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ABSTRACT
Multiagent systems bring together agents that represent differ-
ent users with possibly different concerns. When interacting to
make decisions, conflicts occur. A well-known case is with privacy.
Agents often need to manage the privacy of content that belong
to multiple users, such as sharing group pictures on social media.
When agents have different expectations on how the content should
be shared, multi-party privacy conflicts can arise. How should we
design agents to deal with such conflicts? We have studied an em-
pirical user study to understand the effect of group dynamics in
various multi-party privacy settings. Our findings show that as
users’ beliefs and knowledge about others evolve, privacy expec-
tations shift as well. Inspired by this, we propose computational
agents that mimic a human-inspired Theory of Mind (ToM) model
to help their users preserve their privacy in multi-party privacy
conflicts. The agents can express empathy when others are in need
but can also fight for their own privacy. We evaluate our approach
in multiagent simulations with varying decision-making strategies.
Our results demonstrate that ToM-enabled agents improve privacy
preservation for all parties, and even more when their understand-
ing of others is dynamically updated through learning.
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1 INTRODUCTION
Understanding human values [8, 31] is an important first step in
building socio-technical systems, where software agents and hu-
mans exist together. Agents in such systems need to be able to
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adhere to the values of the humans that they serve for, so that
they make decisions or take actions that would be representative
of the humans. This would enable the agents to explain the moral
underpinnings of their decisions to the humans [11].

Values have been instrumental in designing and calibrating
multiagent systems. Methodologies, such as value sensitive de-
sign [17, 41] have positioned values as first-class citizens in the
design of socio-technical systems and identified ways that can be
accounted for in the design. Similarly, the link between values and
other constructs, such as norms, have been investigated thoroughly.
Aydoğan et al. [4] use values as a means to negotiate the norms
that will be in effect in a multiagent system. They consider a range
of values from privacy to safety. Serramia et al. [32] study whether
a given set of norms of a multiagent system promote a value of
interest. Kayal et al. [21] use given human values to detect and
resolve norm conflicts. Hadfield-Menell et al. [18] use cooperative
inverse reinforcement learning to help agents learn values through
interactions with a human cooperatively. An important premise
here is that humans share values that the agents should adhere to
work with humans. However, humans can have varying values as
well. Liscio et al. [24] develop a hybrid (human and AI) methodol-
ogy to identify context-specific values as opposed to general values
that are overarching [31].

At the same time, it is well-known that different humans have dif-
ferent values and even different understanding and interpretation
of the same value. Consider privacy as an important value that has
received a lot of attention lately. Privacy is largely personalized (e.g.,
individuals have different understandings) and context-dependent
(e.g., individuals change their valuations based on a given situa-
tion). When agents that represent different humans work together,
they need to identify and handle the privacy conflicts that might
arise. In order to address this, various multiagent decision mecha-
nisms have been designed. On one hand, auction-basedmechanisms
have been designed to resolve privacy conflicts [33, 40]. In parallel,
negotiation-based [16, 22, 37] and argumentation-based [23, 27] de-
cision mechanisms have been developed to enable agents to reach
privacy decisions. While such mechanisms are useful, they do not
address the following questions: How should an agent behave when
its privacy expectations clash with those of others in the system?
What actions can be taken to mitigate potential privacy conflicts?
Would taking others’ perceived privacy expectations into account
help in mitigating conflicts?
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Accordingly, this paper proposes an agent design that employs
Theory of Mind (ToM) reasoning [9, 30] — the human ability to
reason about mental content of others such as their beliefs, desires,
preferences, goals, etc.— to assess the values of others and incor-
porate them into its actions. The agent design we propose reasons
about others’ privacy expectations and determines whether it can
account for them when a privacy conflict is about to happen. De-
pending on how important its privacy is for a given content, it can
choose between favoring others’ opinion or persisting on its own
judgment. We base the ToM reasoning of our architecture to a user
study [5] conducted to understand how humans deal with privacy
conflicts. We show the added benefit of ToM reasoning in mitigating
privacy conflicts between agents over multiagent simulations.

The rest of this paper is organized as follows. Section 2 explains
how ToM enables humans to understand others’ privacy expecta-
tions and adapt their behaviors in social settings with an example.
Section 3 provides insights from the user study to understand pri-
vacy dynamics among humans. Section 4 uses these insights to
design agents with ToM models. Section 5 evaluates these agents
in terms of how well they mitigate privacy conflicts and their use
of ToM. Section 6 discusses our work in relation to the literature.

2 UNDERSTANDING PRIVACY CONFLICTS
VIA THEORY OF MIND

A key aspect of effective human decision-making is the ability to
understand others’ perspectives, and ToM reasoning plays a crucial
role in this process, especially when communication is limited. In
socially interactive settings, individuals use ToM to model others’
expectations and recognize how their own perspective may differ
from those of others. With this understanding, individuals can
adapt their social behaviors in a more cooperative and socially
adaptive manner. To illustrate this, consider the following example
that pertains to privacy of multiple individuals.

Alice has recently joined a group that is deciding as a group
whether to publicly share a group photo as in Figure 1 (e.g., on a
social network). Most of the other members are hesitant to share
the photo due to privacy concerns, but Alice is willing to share.
Without ToM reasoning, Alice might not be aware of others’ privacy
expectations and simply choose to share the photo in line with her
own preference. However, if she wishes to understand the privacy
preferences of the group and navigate the situation accordingly,
she would need to consider the group’s preferences, something her
ToMmodel could assist with. Suppose Alice assumes that her desire
to share conflicts with the group’s preference to keep the photo
private. We can explore three possible behaviors Alice might adopt
in response to this situation (as shown in Figure 1).

