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ABSTRACT
We study the independent approval model (IAM) for approval elec-

tions, where each candidate has its own approval probability and is

approved independently of the other ones. This model generalizes,

e.g., the impartial culture, the Hamming noise model, and the resam-

pling model. We propose algorithms for learning IAMs and their

mixtures from data, using either maximum likelihood estimation

or Bayesian learning. We then apply these algorithms to a large

set of elections from the Pabulib database. In particular, we find

that single-component models are rarely sufficient to capture the

complexity of real-life data, whereas their mixtures perform well.
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1 INTRODUCTION
The goal of this paper is to design algorithms that take an approval

election as input and produce simple probabilistic models for gen-

erating similar elections (models of generating random elections

are often called statistical cultures). We form such algorithms using

maximum likelihood estimation (MLE) and Bayesian learning ap-

proaches, and evaluate them on the data from the Pabulib collection

of real-life participatory budgeting elections [8]. Consequently, we

also get an insight into the nature of Pabulib data.
1

More formally, an approval election consists of a set of candidates

and a collection of voters. Each voter indicates which candidates

he or she finds appealing, i.e., which ones he or she approves, and

which ones he or she does not. One particularly natural model

1
We disregard the costs of the projects (candidates) present in participatory budgeting.
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of generating such elections is to provide for each candidate 𝑐 a

probability 𝑝𝑐 , so that each voter approves 𝑐 with this probability,

independently from the other candidates and voters. We refer to

this model as the independent approval model (IAM). For a positive

integer 𝑡 , by a 𝑡-parameter IAM we mean an IAM where each

candidate has one of at most 𝑡 different approval probabilities, and

we often write full IAM when no such restriction applies. While

full IAM is not widely used in computational social choice—indeed,

it does not appear in the recent overview of Boehmer et al. [3]—its

restricted variants are quite popular. For example, 1-IAM—where

each candidate is approved independently with some probability

𝑝—is simply the 𝑝-Impartial Culture model (𝑝-IC), one of the most

popular statistical cultures for approval elections [3], and 2-IAM

is equivalent to the resampling model of Szufa et al. [20]. We also

note that the Hamming noise model—analyzed, e.g., by Caragiannis

et al. [5], is a restricted variant of 2-IAM.

We provide algorithms that given an approval election and a

number 𝑡 , find a 𝑡-parameter IAM that maximizes the probability of

generating this election. These algorithms are simple for impartial

culture, Hamming noise model, and full IAM, while resampling and

general 𝑡-parameter IAMs require more effort. We also show how

the classic expectation-maximization (EM) and Bayesian learning

algorithms can be used to learnmixtures of 𝑡-parameter IAMs, albeit

with limited guarantees. In this case, we focus on the Hamming

noise model, resampling, and full IAM.

There are two main reasons why such learning algorithms are

useful. The first one is that using them we can get a strong insight

into the nature of the elections that we learn. In our case, we con-

sider all 271 approval elections from Pabulib [8] with up to tens of

thousands of voters and between a few to 200 candidates. For each

of these elections we learn each of our models. We find that while

single IAMs are sufficient for some of the instances, in most cases it

is necessary to consider mixtures of at least a few IAM components.

In addition, we find that some elections are inherently difficult to

learn, irrespectively how strong would our models be.

The second reason why our learning algorithms—especially

those for mixture models—are useful, is that they provide mod-

els which generate fairly realistic synthetic data. In this sense, such

models are more realistic than basic, stylized models often used in

the literature (see the overview of Boehmer et al. [3]), but still offer

a strong level of control over the generated data. For example, we

can generate as many votes as we like.
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Related Work. So far, learning approval elections did not receive

much attention in computational social choice [3]. However, we

mention a paper that analyzes the number of approval votes that

we need to sample to learn an underlying ground truth [6]. Further,

Rolland et al. [19] consider learning profiles where each voter as-

signs a score to each candidate that either comes from a continuous

domain or from a discrete one. For the discrete case, their setting

generalizes ours, but they consider quite different distributions

and learning approaches. On the other hand, learning models of

ordinal elections, where each voter ranks the candidates, is well-

represented. For example, there are algorithms for learning the

classic Mallows model [1, 2, 12, 14], or the Plackett–Luce model,

which is similar in spirit to our IAMs [13, 16, 21, 22]. There is also

literature on learning voting rules, but it is quite distant from our

work and we only mention a single paper on this topic [4].

2 PRELIMINARIES
For a positive integer 𝑡 , by [𝑡] wemean the set {1, . . . , 𝑡}. Given two

numbers 𝑎 and𝑏, we write [𝑎;𝑏] to denote a closed interval between
𝑎 and 𝑏. For some probabilistic event 𝑋 , we write P(𝑋 ) to denote
the probability that it occurrs. Given a random variable 𝑋 and

some probability distribution 𝐷 , we write 𝑋 ∼ 𝐷 to indicate that 𝑋

is distributed according to 𝐷 . In particular, we use the following

standard distributions:

(1) 𝑈 (𝑎, 𝑏) is the uniform distribution over interval [𝑎;𝑏].
(2) Under Bernoulli(𝑝) we draw 1 with probability 𝑝 and 0 with

probability 1 − 𝑝 .
(3) Under the categorical distribution Cat (𝑝1, . . . , 𝑝𝑘 ), for each

𝑖 ∈ [𝑘] the probability of drawing 𝑖 is 𝑝𝑖 (hence we require

all 𝑝𝑖 values to be nonnegative and to sum up to 1).

Elections. An (approval) election is a pair 𝐸 = (𝐶,𝑉 ), where
𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚} is a set of candidates and 𝑉 = (𝑣1, . . . , 𝑣𝑛) is a
collection of voters. Each voter 𝑣𝑖 has a vote 𝐴(𝑣𝑖 ) ⊆ 𝐶 (also called

an approval ballot), i.e., a set of candidates that this voter approves.
By 𝑣𝑖 (𝑐 𝑗 ) we mean the 1/0 value indicating whether 𝑐 𝑗 is included

in 𝐴(𝑣𝑖 ) or not. For each candidate 𝑐 ∈ 𝐶 , we write 𝑉 (𝑐) to denote

the set of voters that approve 𝑐 . The value |𝑉 (𝑐) | is known as the

approval score of 𝑐; |𝑉 (𝑐 ) |/𝑛 is the probability that a random voter

approves 𝑐 . Given two votes, 𝑋,𝑌 ⊆ 𝐶 , their Hamming distance is

ham(𝑋,𝑌 ) = |𝑋 \ 𝑌 | + |𝑌 \ 𝑋 |, i.e., it is the number of candidates

approved in exactly one of them.

