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ABSTRACT
Argumentation is a formalism allowing to reason with contradic-

tory information by modeling arguments and their interactions.

There are now an increasing number of gradual semantics to com-

pute argument strengths and impact measures that have emerged

to facilitate the interpretation of their outcomes. An impact mea-

sure assesses, for each argument, the impact of other arguments

on its score. In this paper, we refine an existing impact measure

and introduce a new impact measure rooted in Shapley values. We

introduce several principles to evaluate those two impact measures

w.r.t. some well-known gradual semantics. Our analysis provides

deeper insights into the measures’ functionality and desirability.
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1 INTRODUCTION
Group decision-making and negotiation are critical components

in modern multi-agent systems [25, 32]. Effective information ex-

change between agents is essential for achieving coordination and

cooperation. Computational argumentation theory provides a struc-

tured framework for agents to articulate and justify their posi-

tions, enabling them to selectively share their goals and intentions

throughout the negotiation process. Moreover, computational ar-

gumentation theory stands as an important domain of artificial

intelligence (AI), especially in knowledge representation and rea-

soning. It is used by agents for inferring conclusions in decision

making problems [8, 22, 30] and for resolving conflicts of opin-

ion in persuasion and negotiation dialogues [6, 37]. It represents
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knowledge in argumentation graphs with arguments as nodes and

a binary attack relation for conflicts between pieces of information.

Different semantics can then be applied on those graphs to obtain

rational conclusions. In this paper, we focus on gradual semantics
which evaluate and score each argument w.r.t. “how much” it is

attacked by other arguments.

Recently, explainable AI has garnered more attention for its

ability to provide transparency and enhance the understandability

of AI-based models and algorithms. Among the existing notions of

explainability in the literature [29, 40], two notions seem pivotal

to paving the way toward explaining the outcomes of argument

evaluation: Causality [23] and Feature Attribution [28, 36]. Causality
refers to the ability to explain the link between what is introduced

as input and what results as output. Feature attribution means

assessing the contribution of input features (e.g., the age or the

blood pressure) to the output (e.g., the probability of getting sick)

by assigning attribution scores to each feature, avoiding the need

to explore the model’s internal mechanisms.

Hence, we argue that – working toward making argumentation

interpretable – it is essential that the evaluation of an argument

can be explained by highlighting the attribution of each argument’s

interconnected network to its final evaluation. This is achieved by

providing to the user an impact measure that returns the contribu-

tion of different arguments to the argument’s final evaluation.

Several impact measures have been defined in the literature [16,

24, 26, 33, 41]. We believe that there is still the need to explore other

impact measures that have not been yet considered for gradual se-

mantics. For this reason, this paper addresses the need for enhanced

impact measures, bringing modifications to existing functions while

introducing novel ones. Our study navigates the intricate landscape

by first revising the impact measure defined in [16]. Additionally,

we define a complementary impact measure based on the Shapley

Contribution Measure [5, 39]. These impact measures can be used

to assess the impact of an argument (or set of arguments) on a

given argument for any existing gradual semantics, clarifying and

explaining their contributions on the score of another argument.

There are three contributions. First, the enhancement of an ex-

isting impact measure and the definition of a novel impact measure

based on Shapley Contribution Measure. Second, the introduction

of nine principles for evaluating each (impact, semantics) pair and

a full analysis of two impact measures under some well-known
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gradual semantics. Lastly, the implementation of an online proto-

type platform where users can input their argumentation graphs,

compute the acceptability degrees for a gradual semantics, and

obtain the output of our new impact measures.

In Section 2, we start by a comprehensive review of existing

literature and methodologies and transition into the definition of

impact measures (Section 3). We then analyze our findings through

the defined principles by analyzing their satisfiability by different

(impact, semantics) pairs (Section 4). We propose a case study of a

debate in a city council, where the aim will be to evaluate, among

other things, the impact of agents involved in the debate (Section 5).

The paper concludes by summarizing the implications of our work

and outlining future directions in this evolving landscape (Section

6).

2 PRELIMINARIES
An argumentation framework (AF) is AS = (A, C), where A is a

finite set of arguments and C ⊆ A × A is a set of attacks between

arguments. The set of all direct attackers of 𝑥 ∈ A will be denoted

as 𝐴𝑡𝑡 (𝑥) = {𝑦 ∈ A | (𝑦, 𝑥) ∈ C}. Given two AFs AS = (A, C) and
AS′ = (A′, C′), AS ⊕ AS′ is the AF (A ∪ A′, C ∪ C′). For any AF

AS = (A, C) and𝑋 ⊆ A,AS|𝑋 = (𝑋, C∩ (𝑋 ×𝑋 )) . The set of exter-
nal attackers of X is𝐴𝑟𝑔− (𝑋 ) = {𝑦 ∈ A\𝑋 | ∃ 𝑥 ∈ 𝑋 𝑠.𝑡 . (𝑦, 𝑥) ∈ C}.
The set of external attacks to X is the set of attacks from an argument

in 𝐴𝑟𝑔− (𝑋 ) to an argument in 𝑋 and is formally defined as follows:

𝐴𝑡𝑡− (𝑋 ) = {(𝑦, 𝑥) ∈ C | 𝑦 ∈ 𝐴𝑟𝑔− (𝑋 ) 𝑎𝑛𝑑 𝑥 ∈ 𝑋 }. For every
𝑥,𝑦 ∈ A, a path from 𝑦 to 𝑥 is a sequence ⟨𝑥0, . . . , 𝑥𝑛⟩ of arguments

such that 𝑥0 = 𝑦, 𝑥𝑛 = 𝑥 and ∀𝑖 s.t. 0 ≤ 𝑖 < 𝑛, (𝑥𝑖 , 𝑥𝑖+1) ∈ C. The
attack structure of 𝑥 ∈ A is a set of arguments that contains 𝑥 and

all the (direct or indirect) attackers and defenders of 𝑥 .

Definition 1 (Attack Structure). Let AS = (A, C) be an AF
and 𝑥 ∈ A. The attack structure of 𝑥 in AS is StrAS (𝑥) = {𝑥} ∪ {𝑦 ∈
A | there is a path from 𝑦 to 𝑥}.

Example 1. Consider the AF AS = (A, C) represented in Fig-
ure 3. We have 𝐴𝑡𝑡 (𝑎4) = {𝑎3, 𝑎5, 𝑎8}, 𝐴𝑟𝑔− ({𝑎8, 𝑎10}) = {𝑎9},
𝐴𝑡𝑡− ({𝑎8, 𝑎10}) = {(𝑎9, 𝑎8), (𝑎9, 𝑎10)}, StrAS (𝑎3) = {𝑎1, 𝑎2, 𝑎3}
and StrAS (𝑎4) = {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎8, 𝑎9, 𝑎10}.