In the first behaviour, to respect the majority’s privacy concerns,
Alice decides to conform to the group’s preference and refrains
from sharing the photo. This choice allows her to adhere to the
group’s concerns, prioritizing collective privacy over her own desire
to share.

In the second behaviour, Alice feels strongly about the impor-
tance of sharing the photo. While she acknowledges the group’s
concerns, she advocates for her perspective and chooses to share
the photo in line with her original preference, even if it goes against
the majority.

Figure 1: Alice (upper-right corner) wants to share this
group’s photo online. Using her ToM model, she unveils that
others are hesitant to share. Alice can conform to the others’
preference, advocate her own, or preserve everyone’s privacy.

In the third behavior, Alice prioritizes preserving everyone’s
privacy and therefore chooses not to share the photo. Similarly, if
the situation were reversed, where the group wanted to share the
photo and Alice preferred not to, she would advocate for her own
privacy preference rather than conforming to the majority.

In each case, Alice must understand the privacy preferences of
the other group members to make an informed sharing decision.
To complicate matters, suppose Alice is not entirely sure of the
others’ preferences (e.g., due to lack of communication or her recent
addition to the group). In this case, shemight begin by projecting her
own preferences onto the group through ToM reasoning, modeling
how she thinks others might feel about sharing. However, Alice’s
ToM model could be inaccurate. Through repeated interactions and
observations, Alice can learn more about the group and refine her
understanding of the group’s preferences, making her ToM model
more accurate over time.

Just as Alice refines her understanding of others’ preferences
through observation and interaction, the same principles can be
applied in designing computational models that mimic human
decision-making. By incorporating ToM reasoning, these mod-
els can simulate how individuals navigate complex social situa-
tions where preferences are uncertain or conflicting. The gradual
improvement in Alice’s ToM model parallels how computational
agents can be designed to learn and adapt, adjusting their behavior
to match the preferences of others over time. This connection be-
tween human and agent decision-making allows us to explore how
computational models can simulate real-world dynamics.

3 DYNAMICS OF PRIVACY CONFLICTS
In order to understand how humans navigate the situations like the
ones outlined in the previous section, we examined a user study [5]
where a game named RESOLVE is devised to i) understand whether
users make different privacy choices when they are alone or in a
group, and ii) if the choices differ what are the reasons that affect
this change. In the beginning of the game, each player captures their
own pictures mimicking a set of emojis denoting different types of
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emotions. After capturing each picture they also give a score for
their tendency to share that picture in Likert scale from 1 to 5 (i.e.,
1: very unlikely to share, 2: unlikely to share, 3: unsure, 4: likely to
share, 5: very likely to share). Next, one of the pictures of the player
is merged with three other (non-participant) pictures to create grid-
like group picture (see Figure 1) that mimics an online meeting
setup. Then, each player participates in an auction by placing a bid
from their available budget to support their preferences so that a
group decision can be made on whether to share the photo or not.

After all players state their preferences and bids to support these
preferences in the first round of a game, the choice with greater
total amount of credits becomes the temporary group decision for
the content. In order to understand whether the participants would
change their behavior if they had known what others would do, the
players are given a second opportunity to rethink their choices and
bids and update them as they see fit. If there are changes, the out-
come is recalculated and the definite group decision is determined
for the content.

In the study, the game environment is configured so that the
other three players are software agents with predetermined deci-
sions and bid amounts. Each participant plays the game across 16
different scenarios, where the majority of the group either matches
the participant’s privacy choice (SHARE or NOT SHARE) or the
participant does not receive enough support from the group for
their choice. 40 participants successfully completed all 16 scenar-
ios, resulting in 640 scenario instances where various behavioral
patterns were observed. While further details can be found in the
study itself, we present the main observations that we focused on
and the insights gained from them.

We study how much players divert from their individual pref-
erences in a group setting. As an example, consider a case where
a participant declares the tendency to share an emoji as “likely”
or “very likely”, yet they bid for NOT SHARE decision in the first
round of the game. We observed that a participant divert from their
initial tendencies on average of only 4.3 (± 2.7) scenarios (out of
16) during the game.

Insight 1. Participants tend to make decisions that reflect their
own privacy preferences.

This observation highlights how participants prioritize their own
privacy preferences when making decisions. On the other hand,
we also observed that some participants change their decision to
SHARE or NOT SHARE in the second round of the game, after
knowing others’ choices. This was observed in 24 participants in
52 scenario instances which leads us to the following insight.

Insight 2. Participants sometimes make decisions that match
the privacy preferences of others (whether those preferences are
known or assumed).

It suggests that participants sometimes act in line with others’
preferences, even when this leads to decisions that conflict with
their own. This behavior can arise from their assumptions (in the
first round, when they are unaware of others’ decisions) or their
knowledge (in the second round, after others’ decisions are revealed)
about others’ preferences.

Another observation is that participants often revise their ini-
tial decision if the first round of the game does not result in their

preferred outcome. This behavior was observed in 45 scenario in-
stances. Furthermore, in 34 of these cases, the participant’s decision
was in direct conflict with the rest of the group.

Insight 3. Participants sometimes adjust their decisions to con-
form to the majority.

This insight becomes more apparent when a participant is left
alone, i.e., when the preferences of others are in line with each other
but against the participant’s decision. Unlike this behavior, we also
observed in 79 scenario instances, 27 participants increased their
bids in the second round of the game, independent of the outcome
achieved in the first round.

Insight 4. Participants sometimes increase their bids while
maintaining their decisions to advocate more strongly for their
own preferences.