Probabilistic Models of Elections. For a set of candidates 𝐶 , we
write D(𝐶) to denote the family of probability distributions over

the subsets of 𝐶 , i.e., over the votes with candidates from 𝐶 . For a

distribution𝐷 ∈ D(𝐶) and a vote𝑋 ⊆ 𝐶 , P(𝑋 |𝐷) is the probability
of generating vote𝑋 under𝐷 . For an election 𝐸 = (𝐶,𝑉 ), where𝑉 =

(𝑣1, . . . , 𝑣𝑛), P(𝐸 | 𝐷) is the probability of generating 𝐸, provided

that each of its votes is drawn from 𝐷 independently:

P(𝐸 |𝐷) = ∏
𝑖∈[𝑛] P(𝐴(𝑣𝑖 ) |𝐷) . (1)

P(𝐸 |𝐷) is called the likelihood of generating 𝐸 under𝐷 . Wewill also

be interested in ln(P(𝐸 |𝐷)), i.e., the log-likelihood of generating 𝐸.

Remark 2.1. We view the voters as non-anonymous. To see what
this entails, consider elections 𝐸′ = (𝐶,𝑉 ′) and 𝐸′′ = (𝐶,𝑉 ′′), with

𝐶 = {𝑎, 𝑏}, 𝑉 ′ = (𝑣 ′
1
, 𝑣 ′

2
), and 𝑉 ′′ = (𝑣 ′′

1
, 𝑣 ′′

2
), where:

𝐴(𝑣 ′
1
) = {𝑎, 𝑏}, 𝐴(𝑣 ′

2
) = {𝑏}, and 𝐴(𝑣 ′′

1
) = {𝑏}, 𝐴(𝑣 ′′

2
) = {𝑎, 𝑏}.

In our model, these two elections are distinct, but they would be equal if
one viewed the voters as anonymous (it would only matter how many
particular votes were cast, and not who cast them). The choice of the
voter model does not affect our results: The problems of maximizing
the probability of generating a given election under both models are
equivalent (the respective probabilities only differ by a product of
some binomial coefficents that only depend on the election’s votes).

For a candidate set 𝐶 = {𝑐1, . . . , 𝑐𝑚} and a number of voters 𝑛, a

statistical culture is a probability distribution over elections with

this candidate set and 𝑛 voters. By a small abuse of notation, we

will also refer to the distributions from D(𝐶) as statistical cultures.
Indeed, given 𝐷 ∈ D(𝐶) we can always sample an election by

drawing the votes from 𝐷 independently. The following cultures

from D(𝐶) are particularly relevant:

𝒑-Impartial Culture (𝒑-IC). Under 𝑝-IC, for each voter 𝑣 and
candidate 𝑐 we have that 𝑣 (𝑐) ∼ Bernoulli(𝑝), i.e., each voter

approves each candidate with probability 𝑝 .

𝝓-Hamming. This distribution is parameterized by a central

vote 𝑈 ⊆ 𝐶 and a parameter 𝜙 ∈ [0; 1]. The probability of

generating voter 𝑣 ’s vote is proportional to 𝜙ham(𝑈 ,𝐴(𝑣) )
. 𝜙-

Hamming is sometimes referred to as the 𝜙-noise model [20].

(𝒑, 𝝓)-Resampling. The resampling model is parameterized

by a central vote 𝑈 ⊆ 𝐶 , resampling probability 𝜙 ∈ [0; 1],
and approval probability 𝑝 ∈ [0; 1]. To generate a voter’s 𝑣 ,

vote 𝐴(𝑣) ⊆ 𝐶 , we do as follows: First, we let 𝐴(𝑣) be equal
to𝑈 . Then, independently for each 𝑐 ∈ 𝐶 , with probability 𝜙

we replace value 𝑣 (𝑐) with one sampled from Bernoulli(𝑝).
Impartial culture and the Hamming model are part of the folk

knowledge, although the Hamming model was recently studied by

Caragiannis et al. [5] and Szufa et al. [20]. The resampling model

is due to Szufa et al. [20]. The Hamming model is analogous to

the classic Mallows model from the world of ordinal elections [15],

albeit Szufa et al. [20] advocate using the resampling model instead.

Mixture Models for Elections. Let 𝐶 be some set of candidates.

Given a family of 𝐾 distributions 𝐷1, . . . , 𝐷𝐾 ∈ D(𝐶) and proba-

bilities 𝑝1, . . . , 𝑝𝐾 (where

∑𝐾
𝑘=1

𝑝𝑘 = 1), we can form the following

mixture model: (1) We draw a number 𝑘 ∼ Cat (𝑝1, . . . , 𝑝𝐾 ) and,
then, (2) we draw a vote 𝑋 ∼ 𝐷𝑘 . We call 𝐷1, . . . , 𝐷𝐾 the compo-

nents of this model, and 𝐾 is their number.

3 INDEPENDENT APPROVAL MODEL
In this section we introduce the independent approval model and

argue that it generalizes all the statistical cultures from Section 2.

Let 𝐶 = {𝑐1, . . . , 𝑐𝑚} be the candidate set:
(𝒑1, . . . , 𝒑𝒕 )-Independent Approval Model. In this model,

abbreviated as (𝑝1, . . . , 𝑝𝑡 )-IAM, the candidate set is parti-

tioned into 𝑡 disjoint groups, 𝐶1, . . . ,𝐶𝑡 , and for each group

𝐶 𝑗 , each candidate 𝑐𝑖 ∈ 𝐶 𝑗 is approved independently, with

probability 𝑝 𝑗 . We use the name 𝑡-parameter IAM when we

disregard specific probability values.

The (𝑝1, . . . , 𝑝𝑚)-IAM, where every candidate has his or her

individual approval probability, is a particularly natural special case
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of the independent approval model, which we refer to as full IAM.