The usual Dung’s semantics [17] extract justifiable sets of ar-

guments (called extensions) from the argumentation framework.

Those semantics induces a two-levels acceptability of arguments

(inside or outside of one or all extensions). Gradual semantics

(and ranking-based semantics) have been proposed as a more fine-

grained approach to argument acceptability [2, 12]. These semantics

use a weighting to assign to each argument in the argumentation

framework a score, called (acceptability) degree.

Definition 2 (Gradual semantics). A gradual semantics is
a function 𝜎 which associates to each AS = (A, C), a weighting
𝜎AS : A → [0, 1] on A. 𝜎AS (𝑎) is called the degree of 𝑎.

Let us now recall some well-known gradual semantics studied

in the literature [7, 10, 31].

The h-categoriser semantics (Hbs) assigns a value to each argument

by taking into account the sum of degrees of its attackers, which

themselves take into account the degree of their attackers.

Definition 3 (h-categoriser). The h-categoriser semantics is a
gradual semantics 𝜎Hbs s.t. for any AS = (A, C) and 𝑎 ∈ A:

𝜎HbsAS (𝑎) = 1

1 + Σ𝑏∈𝐴𝑡𝑡 (𝑎)𝜎
Hbs
AS (𝑏)

The Card-based semantics (Car) favors the number of attackers

over their quality. This semantics is based on a recursive function

which assigns a score to each argument on the basis of the number

of its direct attackers and their degrees.

Definition 4 (Card-based). The Card-based semantics is a grad-
ual semantics 𝜎Car s.t. for any AS = (A, C) and 𝑎 ∈ A:

𝜎CarAS (𝑎) = 1

1 + |𝐴𝑡𝑡 (𝑎) | + Σ𝑏∈𝐴𝑡𝑡 (𝑎)𝜎
Car
AS (𝑏 )

|𝐴𝑡𝑡 (𝑎) |

The Max-based semantics (Max) favors the quality of attackers

over their number. The degree of an argument is based on the

degree of its strongest direct attacker.

Definition 5 (Max-based). The Max-based semantics is a grad-
ual semantics 𝜎Max s.t. any AS = (A, C) and 𝑎 ∈ A:

𝜎MaxAS (𝑎) = 1

1 +max𝑏∈𝐴𝑡𝑡 (𝑎) 𝜎
Max
AS (𝑏)

The last gradual semantics we study is the counting semantics

(CS) [34]. It assigns a value to each argument by counting the num-

ber of their respective attackers and defenders. An AF is considered

a dialogue game between the proponents of a given argument 𝑥

(i.e., the defenders of 𝑥) and the opponents of 𝑥 (i.e., the attackers

of 𝑥). Thus, the degree of an argument is greater if it has many

arguments from proponents and few arguments from opponents.

Formally, they convert a given AF into its adjacency matrix𝑀𝑛×𝑛
(where 𝑛 is the number of arguments). The matrix product of 𝑘

copies of𝑀 , denoted by𝑀𝑘
, represents, for all the arguments in𝐴𝐹 ,

the number of defenders (if 𝑘 is even) or attackers (if 𝑘 is odd) situ-

ated at the beginning of a path of length 𝑘 . Finally, a normalization

factor 𝑁 (e.g., the matrix infinite norm) is applied to𝑀 to guaran-

tee convergence, and a damping factor 𝛼 is used to have a more

refined treatment of different lengths of attackers and defenders

(i.e., shorter attacker/defender lines are preferred).

Definition 6 (Counting model). Let AS = (A, C) be an ar-
gumentation framework with A = {𝑥1, . . . , 𝑥𝑛}, 𝛼 ∈ (0, 1) be a
damping factor and 𝑘 ∈ N. The 𝑛-dimensional column vector 𝑣 over

A at step 𝑘 is defined by 𝑣𝑘𝛼 =
𝑘∑
𝑖=0

(−1)𝑖𝛼𝑖�̃�𝑖I, where �̃� = 𝑀/𝑁 is

the normalized matrix with 𝑁 as normalization factor and I as the
𝑛-dimensional column vector containing only 1s.
The counting model of AS is 𝑣𝛼 = lim

𝑘→+∞
𝑣𝑘𝛼 . The degree of 𝑥𝑖 ∈ A is

the 𝑖𝑡ℎ component of 𝑣𝛼 , denoted by 𝜎CSAS (𝑥𝑖 ).

A more detailed definition and examples can be found in [15, 34].

Together with the introduction of these semantics, a number

of properties have been defined for gradual semantics to evaluate

their behaviors (see [7, 11] for an overview). Two of the most well-

known are called Independence and Directionality. The former

ensures that the calculation of the acceptability degrees in two
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disconnected AFs should be independent while the latter ensures

that the acceptability degree of an argument should only rely on

the arguments with a directed path to it.

Property 1 (Independence [7]). A semantics 𝜎 satisfies Inde-
pendence iff for any two AFs AS = (A, C), AS′ = (A′, C′), where
A ∩A′ = ∅, for every 𝑦 ∈ A, 𝜎AS (𝑦) = 𝜎AS⊕AS′ (𝑦).

Property 2 (Directionality [7]). A semantics 𝜎 satisfies Direc-
tionality iff for any AF AS = (A, C), AS′ = (A, C ∪ {(𝑏, 𝑥)}), for
every𝑦 ∈ A such that there is no path from 𝑥 to𝑦, 𝜎AS (𝑦) = 𝜎AS′ (𝑦).

To our knowledge, the counting semantics is the only one not to

satisfy these two properties. However, we have chosen to study it

as it differs from the other gradual semantics studied (Hbs, Car and

Max), which all satisfy Independence and Directionality.

Proposition 1. The counting semantics does not satisfy the Inde-
pendence and Directionality properties.

3 IMPACT FOR GRADUAL SEMANTICS
An impact measure is a function that informs on how a set of

arguments “impacts” the score of a specific argument. In this paper,

it returns a value within the interval [−1, 1], reflecting the impact

of the set and its overall polarity (negative, positive or neutral).

Definition 7 (Impact measure). Let AS = (A, C) be an AF and
𝜎 be a gradual semantics. An impact measure Imp takes as input AS
and 𝜎 and returns a function Imp𝜎AS : 2

A × A → [−1, 1]. For any
𝑋 ⊆ A, 𝑦 ∈ A, Imp𝜎AS (𝑋,𝑦) is the impact of 𝑋 on 𝑦 (in AS w.r.t.
semantics 𝜎).

In Subsection 3.1, we explain the drawbacks of the impact mea-

sure by Delobelle and Villata [16] and introduce a revised version.

We also motivate and showcase a new Shapley-based impact mea-

sure in Subsection 3.2. Note that these two impact measures have

been implemented and deployed in an online platform prototype,

accessible via https://github.com/brunoyun/django-app.