This reflects a behavior where participants aim to reinforce their
position through higher bids. If we look at the break down of the
dynamic of this behavior, based on the initial decision, we observe
the following: Participants that express NOT SHARE in the initial
round tend to increase their bids to advocate for keeping the content
private (in 48 scenario instances out of 79 in total). Those that
express SHARE in the first round mostly switch to NOT SHARE
when others prefer that (in 36 scenario instances out of 52 in total).

Insight 5. Participants sometimes change their decisions to
conform to the majority, but only when it serves to preserve privacy.

It indicates that participants are willing to increase their bids to
protect their privacy and may conform to the majority if it helps
achieve this goal.

As our last major observation from the study, in 160 scenario
instances, 32 different participants decreased their bids in the sec-
ond round of the game. These instances include the cases where
the participants kept their initial privacy decision or accommodate
the group-decision.

Insight 6. Participants sometimes decrease their bids while
maintaining their decisions to conserve their budget for future
interactions.

This insight suggests that participants make this choice when
they feel confident about the outcome and wish to save resources.

In total, we identified six insights that reflect recurring behavioral
patterns in people’s decision-making over group content. These
patterns suggest varying degrees of awareness and consideration
for others’ preferences, observed both in sharing decisions and bids,
which alignwith the core principles of ToM reasoning. Motivated by
these insights, we investigate the potential benefits of implementing
ToM reasoning computationally in software agents to deal with
multi-party privacy conflicts.

4 AGENT DESIGN
We design computational agent models that use ToM reasoning
in decision-making. Our goal is to enhance the agents’ ability to
simulate real-world decision-making processes as suggested by
the insights from Section 3, where individuals must consider not
only their own preferences but also the potential preferences of
others [1, 34].
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Given a set of contents C , we represent agent A as a tuple such
that A = ⟨P ,P ′,F , G,U ⟩, where:
• P is themapping of agent’s own preferences for each content
in C ,
• P ′ is the mapping of other agents’ (assumed) preferences
for each content in C ,
• F is the decision function that determines which action to
perform based on P and P ′,
• G is the function that estimates other agents’ actions based
on P ′, and
• U is the function that updates P ′.

Within the context of this paper, C consists of emojis that are
used in the user study. Hence, P refers to a mapping from these
emojis to corresponding values on a scale from 1 to 5 that mirror
the Likert scale. Similar to P , P ′ also refers to a mapping from
a list of emojis to values on the same scale. However, while P
represents A’s own preferences, P ′ provides the base information
that A uses for ToM reasoning, allowing it to make assumptions
about the preferences of other agents. F represents the strategy
that A uses to make a sharing decision and place a bid to support it,
while G is used to estimate other agents’ sharing decisions based on
P ′. U updates P ′ based on new information (i.e., others’ actions).

Using the insights from the user study, we have designed vari-
ous software agents that mimic different participant behaviors in
decision-making scenarios. The core design principle is to create
agents that capture the essence of human decision-making pat-
terns as reflected in the study, from simple self-focused strategies
to more complex, prosocial behaviors [43]. The key differences
between the agents lie in their decision-making strategies: some
rely solely on their own preferences while others employ ToM to
make assumptions about the preferences of other agents and adjust
their decisions accordingly. This incorporation of ToM allows more
complex agents to better simulate human behaviors. Below, we
outline the characteristics and behaviors of each agent.

4.1 ToM-0 Agent
Based on Insight 1, the ToM-0 agent (i.e., agent without ToM) is
designed to make decisions solely based on its own privacy pref-
erences. Since ToM-0 agent does not consider others’ preferences,
we represent it as a tuple ToM-0 = ⟨P , ∅,F , ∅, ∅⟩. The ToM-0 agent
serves as a baseline: Its decisions are consistent with its privacy
preferences, and its bids are proportional to these preferences (e.g.,
“5: very likely to share” indicates “SHARE with a high bid” whereas
“2: not likely to share” indicates “NOT SHARE with a low bid”). To
add variability, we introduce randomness in the bids, selecting them
from a uniform distribution between two integers. The decision
function F of ToM-0 is outlined in Algorithm 1 where 𝑏𝑀𝐼𝑁 , 𝑏𝑀𝐼𝐷 ,
and 𝑏𝑀𝐴𝑋 represent the minimum, midpoint, and maximum of
permissible bid amounts, respectively. Next, we move to the agents
that use ToM, denoted as ToM-1 agents.

4.2 ToM-1.M Agent: Majority-Conforming
The ToM-1.M agent inspired by Insights 2, 3 and 6, is designed to
conform its decisions to the majority’s preferences (M in ToM-1.M
stands for “majority-conforming behavior”). We represent ToM-1.M
agent as a tuple ToM-1.M = ⟨P ,P ′,F , G, ∅⟩. Notice that it does not

Algorithm 1: Decision Function F of ToM-0 Agent
Input: P (𝑐) as sharing preference for given content 𝑐
Output: sharing decision 𝐷 and bid 𝐵

1 if P (𝑐) = 1 then
2 𝐷 ← 𝑁𝑂𝑇_𝑆𝐻𝐴𝑅𝐸

3 𝐵 ← a random integer in the range (𝑏𝑀𝐼𝐷 , 𝑏𝑀𝐴𝑋 ]
4 else if P (𝑐) = 2 then
5 𝐷 ← 𝑁𝑂𝑇_𝑆𝐻𝐴𝑅𝐸

6 𝐵 ← a random integer in the range (𝑏𝑀𝐼𝑁 , 𝑏𝑀𝐼𝐷 ]
7 else if P (𝑐) = 3 then
8 𝐷 ← randomly select 𝑁𝑂𝑇_𝑆𝐻𝐴𝑅𝐸 or 𝑆𝐻𝐴𝑅𝐸