Further, 𝑝-IC and the (𝑝, 𝜙)-resamplingmodels also are special cases

of IAM. For the former, simply take a single candidate group with

approval probability 𝑝 . For the latter, note that (𝑝, 𝜙)-resampling

with central vote 𝑈 is equivalent to the (𝑝1, 𝑝2)-IAM with:

𝑝1 = (1 − 𝜙) + 𝜙 · 𝑝, and 𝑝2 = 𝜙 · 𝑝,

where 𝐶1 = 𝑈 and 𝐶2 = 𝐶 \𝑈 . In the other direction, (𝑝1, 𝑝2)-IAM
with candidate groups 𝐶1 and 𝐶2, where 𝑝1 ≥ 𝑝2, is equivalent to

(𝑝, 𝜙)-resampling with 𝜙 = 1 − (𝑝1 − 𝑝2), 𝑝 = 𝑝2/1−(𝑝1−𝑝2 ), and
central vote𝑈 = 𝐶1 (note that as 𝑝1 ≥ 𝑝2, we have that 𝑝 and 𝜙 are

guaranteed to be between 0 and 1). Consequently, resampling and

2-parameter IAM are equivalent.

The 𝜙-Hamming model is a special case of 2-parameter IAM.

Putting it in our language, Caragiannis et al. [5] have shown that for

an approval probability 𝑝 ∈ [0.5; 1], (𝑝, 1−𝑝)-IAM—with candidate

groups 𝐶1 and 𝐶2—is equivalent to 𝜙-Hamming with 𝜙 =
1−𝑝
𝑝 and

central vote𝑈 = 𝐶1. Similarly, 𝜙-Hamming with central vote𝑈 is

equivalent to (𝑝1, 𝑝2)-resampling with candidate groups 𝐶1 = 𝑈

and 𝐶2 = 𝐶 \𝑈 , 𝑝1 =
1

1+𝜙 and 𝑝2 = 1 − 𝑝1 = 𝜙

1+𝜙 .
Altogether, we have the following hierarchy of expressivity of

the IAM models (we view our models as sets of distributions, for

all possible choices of parameters; e.g., by 𝑝-IC we mean all the

impartial culture distributions for all approval probabilities 𝑝):

𝑝-IC ⊂ 𝜙-Hamming ⊂ (𝑝, 𝜙)-Resampling = (𝑝1, 𝑝2)-IAM
⊂ (𝑝1, 𝑝2, 𝑝3)-IAM ⊂ · · · ⊂ (𝑝1, . . . , 𝑝𝑚)-IAM.

Remark 3.1. Later on we consider mixture models based on IAM
variants. For example, by 2-full-IAM we mean a mixture model
with two full-IAM components. This should not be confused with
2-parameter IAM, which is a single-component resampling model.

4 LEARNING ALGORITHMS
Let us now focus on the following task: We are given an election

𝐸 = (𝐶,𝑉 ) with candidate set𝐶 = {𝑐1, . . . , 𝑐𝑚}, and voter collection
𝑉 = (𝑣1, . . . , 𝑣𝑛). We also have a family of distributions from D(𝐶).
Our goal is to find a distribution from this family that maximizes

the probability of generating election 𝐸. We will first solve this

problem for each of the special cases of IAM from the previous two

sections, and then we will consider IAM mixture models.

4.1 Learning a Single IAM Model
Let 𝐸 = (𝐶,𝑉 ) be an election, as described above. For each set of

candidates 𝐵 ⊆ 𝐶 , let app𝐸 (𝐵) =
∑
𝑐∈𝐵 |𝑉 (𝑐) | be the total number

of approvals that members of 𝐵 receive, and let prob𝐸 (𝐵) =
app(𝐵)
𝑛 |𝐵 |

be the probability that a random voter approves a random candidate

from𝐵. By 𝐸 (𝐵), wemean election 𝐸 restricted to the candidate set𝐵.

Consider a partition of𝐶 into sets𝑋 and𝑌 , and let𝐷𝑋 ∈ D(𝑋 ) and
𝐷𝑌 ∈ D(𝑌 ) be two IAMs with 𝑡1 and 𝑡2 parameters, respectively.

Further, let 𝐷𝑋𝑌 ∈ D(𝐶) be the (𝑡1 + 𝑡2)-parameter IAM that

generates approvals for candidates from 𝑋 according to 𝐷𝑋 and for

those from 𝑌 according to 𝐷𝑌 . We have:

P(𝐸 |𝐷𝑋𝑌 ) = P(𝐸 (𝑋 ) |𝐷𝑋 ) · P(𝐸 (𝑌 ) |𝐷𝑌 ). (2)

For each 𝑡 ∈ [|𝐶 |] and each partition of 𝐶 into 𝐶1, . . . ,𝐶𝑡 , we write

IAM(𝐶1, . . . ,𝐶𝑡 ) to refer to the 𝑡-parameter IAM that uses this par-

tition and for each 𝑖 ∈ [𝑡], the probability of approving a candidate

from 𝐶𝑖 is 𝑝𝑖 = prob𝐸 (𝐶𝑖 ). As per Equation (2), we have:

P(𝐸 | IAM(𝐶1, . . . ,𝐶𝑡 )) =
∏
𝑖∈[𝑡 ] P(𝐸 (𝐶𝑖 ) |prob𝐸 (𝐶𝑖 ) (𝐶𝑖 )-IC) .

Intuitively, if we want a 𝑡-parameter IAM that maximizes the

probability of generating a given election, it suffices to use

IAM(𝐶1, . . . ,𝐶𝑡 ) for an appropriate partition of the candidate set.

Next we show this fact formally and argue how to find optimal

partitions (for the 𝜙-Hamming model we use a different approach).

4.1.1 Impartial Culture and the Full IAM Model. For impartial cul-

ture, finding the parameter that maximizes the probability of gener-

ating a given election 𝐸 is easy: It suffices to use 𝑝-IC with 𝑝 equal

to the proportion of approvals in the election (this is a standard

fact from statistics, often expressed in different contexts).

Proposition 4.1. Let 𝐸 = (𝐶,𝑉 ) be an approval election. Proba-
bility P(𝐸 |𝑞-IC) is maximized for 𝑝 = prob𝐸 (𝐶).

Consequently, to learn the parameters of an IAM for a given

election, it suffices to find a partition of the candidates.

Proposition 4.2. Let 𝐸 = (𝐶,𝑉 ) be an election. For each 𝑡 ∈ [|𝐶 |]
there is a partition of 𝐶 into 𝐶1, . . . ,𝐶𝑡 such that IAM(𝐶1, . . . ,𝐶𝑡 )
maximizes the probability of generating 𝐸 among 𝑡-parameter IAMs.

Consequently, the full IAM that maximizes the probability of

generating a given election uses parameters where each candidate

is approved with probability equal to the fraction of its approvals.