3.1 Revised Version of Impact Measure from
Delobelle and Villata

In [16], the impact of an argument (or a set of arguments) on a

target argument can be measured by computing the difference

of acceptability degree of the target argument when this element

exists and when it is deleted. To capture this notion of deletion,

two deletion operators need to be defined. The argument deletion
operator ⊖A

aims to delete a set of arguments from a given argu-

mentation framework. These changes have also a direct impact on

the set of attacks because the attacks directly related to the deleted

arguments (attacking as well as attacked) are automatically deleted

too.
1
The attack deletion operator ⊖C

focuses only on the removal

of a set of attacks from the initial argumentation framework, thus

keeping the same set of arguments.

Definition 8 (Deletion operator). Let AS = (A, C) be an
AF, 𝑋 ⊆ A be a set of arguments, 𝑅 ⊆ C be a set of attacks and
𝑦 ∈ A. The argument deletion operator ⊖A is defined as AS ⊖A

𝑦 𝑋 =

(A′, C′), where
1
Note that for ⊖A

, it is necessary to specify the argument 𝑦 for which the degree

will be measured, in order to avoid removing it from the AF if it belongs to the set of

arguments whose impact on 𝑦 is to be measured.

• A′ = A\(𝑋\{𝑦});
• C′ = {(𝑥, 𝑧) ∈ C | 𝑥 ∈ A\𝑋, 𝑧 ∈ A\𝑋 }.

The attack deletion operator ⊖C is defined as AS ⊖C 𝑅 = (A, C′′),
where C′′ = C\𝑅.

In [16], to compute the impact of any set of arguments 𝑋 on an

argument 𝑦, it is proposed to consider the degree of acceptability of

𝑦 when the direct attackers of 𝑋 are removed (i.e., when the argu-

ments in𝑋 are the strongest) fromwhich the degree of acceptability

of 𝑦 is deducted when all the arguments of 𝑋 are removed.

Definition 9 ([16]). Let AS = (A, C) be an AF, 𝑦 ∈ A and
𝑋 ⊆ A. Let 𝜎 be a gradual semantics. ImpDV is defined as follows:

ImpDV𝜎AS (𝑋,𝑦) = 𝜎AS⊖A
𝑦 𝐴𝑟𝑔− (𝑋 ) (𝑦) − 𝜎AS⊖A

𝑦 𝑋
(𝑦)

Although this definition works well in general, there are partic-

ular cases (e.g., when self-attacks are allowed or when the direct

attackers of 𝑋 impact 𝑦 via other paths) where the result does not

correspond to what is expected. E.g., if AS𝑠 = ({𝑎}, {(𝑎, 𝑎)}), ap-
plying Definition 9 with the h-categoriser semantics (any other

semantics gives the same result), we obtain ImpDVHbsAS𝑠
({𝑎}, 𝑎) = 0

as it is not possible to delete the argument whose impact we want

to evaluate. This result can be considered counter-intuitive because

the degree of 𝑎 is not maximal and the only argument who can

have an impact on its degree is 𝑎 itself.

We propose a revised version of ImpDV which takes into account

this case and other problems while retaining the idea of the pro-

posed approach. Thus, instead of removing all the direct attackers

from 𝑋 (i.e., using ⊖A
), we remove the direct attacks on each argu-

ment of 𝑋 (i.e., using ⊖C
). Note that in section 4.1, we introduce

the Impact Existence principle (Principle 9) that states that if the

acceptability degree of an argument 𝑎 is not null, then there must

exist at least a set of arguments whose impact on 𝑎 is not null. Al-

though the impact measure from Delobelle and Villata (Definition

9) violates this principle, as shown above with the case of having

a single argument 𝑎 attacking itself, the revised version that we

propose satisfies this principle, leading to more intuitive results.

Definition 10 (Revised version of ImpDV). Let AS = (A, C)
be an AF, 𝑦 ∈ A and 𝑋 ⊆ A. Let 𝜎 be a gradual semantics. We have
ImpDV𝜎AS (𝑋,𝑦) = 𝜎AS⊖C𝐴𝑡𝑡− (𝑋 ) (𝑦) − 𝜎AS⊖A

𝑦 𝑋
(𝑦).

The problem mentioned in the self-attacking argument exam-

ple is solved with the revised version because the self-attack is

removed from the right-hand side of the formula. Thus, we have

𝜎Hbs
AS𝑠⊖C {∅} (𝑎) − 𝜎Hbs

AS𝑠⊖A
𝑎 {𝑎}

(𝑎) ≃ 0.618 − 1 = −0.382. In the follow-

ing sections, ImpDV will refer to that defined in Definition 10.

Theorem 2. Let 𝜎 be a gradual semantics and AS = (A, C) be
an AF. ImpDV𝜎AS is an impact measure.

Example 2. Let AS be the AF depicted in Figure 3. We display
the values of the revised impact of a set 𝑋 on an argument 𝑦 in
Table 1. Using the same examples of Table 1, the original impact
measure of [16] would yield the same values with the exception of the
impact of {𝑎1} on 𝑎4 with a value of 0. To understand this difference,
we need to compute the score of 𝑎4 when 𝑎2 is removed (because
𝐴𝑟𝑔− ({𝑎1}) = {𝑎2}). Since 𝑎1 and 𝑎2 are symmetrical in terms of
attacks received and given (i.e. they attack each other and both attack
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𝑋 𝑦 𝐴𝑡𝑡− (𝑋 ) 𝜎HbsAS1
(𝑦) 𝜎HbsAS2

(𝑦) ImpDVHbsAS (𝑋,𝑦)

{𝑎1} 𝑎4 {(𝑎2, 𝑎1)} 0.397 0.382 0.015
{𝑎5} 𝑎4 {(𝑎6, 𝑎5)} 0.326 0.484 -0.158

{𝑎8, 𝑎10} 𝑎4 {(𝑎9, 𝑎10), (𝑎9, 𝑎8)} 0.339 0.514 -0.175
{𝑎9} 𝑎4 {(𝑎10, 𝑎9)} 0.409 0.339 0.07

{𝑎4} 𝑎5
{(𝑎8, 𝑎4), (𝑎5, 𝑎4), 0.5 0.5 0(𝑎3, 𝑎4)}

Table 1: Values of ImpDVHbsAS (𝑋,𝑦) with AS1 = AS ⊖C 𝐴𝑡𝑡− (𝑋 )
and AS2 = AS ⊖A

𝑦 𝑋 .

𝑎3), the impact of {𝑎1} on 𝑎4 is equal to 0. As for the revised impact
measure, it yields 0.015 because the revised measure solves the problem
raised in the scenario where “the direct attackers of 𝑋 impact 𝑦 via
other paths”. Removing only the attack from 𝑎2 to 𝑎1 allows the
attacks (𝑎1, 𝑎2), (𝑎2, 𝑎5) and (𝑎2, 𝑎3) to be maintained. Hence the
acceptability degree of 𝑎4 when removing (𝑎2, 𝑎1) is different from
the acceptability degree of 𝑎4 when removing 𝑎1, resulting in a non-
null impact value of {𝑎1} on 𝑎4.

