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ABSTRACT
In the era of increasing privacy concerns and demand for personal-

ized experiences, traditional Reinforcement Learning with Human

Feedback (RLHF) frameworks face significant challenges due to

their reliance on centralized data. We introduce Federated Rein-

forcement Learning with Human Feedback (FedRLHF), a novel

framework that decentralizes the RLHF process. FedRLHF enables

collaborative policy learning across multiple clients, such as Large

Language Models (LLMs) finetuning, without sharing raw data or

human feedback, thereby ensuring robust privacy preservation.

Leveraging federated reinforcement learning, each client integrates

human feedback locally into reward functions and updates their

policies through personalized RLHF processes. We establish rigor-

ous theoretical foundations for FedRLHF, providing convergence

guarantees, and deriving sample complexity bounds that scale ef-

ficiently with the number of clients. Empirical evaluations on the

MovieLens and IMDb datasets demonstrate that FedRLHF preserves

user privacy, achieves performance on par with centralized RLHF,

and enhances personalization across diverse client environments.
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1 INTRODUCTION
Reinforcement LearningwithHuman Feedback (RLHF) has emerged

as a powerful paradigm for training intelligent agents that align

closely with human values and preferences [3, 26]. By integrating

human feedback into the reinforcement learning loop, RLHF has

enabled significant advancements in natural language processing,

robotics, and personalized recommendation systems [4, 37, 50]. A
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Figure 1: Comparison of the FedRLHF framework to con-
ventional RLHF methods. Top: Conventional RLHF requires
centralized collection of user data and feedback to train the
policy model and preference (reward) model. Bottom: In
FedRLHF, clients maintain local policy models trained on-
device using RLHF with local data and preference models.
Only policy model updates are shared with a central server,
which aggregates them to refine a global policy.

prominent example is ChatGPT [25], where RLHF has been in-

strumental in fine-tuning large language models (LLMs) to gen-

erate more coherent, contextually appropriate, and user-aligned

responses [49].

Despite these successes, the practice of aggregating data and

feedback from multiple users in centralized RLHF systems poses

significant privacy risks, especially in domains involving sensitive

information such as healthcare or finance [35]. For instance, a per-

sonalized healthcare assistant using RLHF requires centralizing

patient data and feedback, potentially violating regulations like

Health Insurance Portability and Accountability Act (HIPAA) [38]

and General Data Protection Regulation (GDPR) [8], while exposing

users to risks of data breaches and identity theft. Moreover, differ-

ent organizations or individuals may be reluctant to share their

feedback data due to intellectual property concerns or competitive

advantages [19].
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In addition to privacy risks, centralization creates substantial

hurdles for achieving personalization in RLHF systems. Users exhibit

diverse preferences and behaviors, making it challenging for a

centralized policy to cater effectively to all individuals [3]. Balancing

global performance with personalization becomes non-trivial, as

optimizing for the average user can lead to suboptimal experiences

for specific individuals [36]. Returning to our healthcare assistant

example, patients may have unique health conditions and treatment

preferences. A one-size-fits-all model, trained on centralized data,

may fail to provide the personalized recommendations necessary

for optimal care, potentially impacting patient outcomes negatively.

To address these limitations, we propose Federated Reinforce-
ment Learning with Human Feedback (FedRLHF), a novel

federated framework that uniquely integrates RLHF principles with

federated reinforcement learning [5, 9] to simultaneously address

privacy and personalization challenges. As illustrated in Figure 1,

FedRLHF decentralizes the RLHF process so that each client updates

a local policy using only its own data and private human feedback.

By exchanging only model updates rather than raw data, FedRLHF

preserves privacy and adheres more closely to data governance

regulations. Moreover, each client can personalize its learning pro-

cess by shaping the local reward function with individual human

feedback, ensuring that policies align with user preferences. This

decentralized approach supports collaboration across clients while

maintaining privacy and personalization.

The FedRLHF framework introduces unique technical challenges,

notably ensuring convergence guarantees in a decentralized environ-

ment and managing the trade-off between global performance and
personalization. In federated reinforcement learning, the variability

in clients’ environments and behaviors can lead to instability and

divergence in the learning process. Our FedRLHF framework ad-

dresses these challenges in a principled manner. We provide a com-

prehensive theoretical analysis establishing convergence guaran-

tees and deriving bounds on the sample complexity under standard

assumptions. Furthermore, we introduce a quantitative measure of

personalization and a personalization parameter in the reward shap-

ing function to analyze and control the trade-off between global

policy alignment and personalized adaptation.

Our contributions are as follows:

• We introduce FedRLHF, a framework that integrates feder-

ated reinforcement learning with human feedback, enabling

privacy-preserving and personalized policy learning and

model fine-tuning (Section 3).

• We provide convergence guarantees and derive sample com-

plexity bounds that account for the integration of human

feedback, extending existing FedRL theory (Section 4).

• We develop a quantitative measure of personalization to an-

alyze the trade-off between maximizing global performance

and adapting individual client policies (Section 5).

• We empirically demonstrate FedRLHF’s effectiveness on the

MovieLens and IMDb datasets, showcasing its ability to pre-

serve privacy, match centralized RLHF performance, and

enhance personalization (Section 6).

• A full version of this work, including additional proofs and

experimental details, is available at [11], and our code is pub-

licly available at github.com/flint-xf-fan/Federated-RLHF.