Corollary 4.3. Let 𝐸 = (𝐶,𝑉 ) be an election, where 𝐶 =

{𝑐1, . . . , 𝑐𝑚} and 𝑛 voters. Probability P(𝐸 | (𝑝1, . . . , 𝑝𝑚)-IAM) is
maximized if for each 𝑖 ∈ [𝑚] we have 𝑝𝑖 = |𝑉 (𝑐 ) |/𝑛.
4.1.2 Hamming Model. For each 𝜙 ∈ [0; 1] and each vote 𝑈 , we

let 𝜙-Ham(𝑈 ) denote the 𝜙-Hamming model with central vote 𝑈 .

The probability of generating vote 𝐴(𝑣) under 𝜙-Ham(𝑈 ) is:

P
(
𝐴(𝑣) |𝜙-Ham(𝑈 )

)
= 1

(1+𝜙 )𝑚 𝜙
ham

(
𝑈 ,𝐴(𝑣)

)
(the normalizing constant is derived, e.g., by Caragiannis et al. [5]),

and the probability of generating election 𝐸 is:

𝑓𝑢 (𝜙) = P
(
𝐸 |𝜙-Ham(𝑈 )

)
= 1

(1+𝜙 )𝑚𝑛 𝜙
∑𝑛

𝑖=1 ham

(
𝑈 ,𝐴(𝑣𝑖 )

)
. (3)

For each fixed 𝜙 , this value is maximized when the exponent,∑𝑛
𝑖=1 ham

(
𝑈 ,𝐴(𝑣𝑖 )

)
, is minimized. This happens for central vote

𝑈 such that for each candidate 𝑐𝑖 , 𝑐𝑖 belongs to 𝑈 if and only

if at least half of the voters approve 𝑐𝑖 . We refer to such a cen-

tral vote as majoritarian. Let us fix 𝑈 to be majoritarian and let

ℎ =
∑𝑛
𝑖=1 ham

(
𝑈 ,𝐴(𝑣𝑖 )

)
. By definition, we have ℎ ≤ 𝑚𝑛/2, and we

assume that ℎ > 0 (otherwise it suffices to take 𝜙 = 0 to maxi-

mize the probability of generating 𝐸). The derivative of 𝑓𝑢 (𝜙) (with
respect to 𝜙) is:

𝑓 ′𝑢 (𝜙) =
ℎ𝜙ℎ−1 (1+𝜙 )𝑚𝑛−𝑚𝑛 (1+𝜙 )𝑚𝑛−1𝜙ℎ

(1+𝜙 )2𝑚𝑛

=
𝜙ℎ−1 (1+𝜙 )𝑚𝑛−1

(1+𝜙 )2𝑚𝑛 (ℎ(1 + 𝜙) −𝑚𝑛𝜙) .

By analyzing the final term, one can verify that its value is 0 exactly

for 𝜙 = ℎ
𝑚𝑛−ℎ , for smaller 𝜙 it is positive, and for larger 𝜙 it is

negative. Hence, we have the following result.
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Proposition 4.4. Let 𝐸 = (𝐶,𝑉 ) be an approval election with
𝑚 candidates and 𝑛 voters, where 𝑉 = (𝑣1, . . . , 𝑣𝑛). Let 𝑈 be the
majoritarian central vote for 𝐸 and let ℎ =

∑𝑛
𝑖=1 ham(𝑢, 𝑣𝑖 ). The

probability of generating 𝐸 using 𝜙-Hamming model is maximized
for the majoritarian central vote and 𝜙 = ℎ/𝑚𝑛−ℎ.
4.1.3 Resampling and Other IAMs. Next, let us consider learning
the parameters of 2-parameter IAMs (or, equivalently, of the resam-

pling models). The solution is intuitive, but requires a more careful

proof. In particular, the next theorem restricts the parameter space

that we need to analyze.

Theorem 4.5. Let 𝐸 = (𝐶,𝑉 ) be an election with candidate set
𝐶 = {𝑐1, . . . , 𝑐𝑚}, and voter collection 𝑉 = (𝑣1, . . . , 𝑣𝑛), such that
|𝑉 (𝑐1) | ≥ |𝑉 (𝑐2) | ≥ · · · ≥ |𝑉 (𝑐𝑚) |. Then P(𝐸 | (𝑝1, 𝑝2)-IAM) is
maximized for some𝑚′ ∈ [𝑚] and:

𝑝1 = |𝑉 (𝑐1 ) |+···+|𝑉 (𝑐𝑚′ ) |/𝑛𝑚′, 𝐶1 = {𝑐1, . . . , 𝑐𝑚′ },
𝑝2 = |𝑉 (𝑐𝑚′+1 ) |+···+|𝑉 (𝑐𝑚 ) |/𝑛 (𝑚−𝑚′ ), 𝐶2 = 𝐶 \𝐶1 .

Intuitively, Theorem 4.5 says that if we want to find the pa-

rameters of a 2-parameter IAM that maximize the probability of

generating a given election 𝐸 = (𝐶,𝑉 ), then there are only poly-

nomially many options to try. Namely, using the notation from

Theorem 4.5, it suffices to try all 𝑂 (𝑚) choices of𝑚′
, each giving

a different candidate partition, and—among those—select the one

that leads to maximizing the probability of generating 𝐸.

Corollary 4.6. There is a polynomial-time algorithm that given
an election 𝐸 = (𝐶,𝑉 ) finds the parameters of a 2-parameter IAM
that maximizes the probability of generating 𝐸.

Using the ideas from the proof of Theorem 4.5, we also obtain an

analogous result for IAMs with arbitrary number 𝑡 of parameters.

Theorem 4.7. Let 𝐸 = (𝐶,𝑉 ) be an election with𝑚 candidates and
𝑛 voters. For each 𝑡 ∈ [𝑚], P(𝐸 | (𝑝1, 𝑝2, . . . , 𝑝𝑡 )-IAM) is maximized
for 𝑝1, . . . , 𝑝𝑡 and a partition of 𝐶 into 𝐶1, . . . ,𝐶𝑡 such that for each
𝑖 ∈ [𝑡] we have 𝑝𝑖 =

∑
𝑐∈𝐶𝑖

|𝑉 (𝑐 ) |/𝑛 |𝐶𝑖 | and for each 𝑖 ∈ [𝑡 − 1] and
every two candidates 𝑎 ∈ 𝐶𝑖 and 𝑏 ∈ 𝐶𝑖+1 we have |𝑉 (𝑎) | ≥ |𝑉 (𝑏) |.

Based on Theorem 4.7, we derive a dynamic-programming algo-

rithm that computes a 𝑡-parameter IAM that maximizes the proba-

bility of generating a given election.