Note that for CS, to limit the problem related to its violation of

the Independence property (because of the normalization factor 𝑁 ),

we have adopted the same approach as [16], i.e. the same 𝑁 is used

for the two sub-graphs constructed in Definition 10.

3.2 Impact Measure based on Shapley Value
In an argumentative setting, the Shapley contribution measure

was used to calculate the contribution of direct attackers on an

argument [5]. This approach produced interesting results, but we

aim to go beyond this limitation to define an impact measure of any

set of arguments (and not just direct attackers) on an argument.

The Shapley measure is a function that associates to each attack

a number in [0, 1] such that, for each argument, the loss of accept-

ability is equal to the sum of the values of all the attacks toward

it. A gradual semantics satisfies the Attack Removal Monotonicity

property if attacks cannot be beneficial for arguments.

Property 3 (Attack Removal Monotonicity [5]). A semantics
𝜎 satisfies Attack Removal Monotonicity iff for any AF AS = (A, C),
for every 𝑎 ∈ A, for every 𝑅 ⊆ {(𝑥, 𝑎) | 𝑥 ∈ 𝐴𝑡𝑡 (𝑎)}, it holds that
𝜎AS (𝑎) ≤ 𝜎AS⊖C𝑅 (𝑎) .

In [5], they conjectured that h-categoriser satisfies Property

3. We agree with that conjecture and, from our implementations

and experiments, we hypothesize that the max-based and card-

based semantics also satisfy Property 3. However, due to its nature,

we show that the counting semantics does not satisfy Property 3.

Indeed, considering the two AFs AS1 and AS2 depicted in Figure 1,

we see that 𝜎CSAS2
(𝑎3) = 0.26 is strictly higher than 𝜎CSAS1

(𝑎3) = 0.02.

Definition 11 (Extended Shapley measure). Let AS = (A, C)
be an AF and 𝜎 be a gradual semantics. The Shapley measure, w.r.t.
𝜎 , is the function 𝑠 : C → [−1, 1] such that:

𝑠 ((𝑏, 𝑎)) =
∑︁
𝑋 ⊆𝑌

|𝑋 |!(𝑛 − |𝑋 | − 1)!
𝑛!

(𝜎AS2 (𝑎) − 𝜎AS1 (𝑎)),

where 𝑌 = {(𝑦, 𝑎) | 𝑦 ∈ 𝐴𝑡𝑡 (𝑎)} \ {(𝑏, 𝑎)}, 𝑛 = |𝐴𝑡𝑡 (𝑎) |,AS1 =

AS ⊖C 𝑋, and AS2 = AS ⊖C (𝑋 ∪ {(𝑏, 𝑎)}).

𝑎3

0.02

𝑎2

0.02

𝑎1

1.00

AS1

𝑎3

0.26

𝑎2

0.51

𝑎1

1.00

AS2
0.49 -0.11

0.85

Figure 1: Values in blue represent the acceptability degrees
for the counting semantics. Values in red represent the Shap-
ley measure for each of the attacks.

As impact measures must account for a variety of gradual se-

mantics, Definition 11 generalises the Shapley measure of [5] as a

function which returns a value in [−1, 1] instead of [0, 1]. Indeed,
since the counting semantics does not satisfy Property 3, applying

the Shapley measure can result in attacks with negative contribu-

tions. Namely, the attacks with negative contributions are attacks

that increase the degree of the target argument. In Figure 1 (right),

the attack (𝑎2, 𝑎3) increases the degree of 𝑎3 by 0.11 but (𝑎1, 𝑎3)
decreases the degree of 𝑎3 by 0.85, resulting in a degree of 0.26. This

new extended Shapley measure allows to highlight this surprising

behavior of gradual semantics which was not possible with the old

version. However, note that if a gradual semantics satisfies Attack

Removal Monotonicity, then the value returned by the Shapley

measure will remain in the interval [0, 1].
We now define the Shapley-based impact measure based on this

extended Shapley measure. To compute the impact of any set of

arguments 𝑋 on an argument 𝑦, the Shapley-based impact measure

considers, for each argument 𝑥 in 𝑋 , the difference between the

contribution of even paths and odd paths from 𝑥 to 𝑦.

Definition 12 (Shapley-based impact measure). Let AS =

(A, C) be an AF, 𝑎 ∈ A, 𝑋 ⊆ A, 𝜎 be a gradual semantics, and 𝑠
be the Shapley measure of Definition 11. The Shapley-based impact
measure ImpSI is ImpSI𝜎AS (𝑋, 𝑎) =

∑
𝑥∈𝑋 ImpSI𝜎AS ({𝑥}, 𝑎), where:

ImpSI𝜎AS ({𝑥}, 𝑎) =
( ∑︁
(𝑎1,...,𝑎𝑛 ) ∈𝑃𝐸 (𝑥,𝑎)

∏
1≤𝑖≤𝑛−1

𝑠 ((𝑎𝑖+1, 𝑎𝑖 ))−

∑︁
(𝑎1,...,𝑎𝑛 ) ∈𝑃𝑂 (𝑥,𝑎)

∏
1≤𝑖≤𝑛−1

𝑠 ((𝑎𝑖+1, 𝑎𝑖 ))
)

where 𝑃𝑂 (𝑥, 𝑎) (resp. 𝑃𝐸 (𝑥, 𝑎)) is the set of all odd (resp. even)
paths from 𝑥 to 𝑎.

Note that it is possible to obtain a normalized Shapley-based im-

pact measure Imp′ such that for all 𝑎 ∈ A,

∑
𝑎′∈A Imp′𝜎AS ({𝑎

′}, 𝑎) =
Imp′𝜎AS (A, 𝑎) = 1 − 𝜎 (𝑎), where:
Imp′ ({𝑎′}, 𝑎) = ImpSI𝜎AS ({𝑎

′}, 𝑎)/ImpSI𝜎AS (A, 𝑎) ∗ (1 − 𝜎 (𝑎)) .
The following theorem shows that the Shapley-based impact

measure of all arguments in the AF on a given argument will nec-

essarily be negative or neutral.

Theorem 3. For any gradual semantics 𝜎 that satisfies Attack
Removal Monotonicity, AS = (A, C), and for any 𝑥 ∈ A, we have
ImpSI𝜎AS (A, 𝑥) ∈ [−1, 0].

The next property (on gradual semantics) implies that an argu-

ment cannot contribute for an absolute Shapley measure that is

greater than the degree of the attacker.
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Property 4 (Bounded Loss). We say that a gradual semantics
𝜎 satisfies Bounded Loss iff for every AS = (A, C), every 𝑎, 𝑏 ∈ A,
(𝑎, 𝑏) ∈ C, then |𝑠 ((𝑎, 𝑏)) | ≤ 𝜎AS (𝑎) .