9 𝐵 ← 𝑏𝑀𝐼𝑁 // if not sure, give the smallest possible bid

10 else if P (𝑐) = 4 then
11 𝐷 ← 𝑆𝐻𝐴𝑅𝐸

12 𝐵 ← a random integer in the range (𝑏𝑀𝐼𝑁 , 𝑏𝑀𝐼𝐷 ]
13 else
14 𝐷 ← 𝑆𝐻𝐴𝑅𝐸

15 𝐵 ← a random integer in the range (𝑏𝑀𝐼𝐷 , 𝑏𝑀𝐴𝑋 ]
16 end

have U since ToM-1.M does not update P ′. Given a set of agents
A and a mapping C′ : A→ C , ToM-1.M first calculates each agent
𝑎 ∈ A’s expected decision from assumed preferences P ′ for a
content 𝑐 ∈ C with G , as outlined in Algorithm 2. Then, it makes a
potential decision without taking the others into account by using
Algorithm 1 and creates a potential bid. Finally, it makes a decision
that conforms to the (expected) majority decision while placing a
bid that is at most as high as the potential bid to save budget. The
decision function F of ToM-1.M is outlined in Algorithm 3.

Algorithm 2: Estimations for Other Agents’ Decisions (G)
Input: agentsA, agents’ contents C′,agents’ preferences P ′
Output: agents’ (expected) decisions D′

1 D′ ← ∅ // initialize

2 for each 𝑎𝑔𝑒𝑛𝑡 𝑎 ∈ A do
3 𝑐 ← C′ (𝑎) // get agent’s content

4 if P ′ (𝑐) = 1 or P ′ (𝑐) = 2 then
5 D′ (𝑎) ← 𝑁𝑂𝑇_𝑆𝐻𝐴𝑅𝐸

6 else if P ′ (𝑐) = 4 or P ′ (𝑐) = 5 then
7 D′ (𝑎) ← 𝑆𝐻𝐴𝑅𝐸

8 else
9 D′ (𝑎) ← randomly select 𝑁𝑂𝑇_𝑆𝐻𝐴𝑅𝐸 or 𝑆𝐻𝐴𝑅𝐸

10 end
11 end

4.3 ToM-1.A Agent: Preference-Advocating
The ToM-1.A agent, reflecting Insights 4 and 6, advocates for its own
privacy preferences by adjusting its bidding strategy (A in ToM-
1.A stands for “preference-advocating behavior”). We represent
ToM-1.A agent as a tuple ToM-1.A = ⟨P ,P ′,F , G, ∅⟩. Similar to the
ToM-1.M agent, it first calculates others’ expected decisions, makes
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Algorithm 3: Decision Function F of ToM-1.M Agent
Input: P (𝑐) as own privacy preference for given content 𝑐 ,

agentsA, agents’ contents C′,agents’ preferences P ′
Output: sharing decision 𝐷 and bid 𝐵

1 D′ ← Run Algorithm 2 with A, C′, and P ′
2 𝐷, 𝐵 ← Run Algorithm 1 with P (𝑐)
3 𝑚𝑆 =

∑
𝑑∈D′ 1𝑑=𝑆𝐻𝐴𝑅𝐸 // count SHARE decisions

4 𝑚𝑁𝑆 =
∑
𝑑∈D′ 1𝑑=𝑁𝑂𝑇 _𝑆𝐻𝐴𝑅𝐸 // count NOT_SHARE decisions

5 if 𝑚𝑆 < 𝑚𝑁𝑆 then
6 𝐷 ← 𝑁𝑂𝑇_𝑆𝐻𝐴𝑅𝐸 // decision update

7 else
8 𝐷 ← 𝑆𝐻𝐴𝑅𝐸 // decision update

9 end
10 𝑏𝑢 ← min {𝐵, (𝑏𝑀𝐼𝑁 + 𝑏𝑀𝐼𝐷 )/2} // upper bound

11 𝐵 ← a random integer in the range [𝑏𝑀𝐼𝑁 , 𝑏𝑢 )

a potential decision without considering others, and creates a po-
tential bid. Then, it places a higher bid than the potential bid when
it anticipates a majority decision that opposes its own. Conversely,
it opts for a low bid when it predicts that it already conforms to the
majority, aiming to conserve its budget. The decision function F
of ToM-1.A is outlined in Algorithm 4.

Algorithm 4: Decision Function F of ToM-1.A Agent
Input: P (𝑐) as own privacy preference for given content 𝑐 ,

agentsA, agents’ contents C′,agents’ preferences P ′
Output: sharing decision 𝐷 and bid 𝐵

1 D′ ← Run Algorithm 2 with A, C′, and P ′
2 𝐷, 𝐵 ← Run Algorithm 1 with P (𝑐)
3 𝑚𝑆 =

∑
𝑑∈D′ 1𝑑=𝑆𝐻𝐴𝑅𝐸 // count SHARE decisions

4 𝑚𝑁𝑆 =
∑
𝑑∈D′ 1𝑑=𝑁𝑂𝑇 _𝑆𝐻𝐴𝑅𝐸 // count NOT_SHARE decisions

5 if (𝑚𝑆 < 𝑚𝑁𝑆 and 𝐷 = 𝑆𝐻𝐴𝑅𝐸) or
(𝑚𝑆 > 𝑚𝑁𝑆 and 𝐷 = 𝑁𝑂𝑇_𝑆𝐻𝐴𝑅𝐸) then

6 𝑏𝑙 ← max {𝐵, (𝑏𝑀𝐴𝑋 + 𝑏𝑀𝐼𝐷 )/2} // lower bound

7 𝐵 ← a random integer in the range (𝑏𝑙 , 𝑏𝑀𝐴𝑋 ]
8 else
9 𝑏𝑢 ← min {𝐵, (𝑏𝑀𝐼𝑁 + 𝑏𝑀𝐼𝐷 )/2} // upper bound