Theorem 4.8. There is a polynomial-time algorithm that given
an election 𝐸 = (𝐶,𝑉 ) and an integer 𝑡 ∈ [|𝐶 |] finds the parameters
of a 𝑡-parameter IAM that maximizes the probability of generating 𝐸.

4.2 Mixture Models: Expectation Maximization
In this and the next section we consider two different approaches

of learning mixtures of IAMs. Here we start with one of the most

standard and widely adopted machine learning algorithms used

for estimating the values of parameters in statistical models, the

Expectation-Maximization (EM) algorithm [7]. The algorithm is

useful when there are some missing or unobserved latent variables

in the model. In the context of learning mixtures of distributions,

these latent variables correspond to the assignment of the data

points to the mixture components that generated them. The algo-

rithm first guesses the parameters of the model and then iteratively

improves the estimation trying to maximize the log-likelihood of

generating the observed data. Each iteration consists of two steps:

E-step (Expectation), where the algorithm computes the pos-

terior probability (soft assignment) that each data point was

generated by each mixture component.

M-step (Maximization), where the algorithm updates the pa-

rameters of the mixture model to maximize the expected

log-likelihood given the probabilities from the E-step.

Intuitively, after each iteration the likelihood of generating the

observed data under the current model parameters increases. The

algorithm alternates between the E- and M-steps until convergence

(i.e., until two consecutive iterations return the same model param-

eters up to some negligible 𝜖), obtaining a local maximum of the

log-likelihood.

Let us now consider how the EM algorithm can be used for

learning mixtures of IAM models. Let us fix some election 𝐸 and

the number 𝐾 of components. For 𝑘 ∈ [𝐾], the 𝑘-th component

has parameters 𝜃𝑘 = (𝛼𝑘 , (𝑝1, 𝑝2, . . . , 𝑝𝑚)), where 𝛼𝑘 is the weight

of the component (

∑
𝑘∈[𝐾 ] 𝛼𝑘 = 1) and 𝑝1, . . . , 𝑝𝑚 ∈ [0; 1] are the

probabilities of approving candidates 𝑐1, . . . , 𝑐𝑚 (these probabilities

are independent only for the full IAM model; however, potential

dependencies between them are not relevant for the E-step). Given

a 𝑘-th mixture component and its parameters 𝜃𝑘 , the probability of

generating vote 𝐴(𝑣) by this component is:

P(𝐴(𝑣) |𝜃𝑘 ) = 𝛼𝑘 ·
(
Π 𝑗∈[𝑚]:𝑐 𝑗 ∈𝐴(𝑣)𝑝 𝑗

) (
Π 𝑗∈[𝑚]:𝑐 𝑗∉𝐴(𝑣) (1 − 𝑝 𝑗 )

)
.

Let us denote the posterior probability of generating votes from

𝐸, computed in the E-step of the algorithm—further called the soft
assignment of votes from 𝐸—as 𝛾 = {𝛾𝑣,𝑘 }𝑣∈𝑉 ,𝑘∈[𝐾 ] . For each voter

𝑣 and the𝑘-th component,𝛾𝑣,𝑘 is equal to the conditional probability

of generating 𝑣 by the 𝑘-th component subject to the fact that 𝑣 has

been generated by some component. Formally:

𝛾𝑣,𝑘 =
P(𝐴(𝑣) |𝜃𝑘 )∑
𝑗 P(𝐴(𝑣) |𝜃 𝑗 ) .

For clarity of the notation, for each 𝑘 ∈ [𝐾] let us denote the

total weight of the votes assigned to the 𝑘-th component as 𝛾𝑘 =∑
𝑣∈𝑉 𝛾𝑣,𝑘 . Note that

∑
𝑘∈[𝐾 ] 𝛾𝑘 = 𝑛.

For the M-step, we need to find the parameters 𝜃1, 𝜃2, . . . , 𝜃𝐾
maximizing the expected complete log-likelihood up to the com-

puted soft assignment, given by the following formula:∑
𝑣∈𝑉

∑
𝑘∈[𝐾 ] 𝛾𝑣,𝑘 ln(P(𝐴(𝑣) |𝜃𝑘 )).

Note that in the above formula the gamma variables should be

viewed as constants; their values depend on theta values computed

in the previous iteration of the algorithm, not on the ones we

currently search for.

Let us first focus on the𝛼𝑘 parameter of each component𝑘 ∈ [𝐾].
We have the following result here:

Proposition 4.9. For each mixture of 𝐾 IAM distributions, the
expected log-likelihood of generating the observed data is maximized
if for each 𝑘 ∈ [𝐾] it holds that 𝛼𝑘 = 𝛾𝑘/𝑛.

Let us now focus on optimizing the remaining parameters of

IAM components. Note that since we know the optimal weights of

the components and the other parameters are independent between

different components, we can now optimize the parameters of each

IAM component separately.

Let us fix component number 𝑘 ∈ [𝐾] and compute the prob-

abilities maximizing the expected log-likelihood of generating a
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corresponding soft assignment 𝛾 using the 𝑘-th component. Note

that for each 𝑣 ∈ 𝑉 we have that 𝛾𝑣,𝑘 is a rational number, i.e., it is a

quotient of two integers. Let 𝑄 be the least common multiple of all

the denominators of these quotients. We now consider an election

𝐸𝛾,𝑘 obtained from the initial election 𝐸 and the given soft assign-

ment 𝛾 by multiplying each voter 𝑣 , 𝑄 · 𝛾𝑣,𝑘 times (so that for each

two votes 𝑣 and 𝑣 ′, the proportion between the numbers of their

copies is equal to 𝛾𝑣,𝑘/𝛾𝑣′,𝑘 ), which we will further call an election

induced by 𝐸, 𝛾 and the 𝑘-th component. We will show that maxi-

mizing the log-likelihood of generating the part of 𝛾 corresponding

to the considered 𝑘-th component is equivalent to maximizing the

probability of generating 𝐸𝛾,𝑘 .

Proposition 4.10. Let 𝐸 = (𝐶,𝑉 ) be an approval election with𝑚
candidates and 𝑛 voters and let 𝛾 be the soft assignment of votes to
some 𝐾 mixture components. Let 𝐸𝛾,𝑘 be the election induced by 𝐸, 𝛾
and some 𝑘-th component for 𝑘 ∈ [𝐾]. Then finding the 𝑘-th mixture
component parameters maximizing the log-likelihood of generating
the assignment is equivalent to finding the parameters maximizing
the probability of generating 𝐸𝛾,𝑘 .