Conjecture 1. For any 𝜎 ∈ {𝜎Hbs, 𝜎Car, 𝜎Max, 𝜎CS}, 𝜎 satisfies
Bounded Loss.

Conjecture 2. Let AS = (A, C) be an arbitrary AF. For any
gradual semantics 𝜎 that satisfies Bounded Loss, it holds that for any
𝑎 ∈ A and 𝑋 ⊆ A, ImpSI𝜎AS (𝑋, 𝑎) ∈ [−1, 1].

The first remark is that when a gradual semantics does not satisfy

Property 4, Conjecture 2 is not satisfied as shown by the next ex-

ample. Let us consider the AF represented in Figure 2 and a gradual

semantics𝜎 such that𝜎AS (𝑎2) = 0 and𝜎AS (𝑎1) = 1/6, meaning that

𝜎 does not satisfy Property 4. We have ImpSI𝜎AS ({𝑎2, 𝑎6, 𝑎4}, 𝑎1) =
ImpSI𝜎AS ({𝑎2}, 𝑎1)+ImpSI

𝜎
AS ({𝑎6}, 𝑎1)+ImpSI

𝜎
AS ({𝑎4}, 𝑎1) = −5/6−

0.5 ∗ 0.5 ∗ 5/6 − 0.5 ∗ 0.5 ∗ 5/6 = −15/12 < −1.

𝑎1𝑎2

𝑎3𝑎4

𝑎6 𝑎5

0.5
0.5

0.50.5 5/6

Figure 2: Representation of an AF with 6 arguments. The red
number on an edge 𝑐 represents 𝑠 (𝑐).

Shapley-based impact measure is not restricted to acyclic graphs.

Figure 3 shows the degree of all arguments for the h-categoriser

semantics (in blue) and how the Shapley measure associates with

each attack in C, its intensity (in red). Using the Shapley-based

impact measure (see Definition 12), the impact of {𝑎6} on 𝑎4 is 0.098,
of {𝑎5} on 𝑎4 is −0.196, and of {𝑎6, 𝑎5} on 𝑎4 is −0.098. The impact

of {𝑎10} on 𝑎4 is

( ∞∑
𝑖=1

(−0.382)2(𝑖−1)+1
)
0.382 × 0.235 ≃ −0.0402.

3.3 Observations
In Table 2, we provide the impact returned by ImpDV and ImpSI
of several sets of arguments on 𝑎4 in the AF represented in Figure

3. Since those two approaches follow different intuitions, we can

make several observations.

𝑎4

0.390

𝑎3

0.447

𝑎8

0.618

𝑎5 0.5

𝑎6

1.0

𝑎90.618 𝑎20.618 𝑎1 0.618

𝑎10 0.618

𝑎7

0.618

𝑎11

1.0

0.382

0.382

0.276

0.276

0.1780.235

0.196

0.50.382

0.382 0.382

0.382

Figure 3: Intensity of attacks with Shapley measure for the
h-categoriser semantics. Values in blue are the degrees of the
arguments whereas the values in red represent the intensity
of the attacks.

ImpDV𝜎AS (𝑋, 𝑎4) ImpSI𝜎AS (𝑋, 𝑎4)
𝑋 Hbs Car Max CS Hbs Car Max CS

{𝑎1} 0.015 0.001 0.0 0.072 0.036 0.056 0.019 0.026

{𝑎1, 𝑎2} 0.069 0.012 0.118 0.161 0.071 0.112 0.037 0.051

{𝑎9} 0.069 0.011 0.118 0.107 0.105 0.236 0.061 0.076

{𝑎8} -0.174 -0.082 -0.118 -0.327 -0.235 -0.264 -0.135 -0.291

{𝑎10} -0.026 -0.002 -0.018 -0.034 -0.041 -0.138 -0.024 -0.018

{𝑎8, 𝑎10} -0.174 -0.082 -0.118 -0.327 -0.276 -0.402 -0.159 -0.309

{𝑎8, 𝑎9, 𝑎10} -0.124 -0.072 0.0 -0.246 -0.17 -0.167 -0.098 -0.233

{𝑎5} -0.158 -0.079 -0.118 -0.327 -0.196 -0.255 -0.111 -0.212

{𝑎6} 0.064 0.011 0.118 0.107 0.098 0.17 0.056 0.069

{𝑎5, 𝑎6} -0.094 -0.068 0.0 -0.220 -0.098 -0.085 -0.056 -0.143

Table 2: Impacts of several sets of arguments on 𝑎4 using
different gradual semantics.

For example, we can see that, for 𝜎 ∈ {𝜎Hbs, 𝜎Car, 𝜎Max, 𝜎CS},
ImpDV𝜎AS ({𝑎8}, 𝑎4) = ImpDV𝜎AS ({𝑎8, 𝑎10}, 𝑎4) whereas we have that
ImpSI𝜎AS ({𝑎8}, 𝑎4) ≠ ImpSI𝜎AS ({𝑎8, 𝑎10}, 𝑎4). The idea is that the

Shapley-based impact measure of a set on a target argument can

be “decomposed" as the sum of the impact of each argument of

that set on the argument. Since ImpSI𝜎AS ({𝑎10}, 𝑎4) ≠ 0, it holds

that ImpSI𝜎AS ({𝑎8}, 𝑎4) ≠ ImpSI𝜎AS ({𝑎8, 𝑎10}, 𝑎4). In the case of

the revised version of ImpDV, the impact of a set 𝑋 on 𝑦 is the

difference in acceptability degree of 𝑦 between when the direct

external attacks on 𝑋 are removed and when 𝑋 is removed. Here,

we have that 𝜎AS⊖C𝐴𝑡𝑡− ({𝑎8,𝑎10 }) (𝑎4) = 𝜎AS⊖C𝐴𝑡𝑡− ({𝑎8 }) (𝑎4) and
𝜎AS⊖A

𝑎
4
{𝑎8 } (𝑎4) = 𝜎AS⊖A

𝑎
4
{𝑎8,𝑎10 } (𝑎4), thus the equality.

For the max-based semantics, the impact of some set of argu-

ments (e.g. {𝑎1} or {𝑎5, 𝑎6}) on 𝑎4 is neutral when ImpDV is used.

This is not the case when ImpSI as this measure is based on the

extended Shapley measure which never assigns a value of 0 to any

attacks (for the semantics considered). Apart from these two cases,

note that the polarity of the impact (i.e., positive or negative) is often

the same for our two approaches, given a set of arguments 𝑋 and a

gradual semantics 𝜎 that satisfies Attack Removal Monotonicity.

Our aim is now to provide a principle-based study to compare

these impact measures to explain the common features and the

differences observed in this subsection.