10 𝐵 ← a random integer in the range [𝑏𝑀𝐼𝑁 , 𝑏𝑢 )
11 end

4.4 ToM-1.P Agent: Privacy-Preserving
Based on Insights 2, 5 and 6, the ToM-1.P agent makes decisions to
conform to the majority when this helps to preserve privacy (P in
ToM-1.P stands for “privacy-preserving behavior”). We represent
ToM-1.P agent as a tuple ToM-1.P = ⟨P ,P ′,F , G, ∅⟩. This agent
balances conformity to social norms with a strong emphasis on
maintaining privacy. The ToM-1.P agent aims to protect both its own
privacy and that of others, though it employs slightly different sub-
strategies for each. Similar to the ToM-1.M agent, it first calculates
others’ expected decisions, makes a potential decision without
considering others, and creates a potential bid. When its potential
decision is “NOT SHARE” and it anticipates a majority decision

“SHARE”, it places a higher bid than the potential bid. Conversely,
when its potential decision is “SHARE” and it anticipates a majority
decision “NOT SHARE”, it conforms to majority to help others
protect their privacy and places a lower bid than the potential bid.
Otherwise (i.e., when its potential decision matches the expected
majority decision), it opts for a low bid to conserve its budget. The
decision function F of ToM-1.P is outlined in Algorithm 5.

Algorithm 5: Decision Function F of ToM-1.P Agent
Input: P (𝑐) as own privacy preference for given content 𝑐 ,

agentsA, agents’ contents C′,agents’ preferences P ′
Output: sharing decision 𝐷 and bid 𝐵

1 D′ ← Run Algorithm 2 with A, C′, and P ′
2 𝐷, 𝐵 ← Run Algorithm 1 with P (𝑐)
3 𝑚𝑆 =

∑
𝑑∈D′ 1𝑑=𝑆𝐻𝐴𝑅𝐸 // count SHARE decisions

4 𝑚𝑁𝑆 =
∑
𝑑∈D′ 1𝑑=𝑁𝑂𝑇 _𝑆𝐻𝐴𝑅𝐸 // count NOT_SHARE decisions

5 if 𝑚𝑆 > 𝑚𝑁𝑆 and 𝐷 = 𝑁𝑂𝑇_𝑆𝐻𝐴𝑅𝐸 then
6 𝑏𝑙 ← max {𝐵, (𝑏𝑀𝐴𝑋 + 𝑏𝑀𝐼𝐷 )/2} // lower bound

7 𝐵 ← a random integer in the range (𝑏𝑙 , 𝑏𝑀𝐴𝑋 ]
8 else
9 if 𝑚𝑆 < 𝑚𝑁𝑆 and 𝐷 = 𝑆𝐻𝐴𝑅𝐸 then
10 𝐷 ← 𝑁𝑂𝑇_𝑆𝐻𝐴𝑅𝐸 // decision update

11 end
12 𝑏𝑢 ← min {𝐵, (𝑏𝑀𝐼𝑁 + 𝑏𝑀𝐼𝐷 )/2} // upper bound

13 𝐵 ← a random integer in the range [𝑏𝑀𝐼𝑁 , 𝑏𝑢 )
14 end

4.5 Learning Theory of Mind
Every ToM-1 agent that are described in the previous subsections
initially assumes that all other agents have the same preferences as
itself. This means the agent applies ToM reasoning by projecting
its own preferences onto others. While this simplifies the initial
reasoning process, it may not always capture others’ preferences
as they may be different than the ToM-1 agent’s preferences. Let’s
explore an example to illustrate this.

Consider four agents deciding whether to share a group photo,
one of whom is the ToM-1.A agent whereas the others are ToM-0
agents. The ToM-1.A agent may be very likely to share it (i.e., rating
“5” on the Likert scale) whereas other agents may be unlikely to
share it (i.e., rating “2” on the Likert scale). If the ToM-1.A agent
predicts the other agents’ decisions based solely on its own pref-
erence, it will conclude that the majority also wants to share and
make a decision in favor of sharing. Now, suppose that it places a
bid of 4, conserving its budget, in favor of sharing while the other
agents each place bids of 5 against sharing. The final group decision,
in this case, would be against sharing, with a bid difference of 11.
Since the ToM-1.A agent is designed to advocate for its preferences,
and especially more when its decision differs from the majority,
this outcome, based on an inaccurate model of others’ preferences,
represents a miscalculation that should have been avoided. Instead,
the ToM-1.A agent could have placed a bid of 18 if it had a more
accurate model of others and would have achieved its preferred
outcome.
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This example shows that it is unrealistic to expect that an agent’s
preferences will always match those of others, which can lead
to unintended outcomes. Therefore, for the agent to make better
predictions, it must have the ability to update and adjust its beliefs
about others’ preferences. Through repeated interactions and by
learning from new information, the ToM-1 agent can continuously
refine its understanding of others, enabling it to makemore accurate
and informed decisions over time. With this in mind, we upgrade
ToM-1.M, ToM-1.A, and ToM-1.P agents to ToM-1.ML, ToM-1.AL, and
ToM-1.PL, respectively, by introducing capability of learning actual
preferences of others through interactions. This learning takes its
place in the agent’s model as follows:

𝑞′ =

{
(1 − 𝛼) × 𝑞 + 𝛼, if 𝑑𝑖 = 𝑆𝐻𝐴𝑅𝐸

(1 − 𝛼) × 𝑞, otherwise
(1)

where 𝛼 is the learning rate, 𝑞 and 𝑞′ are the sharing probabilities
of others for a given content, before and after a new interaction
respectively. The decision of another agent in that interaction is de-
noted with 𝑑𝑖 . If that decision is “SHARE”, then the agent increases
the probability as the decision is inline with the agent’s current
belief. In the opposite case, the belief contradicts with the actual
preference, hence, the probability is updated with a lower value.
With the addition of probabilities, we also updated Algorithm 2 to
Algorithm 6 which calculates others’ expected decisions from their
sharing probabilities (instead of assumed preferences).

