance admits one. However, the
following results show that this is not computationally tractable.

T������4.3. Determining whether there exists a TEF1 allocation
that is PO for goods is NP-hard, even when = = 2.

T������4.4. Determining whether there exists a TEF1 allocation
that is PO for chores is NP-hard, even when = = 2.

The proof of the above result essentially imply that even deter-
miningwhether an instance admits a TEF1 and utilitarian-maximizing
(i.e., sum of agents’ utilities) allocation is computationally intractable,
since a utilitarian-welfare maximizing allocation is necessarily PO.
In fact, for the case of goods, we can make a stronger statement
relating to the general class of p-mean welfares, de�ned as follows.4

De�nition 4.5. Given ? 2 (�1, 1] and an allocationA = (�1, . . . ,

�=) of goods, the ?-mean welfare is
⇣
1
=
Õ
82# E8 (�8 )?

⌘1/?
.

In the context of fair division, ?-mean welfare has been tradition-
ally and well-studied for the setting with goods [13, 28], although
it has recently been explored for chores as well [34]. Importantly,
?-means welfare captures a spectrum of commonly studied fairness
objectives in fair division. For instance, setting ? = 1 (resp. ? = �1)
would correspond to the utilitarian (resp. egalitarian) welfare. Set-
ting ? ! 0 corresponds to maximizing the geometric mean, which
is also known as the Nash welfare [25].

Then, from our construction in the proof of Theorem 4.3 (for
goods), we have that an allocation is TEF1 and PO if and only if
it also maximizes the ?-mean welfare, for all ? 2 (�1, 1], thereby
giving us the following corollary.

C��������4.6. For all ? 2 (�1, 1], determining whether there
exists a TEF1 allocation that maximizes ?-mean welfare is NP-hard,
even when = = 2.
4Note that we cannot say the same for chores as when agents’ valuations are negative,
the ?-mean welfare may be ill-de�ned.
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5 MULTIPLE ITEMS PER ROUND
We now revisit the setting where multiple items may arrive at each
round. While Lemma 3.1 reduces this case to the setting where a
single item arrives per round, there are restricted variants of our
problem that are not preserved by this reduction. We will now
consider two such variants: ) = 2 and repeated allocation.

We begin by showing that when there are two rounds, a TEF1
allocation can be computed e�ciently.

T������5.1. When ) = 2, a TEF1 allocation for goods or chores
exists and can be computed in polynomial time.

For the remainder of Section 5, we consider the repeated setting
(also studied by Igarashi et al. [48] and Caragiannis and Narang
[26]), where the sets $1, . . . ,$) are identical. Formally, for each
C 2 ) we have $C = {>C1, . . . , >

C
: }, and E8 (>

C
9 ) = E8 (>

A
9 ) for all C,A 2

[) ] and all 8 2 # , 9 2 [:]. Note that this property of the instance
is not preserved by our reduction from many items per round to a
singe item per round.

In general, it remains an open question whether a TEF1 alloca-
tion exists for this setting. However, we can show that, perhaps
surprisingly, it is NP-hard to determine whether there exists a TEF1
allocation that allocates the items in the same way at every round.
We say that an allocation A is repetitive if for each 8 2 # , 9 2 [:]
and all C,A 2 [) ] we have >C9 2 �

C
8 \�

C�1
8 if and only if >A9 2 �

A
8 \�

A�1
8 .

Then we have the following result.

T������5.2. Determining whether there exists a repetitive allo-
cation A = (�1, . . . ,�=) that is TEF1 is NP-complete both for goods
and for chores. The hardness result holds even if ) = 2 and agents
have identical valuations.

P����. It is immediate that this problem is in NP: we can guess
a repetitive allocation, and check whether it is TEF1. Both for goods
and for chores, we reduce from the NP-hard problem M�������
N����� P����������� [45]. An instance of this problem is given
by a positive integer ^ and a multiset ( = {B1, . . . , B` } of ` non-
negative integers whose sum is ^, ; it is a yes-instance if ( can
be partitioned into ^ subsets such that the sum of integers in each
subset is, , and a no-instance otherwise.

Consider an instance of M�������N ����� P�����������given
by a positive integer ^ and a multiset ( = {B1, . . . , B` } of ` non-
negative integers that sum up to ^, .