4 DESIRABLE PRINCIPLES FOR IMPACT
MEASURES

Impact measures are usually defined in a general way and can be

paired with any gradual semantics (see e.g. [16]). Our aim now is to

find out how to evaluate these measures axiomatically. In the case of

gradual semantics, a property is satisfied if the result is correct for

any AF that satisfies the conditions of the property. If we generalize

this to the principles for impact measures, it is obvious that this

condition must also be satisfied, but in addition, it would have to

hold for any gradual semantics (see Def. 7). However, the challenge

arises because there are no constraints on gradual semantics (see

Def. 2). Thus, it would be possible to build a particular semantics

that violates a principle. That is why, in the rest of this section, we

define the desirable principles of a pairing of an impact measure Imp
with a gradual semantics 𝜎 , denoted Imp𝜎 . Namely, Imp𝜎 takes as

input any AF AS and returns Imp𝜎AS. Some of the principles that we

introduce and use are inspired by the property analysis of gradual
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semantics [4], i.e., the Anonymity, Independence, and Directionality

properties.

4.1 List of Principles
Unless stated explicitly, all the principles are defined for an impact

measure Imp and a gradual semantics 𝜎 . Let us start by introducing

the notion of isomorphism between argumentation frameworks.

Definition 13. LetAS = (A, C) andAS′ = (A′, C′) be two AFs.
An isomorphism from AS to AS′ is a bijective function 𝑓 from A to
A′ such that for all 𝑎, 𝑏 ∈ A, (𝑎, 𝑏) ∈ C iff (𝑓 (𝑎), 𝑓 (𝑏)) ∈ C′.2 If
AS = AS′, 𝑓 is called an automorphism.

Impact Anonymity states that the impact of a set of arguments

on an argument should not depend on the names of the arguments.

Principle 1 (ImpactAnonymity). Imp𝜎 satisfies Impact Anonymity
iff for any two AFs AS = (A, C), AS′ = (A′, C′), and any iso-
morphism 𝑓 from AS to AS′, the following holds: ∀𝑋 ⊆ A, 𝑎 ∈
A, Imp𝜎AS (𝑋, 𝑎) = Imp𝜎AS′ (𝑓 (𝑋 ), 𝑓 (𝑎)).

Impact Independence states that the impact of a set of arguments

𝑋 on an argument 𝑎 should not depend on the arguments which

are not connected to 𝑋 nor to 𝑎 by a path.

Principle 2 (Impact Independence). Imp𝜎 satisfies Impact In-
dependence iff for any two AFs AS = (A, C), AS′ = (A′, C′), where
A ∩ A′ = ∅, the following holds: ∀𝑋 ⊆ A, 𝑎 ∈ A, Imp𝜎AS (𝑋, 𝑎) =
Imp𝜎AS⊕AS′ (𝑋, 𝑎).

Balanced Impact states that the sum of the impact of a set of

arguments 𝑋 and the impact of an argument 𝑥 ′ on an argument 𝑎

should be equal to the impact of the union of 𝑋 with the set con-

taining only argument 𝑥 ′ on 𝑎. Note that this principle is inspired

from [16] but we generalize it to any sets instead of singleton sets.

While this principle makes it easier to explain the impact of a set

using the impact of its individual elements, it also prevents the

modeling of complex behavior such as accrual.

Principle 3 (Balanced Impact). Imp𝜎 satisfies Balanced Impact
iff for any AF AS = (A, C), the following holds: ∀𝑋 ⊆ A, 𝑥 ′ ∈
A \𝑋, 𝑎 ∈ A, Imp𝜎AS (𝑋, 𝑎) + Imp

𝜎
AS ({𝑥

′}, 𝑎) = Imp𝜎AS (𝑋 ∪ {𝑥 ′}, 𝑎).

Void Impact states that an empty set has no impact on arguments.

Principle 4 (Void Impact). Imp𝜎 satisfies Void Impact iff for any
AF AS = (A, C), any 𝑎 ∈ A, Imp𝜎AS (∅, 𝑎) = 0.

Impact Directionality states that the impact of a set of arguments

on an argument 𝑎 remains unchanged when adding an attack in

which the target argument is not connected to 𝑎 via a path.

Principle 5 (Impact Directionality). Imp𝜎 satisfies Impact
Directionality iff for any two AFs AS = (A, C) and AS′ = (A, C ∪
{(𝑏, 𝑥)}), for any 𝑎 ∈ A, if there is no path from 𝑥 to 𝑎, then for all
𝑋 ⊆ A, Imp𝜎AS (𝑋, 𝑎) = Imp𝜎AS′ (𝑋, 𝑎).

Impact Minimization captures the fact that the impact of a set of

arguments 𝑋 on an argument 𝑎 can be reduced to a minimal subset

of 𝑋 from which arguments with no path to 𝑎 have been removed.

2
For a function 𝑓 and the set𝑋 , we use the standard notation 𝑓 (𝑋 ) to mean { 𝑓 (𝑥 ) |
𝑥 ∈ 𝑋 } .

Principle 6 (Impact Minimization). Imp𝜎 satisfies Impact Min-
imization iff for any AF AS = (A, C), any 𝑋 ⊆ A, 𝑥 ′ ∈ 𝑋 such that
there is no path from 𝑥 ′ to 𝑎, and 𝑎 ∈ A, it holds that Imp𝜎AS (𝑋, 𝑎) =
Imp𝜎AS (𝑋 \ {𝑥 ′}, 𝑎).

Zero Impact states that the impact of an argument 𝑥 on an argu-

ment 𝑎 is zero if 𝑥 is not connected to 𝑎 by a path.

Principle 7 (Zero Impact). Imp𝜎 satisfies Zero Impact iff for any
AF AS = (A, C) and 𝑎, 𝑥 ∈ A, if there is no path from 𝑥 to 𝑎 then
Imp𝜎AS ({𝑥}, 𝑎) = 0.

Impact Symmetry says that if there is an automorphism between

the attack structures of two arguments 𝑎 and 𝑏, then the impact

of a set of arguments 𝑋 on 𝑎 is the same as the impact of the set

containing the image of each argument of 𝑋 on 𝑏.

Principle 8 (Impact Symmetry). Imp𝜎 satisfies Impact Symme-
try iff for any AF AS = (A, C), any 𝑎, 𝑏 ∈ A, the following holds:
if 𝑓 is an automorphism from AS|Str(𝑎)∪Str(𝑏 ) to AS|Str(𝑎)∪Str(𝑏 )
such that 𝑓 (𝑎) = 𝑏 and 𝑓 (𝑏) = 𝑎, then for all 𝑋 ⊆ A, Imp𝜎AS (𝑋, 𝑎) =
Imp𝜎AS (𝑓 (𝑋 ∩ (Str(𝑎) ∪ Str(𝑏))), 𝑏).