Algorithm6: Estimations for Other Agents’ Decisions with
Probabilities (G′)
Input: agents A, agents’ contents C′, 𝑄 as sharing

probabilities for all contents
Output: agents’ (expected) decisions D′

1 𝑟 ← a random real number in the range of [0, 1]
2 for each 𝑎𝑔𝑒𝑛𝑡 𝑎 ∈ A do
3 𝑐 ← C′ (𝑎) // get agent’s content

4 if 𝑄 (𝑐) ≤ 𝑟 then
5 D′ (𝑎) ← 𝑁𝑂𝑇_𝑆𝐻𝐴𝑅𝐸

6 else
7 D′ (𝑎) ← 𝑆𝐻𝐴𝑅𝐸

8 end
9 end

4.6 Base Agent
To replicate the scenarios from our user study, we have also de-
signed a Base agent, denoted as Base = ⟨P , ∅,F , ∅, ∅⟩. Similar to
other agents, the Base agent makes decisions consistent with its
preferences, yet it uses a deterministic bidding approach. Complete
setting for its decision and bidding strategy is given in Table 1.

5 EVALUATION
In our setup with four agents, one is designated as the “focal agent”
and plays a simplified version of the game described in Section 3:
instead of two rounds, each bidding decision is made in a single
round to better reflect real-life one-shot interactions. The focal

Table 1: Base agent’s decision and bidding rules based on
given preferences.

Preference Decision Bid

1 𝑁𝑂𝑇_𝑆𝐻𝐴𝑅𝐸 15
2 𝑁𝑂𝑇_𝑆𝐻𝐴𝑅𝐸 10
3 Randomly select 𝑁𝑂𝑇_𝑆𝐻𝐴𝑅𝐸 or 𝑆𝐻𝐴𝑅𝐸 5
4 𝑆𝐻𝐴𝑅𝐸 10
5 𝑆𝐻𝐴𝑅𝐸 15

agent competes against three other Base agents, replicating the
conditions of the user study. The focal agent’s decision-making
strategy is determined by its ToM type, as outlined in Section 4.

The agents and the simulation environment are implemented
with Python [13]. The simulations are carried out using a worksta-
tion that has Intel® Core™ i7 2.50 GHz processors and 16 GB RAM
with 64-bit Microsoft Windows 10 operating system.

The simulation involves 16 types of emojis as contents, with
each agent having its own privacy preferences for these emojis.
Privacy preferences are represented on a Likert scale from 1 to 5.
The privacy preferences for the focal agent are initialized with a
predefined list that differs from those assigned to the other agents.
This distinction allows us to explore how the focal agent responds
to varying privacy behaviors within the experiment. With this
setup, the learning-enabled ToM agents can observe the decisions
of other agents over time and adjust their own internal model of
others’ preferences. This dynamic learning process enables the focal
agent to refine its predictions and make more informed decisions
as interactions progress. We set the learning parameter 𝛼 to 0.1
to ensure that the focal agent builds a stable model of the other
agents’ privacy preferences incrementally.

Each simulation runs for 1000 rounds, during which agents re-
peatedly decide whether to share a set of four emojis representing
each agent. At the start of every round, each emoji are randomly
picked from 16 available types (with the total number of possible
sets being 164). The focal agent starts with a budget of 50 units
and is allocated a fixed budget of 10 units per round. If the agent’s
decision matches the final group decision in a round, its budget is
reduced by the bid amount it placed. Additionally, a tax is deducted
for each round where the agent’s bid directly determines the final
group decision, as suggested in the Clarke-Tax mechanism [10]. We
take this tax to be 5 units. In line with the setup of user study, bids
are limited between 1 and 20. Hence, the parameters 𝑏𝑀𝐼𝑁 , 𝑏𝑀𝐼𝐷

and 𝑏𝑀𝐴𝑋 in the algorithms are set as 1, 10 and 20 respectively.
We measure several performance indicators during the simula-

tions, including:

• Alignment Count: The number of rounds in which the focal
agent’s decision is the same as the final group decision.
• Spent Budget: The total amount spent by the focal agent on
bids and taxes.
• Focal Agent’s Privacy Violations: Occurrences where the fo-
cal agent’s privacy is violated (i.e., focal agent’s ToM-less de-
cision, which reflects its original preference, is NOT SHARE
but the final group decision is SHARE).

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

700



• Other Agents’ Privacy Violations: Occurrences where at least
one non-focal agent’s privacy is violated (i.e., at least one
other agent’s decision is NOT SHARE but the final group
decision is SHARE).

We evaluate the performance of ToM-0, ToM-1.M, ToM-1.A, ToM-
1.P, ToM-1.ML, ToM-1.AL, and ToM-1.PL agents through simulations.
These agents are assessed based on their alignment ratios, budget
management, and privacy management in the simulation setting.
We conduct 10 simulations for each agent, averaging the results.
Tables 2 and 3 provide an overview of the performance of all agents.