We also obtain direct formulas for optimal parameters for other

models from the preceding section (see the full version of the paper).

4.3 Mixture Models: Bayesian Learning
Consider an election 𝐸 = (𝐶,𝑉 ), with candidates 𝐶 = {𝑐1, . . . , 𝑐𝑚}
and voters 𝑉 = (𝑣1, . . . , 𝑣𝑛). So far we focused on learning param-

eter values that maximize the probability of generating 𝐸. Once

learned, model’s parameters in these settings are, essentially, fixed

constants. Alternatively, we can view the parameters themselves

as random variables. We can then estimate a distribution over the

parameters that is compatible with the election 𝐸. Learning the

distribution over model’s parameters conditioned on the observed

data is the core concept in Bayesian statistics.

One simple way to formalize a Bayesian model for an approval

election is to postulate a generative process for the votes, i.e., a sam-

pling procedure that describes our prior assumptions about the dis-
tribution over the votes. For example, consider the full IAM model

parametrized by the vector of approval probabilities: (𝑝1, 𝑝2, . . . 𝑝𝑚).
The generative process in this case starts with sampling each ap-

proval probability 𝑝𝑖 from a prior distribution over its possible

values. In this work we do not assume any a priori knowledge

about the approval probabilities. The prior distribution for approval

probabilities is therefore the uniform distribution over the [0, 1]
interval. After sampling the parameters, the generative process

samples the votes conditioned on the parameter values. In the IAM

model this conditional distribution is simply the Bernoulli distribu-

tion parametrized by the approval probability. Together, these two

steps give the following process:

(1) For all 𝑐 ∈ 𝐶 , sample the approval probability, 𝑝𝑐 ∼ 𝑈 (0, 1).
(2) For all 𝑣𝑖 ∈ 𝑉 , 𝑐 ∈ 𝐶 , sample the vote outcome, 𝑣𝑖 (𝑐) ∼

Bernoulli(𝑝𝑐 ).

The generative process fixes the prior over model’s parameters

𝑝 (𝑝1, . . . , 𝑝𝑚) and the data likelihood 𝑝 (𝑉 | 𝑝1, . . . , 𝑝𝑚). The Bayes
theorem then gives a principled formula for the posterior distribution
over the model’s parameters: 𝑝 (𝑝1, . . . , 𝑝𝑚 | 𝑉 ). This distribution

summarizes our knowledge about values of the parameters, once

we observed a set of votes 𝑉 .

The Bayesian framework provides a flexible way to specify more

complex generative processes. In particular, we can easily write a

generative process for a mixture of 𝐾 full IAM components:

(1) Sample component probabilities, (𝛼1, . . . , 𝛼𝐾 ) ∼ Dirich(1𝐾 ).
(2) For all 𝑐 ∈ 𝐶, 𝑘 ∈ [𝐾], sample the𝑘-th component’s approval

probability for the candidate 𝑐 , 𝑝𝑐,𝑘 ∼ 𝑈 (0, 1).
(3) For all 𝑣𝑖 ∈ 𝑉 :
(a) Sample the component index, 𝑧 ∼ Cat (𝛼1, . . . , 𝛼𝐾 ).
(b) For all 𝑐 ∈ 𝐶 , sample 𝑣𝑖 (𝑐) ∼ Bernoulli(𝑝𝑐,𝑧).

Here, Dirich(1𝐾 ) is the Dirichlet distribution with unit concen-

tration parameters, while Cat (𝛼1, . . . , 𝛼𝐾 ) is the categorical distri-
bution parametrized by components’ probabilities. Note that the

Dirichlet prior in our IAM mixture is, again, uninformative: Dirich-

let distribution with unit concentrations is the uniform distribution

over the 𝐾 − 1 dimensional probability simplex. Using similar prior

distributions we can also formulate Bayesian models for other mod-

els (see the full version of the paper).

The flexibility of Bayesian models comes with a price: due to the

intractable normalization constant in the Bayes rule, it is typically

impossible to evaluate the posterior distribution exactly. That said,

there are efficient, general-purpose algorithms that can be used to

draw samples from the posterior distribution.We generate posterior

samples using the No-U-turn sampler [10] with variable elimina-

tion [17] for the component assignments and Gibbs sampling for the

central votes. To this end, we implement and estimate our models

in the NumPyro probabilistic programming language [18].

After sampling from the posterior distribution, we approximate

posterior means of model’s parameters by averaging across sampled

values. We then use these mean estimates in downstream analyses.

Note that our models use so-called exchangeable priors: the model

specification and, consequently, the posterior density is invariant

to permutation of component labels. In a naive implementation,

samples from suchmodels may differ in the ordering of components,

leading to incorrect mean estimates. We remedy this issue by using

a standard identifiability constraint technique [11]. In particular,

we restrict the Dirichlet prior on the components’ probabilities to

the polytope that satisfy the constraint: 𝛼1 > 𝛼2 > · · · > 𝛼𝐾 , and

put zero prior probability mass elsewhere. This constraint uniquely

identifies one out of𝐾 ! equivalent component labellings. In practice,

the constraint can be enforced post sampling, by reordering the

components in the samples [11].

5 EXPERIMENTS
Our experiments focus on learning variants of IAMs, as well as their

mixtures, on elections from the Pabulib database [8]. Specifically,

we considered all 271 approval-based Pabulib elections that include

at least 2 000 voters. For each election 𝐸 = (𝐶,𝑉 ) from this set,

and each considered algorithm A (for a given IAM variant) we

executed the following procedure 𝑡try = 5 times (each time using

independent coin tosses; for the experiment described in Section 5.2

we used 𝑡try = 20):

(1) We formed elections 𝐸
learn

and 𝐸
eval

, where the latter con-

sisted of randomly selected 𝑛
eval

= 1000 votes from 𝐸,

and the former consisted of the remaining votes. If 𝐸
learn
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ended up with more than 20 000 voters, then we kept only

𝑛
sample

= 20 000 of them, selected uniformly at random

(to bound the computation time). We refer to 𝐸
learn

as the

learning election and to 𝐸
eval

as the evaluation one.

(2) We run A on 𝐸
learn

and obtained distribution 𝐷 ∈ D(𝐶).
(3) We computed the log-likelihood of obtaining 𝐸

eval
using 𝐷 ,

as well as a few other metrics (see Section 5.1).

We only performed 5 runs of this procedure because we found that

the variance of the results that we get (i.e., variance of the metrics

that we computed) was typically several orders of magnitude lower

than the results themselves.