Example 3. We illustrate Impact Symmetry with the AF AS =

(A, C) with A = {𝑎, 𝑏, 𝑥,𝑦, 𝑧} and C = {(𝑥, 𝑎), (𝑦, 𝑎), (𝑦,𝑏), (𝑧, 𝑏)}.
Note that Str(𝑎) ∪ Str(𝑏) = A. Assume that 𝑓 (𝑎) = 𝑏, 𝑓 (𝑏) =

𝑎, 𝑓 (𝑦) = 𝑦, 𝑓 (𝑥) = 𝑧 and 𝑓 (𝑧) = 𝑥 . This principle states that
Imp𝜎AS ({𝑥,𝑦}, 𝑎) = Imp𝜎AS ({𝑦, 𝑧}, 𝑏).

The next principle states that whenever an argument’s final

strength differs from 1, there is a set of arguments whose impact

explain this difference. This principle is inspired from [26] and

ensures that impact measures that always return 0 are not desirable.

Without loss of generality, this principle can be easily generalized

to gradual semantics which maximal value is not 1.

Principle 9 (Impact Existence). Imp𝜎 satisfies Impact Existence
iff for any AF AS = (A, C), any 𝑎 ∈ A, the following holds: if
𝜎 (𝑎) ≠ 1 then there exists 𝑋 ⊆ 𝐴 such that Imp𝜎AS (𝑋, 𝑎) ≠ 0.

4.2 Links between Principles
Although most of our principles are independent, some of them are

related because they deal with neutral impact where there is no

path between the arguments whose impact we want to calculate

and the target argument. This is the case with Impact Symmetry

and Impact Minimization which follows from some other principles.

Theorem 4. Let Imp be an impact measure and 𝜎 be a gradual
semantics. If Imp𝜎 satisfies Impact Anonymity, Impact Directionality,
Impact Minimization, and Impact Independence, then Imp𝜎 satisfies
Impact Symmetry.

Theorem 5. Let Imp be an impact measure and 𝜎 be a gradual
semantics. If Imp𝜎 satisfies Zero Impact and Balanced Impact, then
Imp𝜎 satisfies Impact Minimization.

Theorem 6. Let Imp be an impact measure and 𝜎 be a gradual
semantics. If Imp𝜎 satisfies Void Impact and Impact Minimization,
then Imp𝜎 satisfies Zero Impact.

Defining principles solely at the level of impact measure is not

relevant, as the calculation is based on the use of scores returned
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by gradual semantics. A number of axiomatic studies have been

carried out on these semantics to guarantee correct behavior and

better understand the results returned. In this way, it is possible to

link the satisfaction of some properties to the satisfaction of other

principles for ImpDV𝜎 and ImpSI𝜎 .

Proposition 7. ImpSI𝜎 and ImpDV𝜎 satisfy Impact Independence
for any gradual semantics 𝜎 that satisfies Independence.

Proposition 8. ImpSI𝜎 and ImpDV𝜎 satisfy Impact Directionality
for any gradual semantics 𝜎 that satisfies Directionality.

Proposition 9. ImpDV𝜎 satisfies Zero Impact for any gradual
semantics 𝜎 that satisfies Directionality and Independence.

Proposition 10. If ImpDV𝜎 satisfies Impact Directionality, then
it satisfies Impact Minimization for any gradual semantics 𝜎 that
satisfies Independence.

4.3 Axiomatic Evaluation and Discussion
Table 3 summarizes the results of our the axiomatic evaluation. This

axiomatic study only takes into consideration the gradual semantics

defined in Section 2. This choice is motivated by the fact that some

of these semantics have already been studied both axiomatically

(and in association with an existing impact measure), and others

have only been studied axiomatically but have unique features (e.g.,

the use of themax aggregation) that were interesting to study.While

there exist other gradual semantics that could have been studied,

the idea was to show that, despite the different semantics’ behaviors,

our impact measures can be applied to any gradual semantics.

Theorem 11. The principles of Table 3 hold.

We can observe that ImpDV𝜎 and ImpSI𝜎 both satisfy Impact

Anonymity, Void Impact, Impact Minimization, Zero Impact and

Impact Symmetry for 𝜎 ∈ {𝜎Hbs, 𝜎Car, 𝜎Max, 𝜎CS}.
The principles that are not satisfied by ImpDV𝜎 and ImpSI𝜎 in-

clude Impact Independence and Impact Directionality only for CS.
This can be explained by the behavior of CS that does not satisfy
the Independence and the Directionality properties. The main ax-

iomatic difference between the twomeasures concerns the Balanced

Impact principle because ImpSI satisfies this principle whatever the
gradual semantics used in our study, whereas this is never the case

for ImpDV. The AF depicted in Figure 3 shows, for example, that

ImpDV𝜎AS ({𝑎8, 𝑎10}, 𝑎4) ≠ ImpDV𝜎AS ({𝑎8}, 𝑎4) + ImpDV𝜎AS ({𝑎10}, 𝑎4)
for 𝜎 ∈ {𝜎Hbs, 𝜎Car, 𝜎Max, 𝜎CS}. Note also that, although [16, Propo-

sition 2] states that Balanced Impact is satisfied by the original

definition of ImpDV𝜎
CS
(cf. Definition 9), this AF can also be used as

a counterexample to prove that it is not satisfied.

Moreover, while most of the proofs have been done on general

graphs, we have proved the satisfaction of Impact Existence for

ImpSI𝜎
CS
only on the class of graphs where there are at least two

arguments with the maximum in-degree, however we conjecture

that Impact Existence is also satisfied in the general case.

This principle compliance study can be helpful for choosing

which (impact, semantics) pair to use for a specified application. It is

interesting to note here that this choice depends on two factors: The

satisfiability of the Balanced Impact principle and the satisfiability

of the Impact Independence and the Impact Directionality principles.

𝐺 𝐹

𝐶

𝐸

𝐵

𝐷

𝐴 𝑇

ImpDV𝜎AS (𝑋,𝑇 ) ImpSI𝜎AS (𝑋,𝑇 )
𝑋 Hbs CS Hbs CS

𝐴𝑔1 − {𝐴,𝐺} -0.5 -0.49 -0.32 -0.172

𝐴𝑔2 − {𝐶, 𝐸} -0.08 -0.235 -0.065 -0.036

𝐴𝑔3 − {𝐵, 𝐷, 𝐹 } 0.25 0.480 0.2 0.124

env − {𝐴,𝐺} -0.5 -0.49 -0.32 -0.172

soc − {𝐵,𝐶} 0.061 0.122 0.053 0.037

eco − {𝐹 } 0.033 0.115 0.029 0.013

infra − {𝐷, 𝐸} 0.061 0.122 0.053 0.037

Figure 4: Argumentation graph of the case study and a table
containing the impact of each set of arguments studied on T.