Table 2: Average alignment counts and budget expenditures
for different agents across 10 simulations, with each simula-
tion running for 1000 rounds.

Agent #Total Spent
Type Alignments Budget

ToM-0 607.2 ± 16.50 5022.0 ± 261.95
ToM-1.M 627.5 ± 13.31 1805.7 ± 46.27
ToM-1.A 710.2 ± 12.85 9022.4 ± 186.94
ToM-1.P 667.6 ± 7.64 5398.2 ± 290.83
ToM-1.ML 868.4 ± 8.39 2377.6 ± 40.50
ToM-1.AL 783.4 ± 11.89 8762.9 ± 256.91
ToM-1.PL 818.2 ± 11.12 5363.0 ± 254.53

5.1 Evaluation of Majority-Conforming Agents:
ToM-1.M and ToM-1.ML

Majority-conforming agents deliberately align their decisions with
others’ preferences while conserving their budgets. The learning-
enhanced ToM-1.ML agent proved highly effective, matching the
final group decisions in 868.4 rounds on average compared to 627.5
for the non-learning ToM-1.M agent (with p < .05). Both agents
maintained strong budget efficiency, with ToM-1.M spending only
1805.7 units on average and ToM-1.ML using 2377.6 units (Table 2).
This reflects the ToM-1.ML agent’s adaptability and strategic bid
placement when learning is introduced.

Privacy preservation, however, proved to be a challenge for the
ToM-1.M and ToM-1.ML agents. On average, themajority-conforming
focal agent experienced 249.4 privacy violations without learning
and 245.8 with learning (Table 3). Privacy violations for other agents
were also high, with 375.6 and 368.1 violations, respectively. This
shows that the majority-conforming strategy struggles to suffi-
ciently prioritize privacy since it tends to reinforce majority deci-
sions that may already exhibit privacy-violating behavior.

5.2 Evaluation of Preference-Advocating
Agents: ToM-1.A and ToM-1.AL

Preference-advocating agents prioritize their own preferences, ac-
tively pushing for decisions that reflect them. They are highly
competitive as ToM-1.A and ToM-1.AL have aligned with others
in 710.2 and 783.4 rounds on average, respectively. However, this
comes at a substantial cost, as both agents struggled to maintain a
high remaining budget. Without learning, the focal agent spent an
average of 9022.4 units per simulation, while the learning-enhanced
version had a similarly high expenditure of 8762.9 units (Table 2).

Privacy management was slightly better for ToM-1.A and ToM-
1.AL agents compared to ToM-1.M and ToM-1.ML agents. Without
learning, the focal agent experienced 134.9 privacy violations on
average, while learning reduced this number to 105.9 (significantly
better with p < .05). However, violations for other agents remained
steady at around 361.6 and 375.0, respectively (Table 3), which
indicates that preference-advocating agents focus more on their
own privacy than on protecting the privacy of others.

Table 3: Average numbers of privacy violations for the focal
agent and other agents across 10 simulations, with each sim-
ulation running for 1000 rounds.

Agent #Focal Agent’s #Other Agents’
Type Privacy Violations Privacy Violations

ToM-0 190.1 ± 15.33 364.9 ± 11.09
ToM-1.M 249.4 ± 13.37 375.6 ± 12.89
ToM-1.A 134.9 ± 11.89 361.6 ± 15.81
ToM-1.P 144.0 ± 11.26 273.8 ± 12.93
ToM-1.ML 245.8 ± 13.02 368.1 ± 18.25
ToM-1.AL 105.9 ± 8.95 375.0 ± 18.95
ToM-1.PL 110.3 ± 9.13 225.0 ± 15.01

5.3 Evaluation of Privacy-Preserving Agents:
ToM-1.P and ToM-1.PL

Privacy-preserving agents prioritize their own privacy as well
as that of others.With learning, the ToM-1.PL agent achieved a
higher alignment count of 818.2 compared to 667.6 for the ToM-1.P
agent on average. Budget usage stayed nearly the same, with the
learning-enhanced agent spending 5363.0 units per simulation and
the non-learning version spending 5398.2 units. This suggests that
the privacy-focused strategy balances costs and gains effectively.

Privacy violations were the lowest among all agents for ToM-1.P
and ToM-1.PL, confirming the success of the privacy-preserving
strategy. On average, The ToM-1.P agent experienced 144.0 viola-
tions and ToM-1.P experienced only 110.3. Other agents’ privacy
was also well-preserved, with the lowest recorded violations: 273.8
without learning and 225.0 with learning. These results highlight
these agents’ ability to preserve privacy, both for themselves and for
others, while still achieving competitive results in the simulation.

5.4 Comparative Evaluation
We devised a metric called Privacy-Oriented Alignment Rate (POAR)
to compare the agents. POAR is defined as the total number of
alignments achieved by the agent over total number of privacy
violations (i.e., the sum of the focal agent’s privacy violations and
other agents’ privacy violations). This metric offers a general view
of how efficiently each agent makes decisions that match with the
group decisions while mitigating multi-party privacy conflicts. A
higher value suggests that the agent aligns with the group decision
more frequently with fewer privacy violations, indicating stronger
privacy protection. Table 4 compares all agents based on this metric.

Starting with ToM-0, the agent has a relatively low POAR of 1.09
alignments per violation, reflecting its basic strategy. ToM-1.M has
the lowest POAR at 1.00, showing that it frequently compromises

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

701



privacy in order to succeed, conforming more to group behavior
than privacy concerns. On the other hand, ToM-1.A achieves a
higher POAR of 1.43, indicating a more balanced approach to align
with others while preserving privacy. ToM-1.P, designed to prioritize
privacy, performs even better, achieving 1.60 alignments per privacy
violation, emphasizing its privacy-preserving effectiveness.