For each of our elections, we ran all the algorithms from Sec-

tion 4.1, i.e., the single-component algorithms for IC, Hamming,

Resampling, full IAM and all the 𝑡-parameter IAMmodels for 𝑡 rang-

ing from 1 to the number of candidates in the given election (with a

step of 1). Then, we applied Bayesian learning (Section 4.3) to com-

pute mixture models with 2, 3, and 4 components, where each of the

components was either a Hamming model, a resampling model, or

full IAM. Finally, we applied the EM algorithm (Section 4.2) to learn

mixture models of 2, 3, and 4 full IAM components (we omitted

Hamming and resampling models due to computation cost).

5.1 Evaluation Metrics
While we could use log-likelihoods of the models that we learn

to evaluate their quality, this has drawbacks. For example, it is

difficult to compare log-likelihood values across different elections.

Thus, we use metrics based on the voter-anonymous variant of the

Hamming distance, defined below.

Definition 5.1. Let 𝐸 = (𝐶,𝑉 ) and 𝐹 = (𝐶,𝑈 ) be two elections
over the same candidate set 𝐶 , with voter collections 𝑉 = (𝑣1, . . . , 𝑣𝑛)
and𝑈 = (𝑢1, . . . , 𝑢𝑛) of equal size. Their voter-anonymous Hamming
distance is as follows (𝑆𝑛 is the set of permutations of [𝑛]):

va-ham(𝐸, 𝐹 ) = 1

𝑛 min𝜎∈𝑆𝑛
∑ℓ
𝑖=1 ham

(
𝐴(𝑣𝑖 ), 𝐴(𝑢𝜎 (𝑖 ) )

)
.

In other words, va-ham(𝐸, 𝐹 ) is the average Hamming distance

between the votes from 𝐸 and 𝐹 , matched in such a way as to

minimize the final result. Note that our definition is similar to the

definitions of isomorphic distances of Faliszewski et al. [9] and Szufa

et al. [20], except that we consider election with equal candidate

sets. In particular, voter-anonymous Hamming distance is invariant

to reordering the voters and is normalized by the number of voters.

Baseline Distance. Let 𝐸 be an election from the subset of Pabulib

that we consider. We define 𝐸’s baseline distance as the expected

value of the random variable defined as va-ham(𝐸1, 𝐸2), where
𝐸1 and 𝐸2 are subelections of 𝐸, each with 𝑛

eval
voters, selected

uniformly at random up to the condition that 𝐸1 and 𝐸2 do not have

any voters in common.
2
Intuitively, baseline distance is a measure

of an election’s internal diversity. For example, if its value is 2 then

if we take two random, disjoint subelections of 𝐸 (each with 𝑛
eval

voters), it would be possible, on average, to match their votes so that

two matched votes differ on two candidates (e.g., each of them may

include a single candidate not present in the other one). In practice,

we compute baseline distance of an election by drawing 5 pairs of

2
E.g., it means that if some voter 𝑣 from 𝐸 is included in 𝐸1 then he or she is certainly

not included in 𝐸2 . However, 𝐸2 may contain other voter 𝑢 with𝐴(𝑣) = 𝐴(𝑢 ) .

Figure 1: Absolute distance between the Amsterdam 289
election (38 candidates, left) or Warszawa 2020 Ochota elec-
tion (51 candidates, right) and single-component 𝒕-parameter
IAMs, as a function of 𝒕 , from 1 to the number of candidates.

elections and averaging their voter-anonymous Hamming distance

(typically, the variance is orders of magnitude lower than the value

of the average, so considering 5 pairs of elections is justified).

Absolute and Relative Distances. Given a Pabulib election 𝐸 =

(𝐶,𝑉 ) and a learning algorithm A, we compute their absolute dis-
tance as follows: For each evaluation election 𝐸

eval
that we com-

puted for 𝐸 and A, we take distribution 𝐷 ∈ D(𝐶) obtained by

A on 𝐸
learn

, generate election 𝐸𝐷 by drawing 𝑛
eval

votes inde-

pendently from 𝐷 , and compute va-ham(𝐸
eval

, 𝐸𝐷 ). We obtain five

numbers and we output their average value. We define the relative
distance between 𝐸 and A as their absolute distance divided by 𝐸’s

baseline. In other words, relative distance normalizes the absolute

one by 𝐸’s inherent diversity (𝐸’s baseline is, essentially, its absolute

distance from a distribution that samples 𝐸’s votes uniformly at

random so, intuitively, it bounds achievable absolute distance).

5.2 Impact of the Number of IAM Parameters
Let us now focus on single-component IAMs and the influence

that the number of parameters has on their ability to learn Pabulib

elections. In particular, in Figure 1 we plot the absolute distance be-

tween elections generated using 𝑡-parameter IAM models learned

(on two example Pabulib elections) using the algorithm from The-

orem 4.8. We find that for IC (𝑡 = 1) we get a significantly higher

absolute distance than for the resampling model (𝑡 = 2), which

itself is somewhat higher than the absolute distance for full-IAM (𝑡

equal to the number of candidates). The plots for other elections

are very similar in spirit.

Our conclusion from this experiment is that impartial culture

performs notably worse than the other IAM variants, but models

with two parameters and more achieve fairly similar results (even

if there is still a visible difference between the results for the resam-

pling model and full IAM). In the following experiments we limit

our attention to the Hamming, resampling, and full IAM models,

as they are simple to learn, give good results, and the former two

can be specified using much less information than full IAMs.

5.3 General Analysis of Learning Results
In this section, we provide a high-level overview of the Pabulib

dataset and the performance of our learning methods. In Figure 2

we illustrate the relationship between the average vote length in a

given election (i.e., the average number of candidates approved by a
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Figure 2: The relation between the average vote length and
baseline distance (left plot), and absolute distances from the
best learned model (right plot). Each dot depicts a single
Pabulib instance. The color gives the profile’s saturation (i.e.,
the average vote length divided by the number of candidates).

Figure 3: The relation between the (negative) log-likelihood
and the absolute distance (left plot), and relative distance
(right plot). Each dot depicts a single Pabulib instance. The
color corresponds to the average vote length.