If an application demands that all principles should be satisfied, then

we would use ImpSIwith one of the three following semantics (Hbs,
Max, Car). If an application demands the use of ImpDV then we know
that, depending on the semantics we choose, we will have Impact

Independence and Impact Directionality satisfied (or not). Finally, if

an application demands the use of the counting semantics, then we

know that for both impact measures, the Impact Independence and

the Impact Directionality principles are not satisfied while Balanced

Impact is satisfied only by ImpSI.

5 ILLUSTRATION SCENARIO
To illustrate the impact measures in practice, we present an example

inspired by [1] on which we evaluate, among other things, the

impact of each agent in a debate about pollution becoming a major

health problem in big cities.

Consider the following topic 𝑇 : “Polluting vehicles, and specifi-

cally diesel cars should be maintained in the city centres”. A city

council composed of three agents might entertain the following

arguments (see Figure 4):

𝐴 [𝐴𝑔1] Diesel cars should be banned from the inner city center

in order to decrease pollution.

𝐵 [𝐴𝑔3] Artisans, who deserve special protection by the city

council, cannot change their vehicles, as that would be too

expensive for them.

𝐶 [𝐴𝑔2] The city can offer financial assistance to artisans.

𝐷 [𝐴𝑔3] There are only very few alternatives to using diesel

cars. Specifically, the autonomy of electric cars is poor, as

there are not enough charging stations around.

𝐸 [𝐴𝑔2] The city can set up more charging stations.

𝐹 [𝐴𝑔3] In times of financial crisis, the city should not commit

to spending additional money.

𝐺 [𝐴𝑔1] Health and climate change issues are important, so

the city has to spend what is needed to tackle pollution.

Knowing the impact of an agent clearly requires calculating the

impact of a set of arguments on the topic of the debate 𝑇 . Thus, we

apply our two impact measures coupled with the semantics Hbs and
CS to calculate the impact of all these subsets (see Figure 4). Let us

note that for both approaches and both semantics, 𝐴𝑔1 is the agent
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Principle ImpDVHbs ImpSIHbs ImpDVMax ImpSIMax ImpDVCar ImpSICar ImpDVCS ImpSICS

Impact Anonymity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Impact Independence ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Balanced Impact ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Void Impact ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Impact Directionality ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Impact Minimization ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Zero Impact ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Impact Symmetry ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Impact Existence ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓≥2

Table 3: Properties satisfied by the studied impact measures and gradual semantics. The symbol ✓(resp. ✗) means that the
property is satisfied (resp. violated) by the impact measure and the gradual semantics considered. The symbol ✓≥2 means that
the property is satisfied on the class of graphs where there are at least two arguments with the maximum in-degree.

with the greatest (negative) impact, clearly showing he is against

maintaining these cars. Conversely, 𝐴𝑔3 has a positive impact on

the issue of the debate, but is less important than 𝐴𝑔1. Finally, 𝐴𝑔2
has little impact (except for ImpDVCS). In addition to the sets of

arguments proposed by the agents, we can associate the arguments

presented in this example with four types of values. Arguments 𝐴

and 𝐺 concern environmental responsibility (value env), 𝐵 and 𝐶

are about social fairness (value soc), 𝐹 promotes economic viability

(value econ), and 𝐷 and 𝐸 pertain to infrastructure efficiency (value

infra). In this case, the set of arguments env has the greatest

(negative) impact, while all the other categories have a positive but

much smaller impact.

6 RELATEDWORK
Yin et al. [41] introduced an impact measure to explain the Disconti-

nuity Free Quantitative Argumentation Debate (DF-QuAD) gradual

semantics [35] in quantitative bipolar argumentation frameworks

(QBAFs). Their impact measure quantifies the contribution of an ar-

gument towards topic arguments in QBAFs. Although their work is

also inspired by feature attribution explanation methods in machine

learning, Yin et al. focus on highlighting the sensitivity of a topic

argument’s final acceptability degree w.r.t. the other arguments’

initial weights. Their impact measure is defined only for individual

arguments, in acyclic QBAFs and only for the DF-QuAD semantics.

However, our two impact measures are both defined for any set of

arguments and can be paired with any gradual semantics. Moreover,

the properties they study are explanation-focused, used to assess

and characterize their impact measure’s ability of providing robust

and faithful explanations. These properties are mostly inspired

by properties for machine learning models’ explanations such as

sensitivity and fidelity. Here, we propose contribution-focused prop-

erties, meaning that we evaluate how each pair (impact, semantics)

contributes to the final acceptability degree of an argument, w.r.t.

the argumentation graph’s structure. However, we also intend to

explore the explanation-focused properties. Namely, we want to

study how to produce “good" explanations for gradual semantics

using the impact measures that we defined in this paper.

Kampik et al. [26] propose contribution functions and principles

in the context of quantitative bipolar argumentation. Contrary to

our work, their contribution functions are only defined for acyclic

graphs and only measure the influence of a single source argument

on a topic argument. While they also introduce a Shapley-based

contribution, its computation necessitates the addition of the source

argument to all possible sub-graphs that already contain the topic

argument. We argue that this is more computationally expensive

than our Shapley-based impact measure which is based on [5].

The notion of impact for gradual semantics has also been studied

by Himeur et al. [24]. They measured the impact of agents on argu-

ments in a debate. Although the impact measure defined returns

the individual impact of an argument on another argument, they

defined different aggregation functions that can be used to merge

the impact of all the arguments belonging to the same agent, on

a particular argument. The impact measure of Himeur et al. [24]

shares similarities with to the one defined in [16]. Moreover, their

impact measure is studied only for Euler-based semantics [3] and

DF-QuAD w.r.t. a set of principles and aggregation functions.

7 CONCLUSION AND FUTUREWORK
We studied the notion of impact of a set of arguments on an argu-

ment under gradual semantics. We proposed two impact measures:

ImpDV, a revision of the measure from [16], and ImpSI, a novel mea-

sure based on the Shapley Contribution Measure, which is derived

from the measure introduced in [5]. We provided a principle-based

analysis of these two impact measures under four semantics: h-

categoriser (Hbs), card-based (Car), max-based (Max) and counting

semantics (CS). For three of the gradual semantics (Hbs, Max, Car),
we show that ImpSI𝜎 satisfies all the principles, while ImpDV𝜎 satis-

fies them all except Balanced Impact. Concerning CS, our two impact

measures do not satisfy Impact Independence and Impact Direction-

ality because the two associated properties for gradual semantics

are not satisfied by CS. For future work, we plan to study how to

generate explanations for gradual semantics based on these two

impact measures. Providing explanations in abstract AFs has been

explored for extension-based semantics [9, 13, 14, 18–21, 27, 38].

However, it has not been explored for gradual semantics. Our re-

sults allow us to study how we can use impact measures to provide

explanations for gradual semantics outcomes.
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