For agents with learning, ToM-1.ML improves over ToM-1.M
with a POAR of 1.41, reflecting better privacy management. ToM-
1.AL has a solid score of 1.63, reflecting that learning enables more
privacy-conscious decision-making. Finally, ToM-1.PL stands out as
the best performer, with a POAR of 2.44, showing that its learning-
enhanced privacy-preserving strategy is the most effective at bal-
ancing privacy protection with successful outcomes (significantly
outperforms the closest agent ToM-1.AL with p < .05).

Table 4: Privacy-Oriented Alignment Rate (POAR) of dif-
ferent agents across 10 simulations, with each simulation
running for 1000 rounds.

Agent #Total #Privacy Privacy-Oriented
Type Alignments Violations Alignment Rate

ToM-0 607.2 ± 16.50 555.0 ± 17.19 1.10 ± 0.06
ToM-1.M 627.5 ± 13.31 625.0 ± 20.24 1.00 ± 0.03
ToM-1.A 710.2 ± 12.85 496.5 ± 17.22 1.43 ± 0.07
ToM-1.P 667.6 ± 7.64 417.8 ± 21.45 1.60 ± 0.09
ToM-1.ML 868.4 ± 8.39 613.9 ± 27.05 1.42 ± 0.06
ToM-1.AL 783.4 ± 11.89 480.9 ± 18.84 1.63 ± 0.07
ToM-1.PL 818.2 ± 11.12 335.3 ± 21.36 2.45 ± 0.19

6 DISCUSSION AND FUTURE DIRECTIONS
This work investigates how ToM reasoning can address privacy
conflicts in in multi-party privacy scenarios. Our proposed agents
can reason about privacy preferences of others, allowing them to
handle decision-making situations where individual privacy prefer-
ences clash. Our experimental setup show that ToM significantly
enhances privacy preservation, especially when agents can adapt
their behaviors based on assessments of others’ privacy preferences.

Multi-party conflicts have been studied in privacy context for
some time. Thomas et al. [38] definemulti-party privacy conflicts as
the disagreement of users over the privacy of the data that pertains
to all of them. Squicciarini et al. [33] propose to use an auction-
based mechanism to resolve such conflicts, where each user bids for
an amount that reflects how much they would like to see their pref-
erences as the group-decision. Such and Criado [35, 36] suggest a
software where the auctions are conducted by the agents represent-
ing the users, reducing the need for human intervention. Ulusoy
and Yolum [39] propose, PANO, that uses Clarke-Tax mechanism in
multi-party privacy decisions with certain limitations to avoid ma-
nipulations in the auctions. In their follow up study, PANOLA [40]
extends this mechanism to design agents that can learn to bid effec-
tively for different types of users. Ajmeri et al. [2] propose privacy-
aware personal agents that are able to incorporate social norms
unlike traditional agent-oriented software engineering methods.
Mosca et al. [26] address the issue with a utility and value-driven
approach which aims to meet explainability, role-agnosticism and

adaptability requirements at the same time. In their follow-up study
[27], they provide empirical proofs to show such agents outperform
the existing methods in terms of balancing the individual utility and
value adherence along with users’ satisfaction for the explainability
of the system. None of these aforementioned studies investigates
the problem by introducing agents that are equipped with ToM.

Many computational ToM models have been developed recently
to assess their effectiveness in various contexts [6, 14, 15, 19, 20, 28,
29, 42, 44]. We discuss two specific studies in relation to our work.

Montes et al. [25] develop a BDI agent architecture that can also
do ToM reasoning using abductive reasoning. They demonstrate
that their agents can interact with a variety of agents, including
ones that do not have a ToM. Their experimental evaluation show
that agents with a ToM reasoning perform significantly better than
those that do not have one in the game of Hanabi [7]. While they
evaluate their agent in a competitive setting, we study how an
agent’s ability to have ToM reasoning helps a society of agents as a
whole for dealing with multi-party conflicts.

DeWeerd et al. [12] investigate how higher-order ToM reasoning
benefits agents in unpredictable negotiation environments, using
the Colored Trails setting. The study reveals that higher-order ToM
agents outperform lower-order agents, particularly in dynamic, less
predictable environments, where agents without ToM struggle to
predict the behavior of others. In their setting, agents negotiate
resources in a mixed-motive environment involving both cooper-
ation and competition, similar to our setting, where our agents,
inspired by insights from a user study, must balance self-interest
with others’ preferences for effective overall privacy preservation.
In both cases, ToM allows agents to better predict others’ actions.

One limitation of our study is the non-focal agents’ basic bidding
behavior. The base agent uses a simple strategy with a determin-
istic bidding approach that replicates the scenarios from our user
study well; however, they may not fully reflect the complexity of
real-world decision-making where agents may employ more so-
phisticated, adaptive approaches. Moreover, our focal agents rely
on a single ToM model to represent all other agents’ preferences.
This resembles representing privacy preferences as norms of the
society as a whole [3]. While this simplifies the implementation,
it may reduce the accuracy of the model, as each other agent can
have diverse set of privacy expectations. Using separate ToM mod-
els for each agent and possibly integrating a multi-dimensional
model [45] would enable a more fine-grained representation of
others’ preferences. For future work, we will focus on developing
more sophisticated bidding behaviors and implementing separate
ToM models for each agent to better reflect the complexity and
diversity of real-world decision-making.
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