Figure 4: The comparison of the absolute and relative dis-
tances. The left plot shows from which city each instance
originates (for Lodz and Warszawa we use different shades
of green and blue, respectively, for different years). The right
plot compares the single- and multi-component approaches.
Each dot depicts a single Pabulib instance (the number of
dots doubles in the right plot due to two approaches used).

single voter) and the baseline distance of this election (left plot) or its

absolute distance from the best-learned model (right plot). Each dot

represents a single Pabulib instance, with the color corresponding

to the profile saturation (i.e., the average vote length divided by the

total number of candidates). The left plot reflects the self-similarity

of the Pabulib instances. We see that while some Pabulib elections

have low baseline distance (i.e., are close to the 𝑥 axis) for many of

them this is not the case. Indeed, the baseline distance seems to have

Figure 5: Comparison of Bayes and EM learningmethods. The
upper plots show the absolute distances for both methods,
and the lower ones show the relative distances. By red (green)
color we mark the cases where Bayes (EM) achieved smaller
distance. Each dot depicts a single Pabulib instance.

a close-to-linear dependence on the average vote length; the more

candidates the voters approve, the more diverse are the votes that

they cast. The close resemblance between the two plots in Figure 2

indicates that, in most cases, our learning algorithms perform well

and achieve absolute distance similar to the baseline one (we discuss

this in more detail later, when analyzing Figure 4). Regarding the

plot on the right-hand side, we observe two key trends: First, as the

average vote length increases, the absolute distance also increases.

Second, for a given average vote length, higher saturation tends to

correspond to a smaller absolute distance.

In Figure 3 we explore the relationship between the (negative)

log-likelihood and the absolute distance (left plot) and the relative

distance (right plot), both for the best-learned model (i.e., the one

that achieves the lowest absolute distance). While the log-likelihood

is strongly correlated with the absolute distance (having Pearson

correlation coefficient equal to 0.993), it is barely (negatively) cor-

related with the relative distance (having PCC=-0.567). Our conclu-

sion here is that by using distance-based metrics of quality we gain

interpretability of our results (as discussed in Section 5.1) without

losing much of statistical significance of log-likelihoods (as absolute

distances are, in essence, negative log-likelihoods in disguise).

Figure 4 compares the absolute and relative distances between

each election and its best-learned model (i.e., the one that achieves

lowest absolute distance). The left plot uses color to show the city

of origin for each instance, revealing that different cities tend to oc-

cupy distinct regions of the plot. This suggests significant variation

in the nature of elections across cities and is a strong argument to

use data with different origins in experiments based on Pabulib.

We note that absolute and relative distances tell us quite different

stories about the quality of a learned model. For instance, we may
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view relative distance below 1.2 as quite good, but it may still

correspond to the absolute distance of, say, 10. For the case where,

on average, each voter in the considered election also approves

10 candidates, this means that our algorithm learned a very good

model as compared to the baseline distance, but the input election

is internally so diverse that the generated votes will still largely

differ from those present in the actual data. Similarly, we may view

relative distance equal to 2, as rather unsatisfactory, but it might

still mean an absolute distance of 0.5 for the baseline of 0.25. Even

though the relative distance is large, the absolute one is objectively

small and the learned distribution produces votes that can be seen

as very similar to those present in the considered election. Finally,

there also are some elections for which both distances are quite

high. Then, we have to concede that either IAM mixtures, or our

algorithms, are simply insufficient to learn these elections well.

Let us now consider the right-hand plot of Figure 4 (note differ-

ent scales on the axes as compared to the left-hand one). This plot

contrasts best-learned single-component models (in this case these

always are the full-IAM ones) and best-learned mixture models

(these often are 4-full-IAMs learned using the EM algorithm, but

sometimes also 4-resampling or 4-full-IAM ones learned using the

Bayesian approach). As expected, mixture models perform much

better: Their points have lower absolute and relative distance coordi-

nates. While the fact that mixture models are more expressive than

single-component ones is hardly surprising, knowing the extent of

their advantage is useful. Indeed, we see that to generate realistic

elections similar to those in Pabulib, using mixture models of sev-

eral IAMs gives notably better results that using single-component

full-IAMs (not to mention even simpler single-component models).

In Figure 5 we compare the EM and Bayesian approaches. As the

plots show, particularly in the case of the 4-full-IAM model, the EM

approach consistently outperforms the Bayesian method. Indeed,

in this case the Bayesian approach often finds it difficult to identify

four components and outputs models that perform even worse than

the 3-full-IAM models that it identifies. While we believe that one

could improve on this by engineering the priors used in Bayesian

models, we did not pursue this direction and view it as a follow-up

work. The main conclusion from Figure 5 is that both EM and the

Bayesian approach achieve similar results, even though the former

explicitly minimizes the negative log-likelihood and the latter does

not. This reinforces our view that both algorithms—based on so dif-

ferent principles—identify meaningful components. As component

analysis can be challenging, we find this finding valuable.

5.4 Closer Look on a Few Instances
Next, we zoom in on a few selected instances to describe our

observations in more detail. To improve understanding, we use

histograms which show the number of votes of a given length

in an election. In Figure 6, for selected Pabulib elections we lay

over histograms of the respective 𝐸
learn

and of the learned single-

component and 4-component resampling models (results for Ham-

ming and full-IAM are similar, we chose resampling for variety).

As mentioned in Section 5.3, nearly always multiple-component

models yield elections with significantly smaller distances to the

original one. There are twomain reasons to explain this observation:

First, single-component models are prone to “the flaw of average”

Figure 6: Superposition of three histograms of vote lengths
for three Pabulib instances. Each picture shows histograms
of the training election (blue) and learned single-component
(pale red) and four-component (dark red) resampling models.
For clarity, we removed bars for fractions smaller than 10−10.

of the vote lengths. It is evident for elections with bimodal vote

length distributions, like that of election Warszawa Ochota 2020

in Figure 6: A single learned component mostly generates average-

length votes, which are dissimilar from those of either of the peaks.

Second, single-component models can only produce votes with

a relatively limited variance of their length. Hence, it is frequently

counterproductive to apply single-component models to learn elec-

tions where this variance is high. It includes elections with a vote

length distribution that is asymmetric, uni-modal, and has a “heavy

tail” (such as Warszawa Bielany 2018 depicted in Figure 6) or that

have a bimodal distribution of vote lengths (like Warszawa Ochota

2020 in Figure 6). The histograms clearly show how multiple com-

ponents help in dealing with such distributions.

On the positive side, we want to stress that single-component

models can perform well on some real-life elections. In particular,

this holds true for elections with Gaussian-like distributions of vote

lengths; for an example, see election Amsterdam 289 in Figure 6.

6 SUMMARY
To the best of our knowledge, we performed the first comprehensive

analysis of Pabulib elections by learning them using both single-

component and mixture models. We found that some elections can

be captured with simple models such as resampling or full IAM,

but typically using mixtures of a few components is preferable.
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