We� rst prove the result for goods. We construct an instance
with ^ +1 agents and `+1 goods in each round:$1 = {611, . . . , 6

1
`+1}

and $2 = {621, . . . , 6
2
`+1}. The agents have an identical valuation

function E de�ned as follows: E (619 ) = E (629 ) = B 9 if 9 2 [`], and
E (61`+1) = E (62`+1) = 2, . We will now prove that there exists a
repetitive TEF1 allocation A if and only if the set ( can be parti-
tioned into ^ subsets with equal sums (of, each).

For the ‘if’ direction, consider a^-way partitionP = {%1, . . . , %^ }
of ( with

Õ
B2%8 B =, for each 8 2 [^]. We construct allocations

A
1 and A

2 by allocating the goods corresponding to the elements
of subset %8 to agent 8 for 8 2 [^]; the goods 61`+1 and 62`+1 are
allocated to agent ^ + 1. Then, in A

1, for each agent 8 2 [^] we
have E (�1

8 ) =
Õ
B2%8 B =, , and E (�1

^+1) = E (6
1
`+1) = 2, . It is easy

to verify that A1 is EF1: no agent 8 2 [^] envies another agent

9 2 [^] \ {8}, as they have the same bundle value, and agent 8’s
envy towards agent ^ + 1 can be removed by simply dropping 61`+1
from �1

^+1. Also, agent ^ + 1 does not envy the�rst ^ agents: she
values her bundle at 2, and the bundles of 8 2 [^] at, .

Moreover inA2 each agent 8 2 [^] values the bundles�2
1, . . . ,�

2
^

at 2, and hence does not envy any of the�rst ^ agents; her envy
towards ^ + 1 can be eliminated by dropping 61`+1 from �2

^+1. On
the other hand, agent ^ + 1 values her bundle at 4, and all other
bundles at 2, , so she does not envy the�rst ^ agents.

For the ‘only if’ direction, suppose we have a repetitive alloca-
tion A

2 that satis�es TEF1. Since agents have identical valuation
functions, we can assume without loss of generality that agent ^ + 1
receives goods 61`+1 and 62`+1 in rounds 1 and 2. Then for agent
8 2 [^] not to envy ^ + 1 inA

2 after we drop one item from�2
:+1, it

has to be the case that E8 (�2
8 ) � 2, . As this holds for all 8 2 [^] andÕ

92 [` ] B 9 = ^, , this is only possible if there is a ^-way partition
of ( such that each subset sums up to, .

The proof for chores is similar, and can be found in the full
version of the paper. ⇤

6 CONCLUSION
In this work, we studied the informed online fair division of indi-
visible items, with the goal of achieving TEF1 allocations. For both
goods and chores, we showed the existence of TEF1 allocations
in four special cases and provided polynomial-time algorithms for
each case. Additionally, we showed that determining whether a
TEF1 allocation exists for goods is NP-hard, and presented a similar,
though slightly weaker, intractability result for chores. We fur-
ther established the incompatibility between TEF1 and PO, which
extends to an incompatibility with ?-mean welfare. Finally, we
explored the special case of multiple items arriving at each round.

Numerous potential directions remain for future work, including
revisiting variants of the standard fair division model. Examples
include studying the existence (and polynomial-time computability)
of allocations satisfying a temporal variant of the weaker propor-
tionality up to one item property (as de�ned by Conitzer et al. [30]),
which would be implied by EF1; studying group fairness consid-
erations in the temporal setting [3, 10, 18, 31, 50, 63]; considering
the more general class of submodular valuations [44, 56, 67, 69];
considering the house allocation model where each agent gets a
single item [29, 41], which was partially explored by Micheel and
Wilczynski [55]; or even looking at more general settings with ad-
ditional size constraints [14, 15, 35]. Another promising direction is
to examine the number of approximate TEF1 allocations that exist
in order to identify additional special cases [60, 65]. It would also be
interesting to extend our results, which hold for the cases of goods
and chores separately, to the more general case of mixed manna(see,
e.g., [8]). In fact, with an appropriate modi�cation of the instance,
we can extend Theorem 3.2 to show that a TEF1 allocation exists
in the mixed manna setting when there are two agents (see the full
version of the paper).
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