2 BACKGROUND & RELATEDWORK
Reinforcement Learning with Human Feedback (RLHF) has

become instrumental in aligning machine learning models with

human values and preferences [3, 26, 37, 49]. By integrating human-

generated feedback into the reward structure, RLHF facilitates the

training of policies that exhibit behaviors more aligned with human

preferences. However, traditional RLHF frameworks predominantly

rely on centralized aggregation of data and feedback, which intro-

duces significant privacy concerns. In addition, the centralization

nature of RLHF also limits personalization, as it typically involves

training a single reward model for all clients. This approach fails to

accommodate the heterogeneous preferences of individual clients,

leading to suboptimal policy performance in diverse environments,

as illustrated in Figure 1.

While previous studies [28] have explored personalized reward

models in RLHF through representation learning, they still depend

on the centralized aggregation of user data and feedback, failing

to address the privacy concerns inherent in centralized systems.

Additionally, methods like Group Robust Preference Optimization

(GRPO) [31] aim to reduce performance disparities across user

groups but similarly rely on aggregated, centralized datasets and do

not provide mechanisms for personalization at the individual level.

A recent effort by Li et al. [20] introduces a framework for personal-

ized language modeling from personalized human feedback, which

learns user-specific embeddings to capture individual preferences.

However, their approach still relies on centralized data collection

and does not address privacy concerns. Moreover, these prior ap-

proaches do not simultaneously tackle both privacy preservation

and personalization challenges in real-world scenarios where user

data is distributed across multiple devices or organizations.

Federated Reinforcement Learning (FedRL) has garnered

significant attention in recent years, aiming to leverage the prin-

ciples of federated learning [24] across diverse RL clients to en-

hance their sample efficiency without sharing raw data or trajec-

tories of the sequential decision-making process. This approach

has shown promise in diverse applications, from optimizing au-

tonomous vehicles and enhancing edge caching in IoT networks to

smart management of building facibilities [6, 12, 21, 23, 41, 47, etc.].

Recent theoretical advancements have solidified the foundations of

FedRL. Notably, convergence guarantees and sample complexity

bounds have been established, demonstrating speedup with increas-

ing numbers of participating agents [9]. In addition, the application

ofMarkovian sampling techniques has been shown to achieve linear

convergence speedup in FedRL settings [17]. Furthermore, recent

analysis of decentralized FedRL with Byzantine fault tolerance has

proven fast convergence rates without relying on a central server,

marking a significant step towards fully distributed and resilient

RL systems [15, 29]. Recent works have explored the benefits of

heterogeneity among Q-learning agents [10]. Woo et al. [44] prove

that leveraging agent heterogeneity can lead to linear speedup and

significant efficiency gains in federated Q-learning settings. In ad-

dition, Woo et al. [45] introduce a federated offline RL method that

achieves linear speedup with low communication costs in hetero-

geneous client environments. Moreover, Wang et al. [40] leverage

momentum mechanisms to achieve exact convergence and state-

of-the-art sample efficiency in highly heterogeneous environments.
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Finally, Jiang et al. [14] propose the first policy distillation-based

framework that aligns heterogeneous agent policies to further ac-

celerate convergence and enhance sample efficiency in federated

policy gradient methods.

Novelty of Our Approach. In contrast to existing FedRL meth-

ods that employ a uniform reward structure, our approach, Fe-

dRLHF, integrates client-specific human feedback directly into the

reward function. By allowing each client to locally shape its reward,

FedRLHF not only preserves privacy (since sensitive feedback re-

mains on-device), but also enhances personalization by accommo-

dating diverse user preferences. This personalized feedback mecha-

nism is particularly transformative for LLM applications (e.g., Chat-

GPT), as it enables context-aware fine-tuning of responses while

upholding stringent privacy standards. Moreover, our framework is

theoretically distinguished by convergence guarantees and sample

complexity bounds that explicitly capture the variability introduced

by human feedback—an aspect absent from prior FedRL literature.

3 PROBLEM FORMULATION
We consider a federated reinforcement learning system with 𝐾

clients, where each client 𝑘 ∈ 1, 2, . . . , 𝐾 interacts with its own

environment, modeled as a Markov Decision Process (MDP) 𝑀𝑘 =

(S,A, 𝑃𝑘 , 𝑅𝑘 , 𝜌0 (𝑠), 𝛾). Here, S and A represent the state and ac-

tion spaces, respectively. The state-transition function 𝑃𝑘 : S ×
A ×S → [0, 1] defines the probability 𝑃𝑘 (𝑠′ | 𝑠, 𝑎) of transitioning
from state 𝑠 to state 𝑠′ after taking action 𝑎. The reward function

𝑅𝑘 : S × A → R specifies the expected reward 𝑅𝑘 (𝑠, 𝑎) for client
𝑘 when action 𝑎 is taken in state 𝑠 . Finally, 𝛾 ∈ [0, 1) is the dis-

count factor balancing immediate and future rewards. The initial

state distribution 𝜌0 (𝑠) specifies the probability of the MDP starting

in state 𝑠 . We assume that both 𝛾 and 𝜌 are fixed and known for

all clients. This uniformity simplifies the theoretical analysis and

ensures consistency in policy evaluation and optimization. How-

ever, extensions to client-specific discount factors and initial state

distributions are straightforward within our framework.

Each client’s MDP may vary in the transition dynamics 𝑃𝑘 and

reward functions 𝑅𝑘 , reflecting the heterogeneity among clients due

to personalized environments or preferences. Let 𝜋𝜃 : S → Δ(A)
denote a stochastic policy parameterized by 𝜃 ∈ R𝑑 , where Δ(A)
is the set of probability distributions over the action space A. The

policy 𝜋𝜃 (𝑎 | 𝑠) specifies the probability of taking action 𝑎 in state

𝑠 under the parameters 𝜃 . For each client 𝑘 , the objective is to find

the policy parameters 𝜃 that maximize the expected cumulative

discounted reward:

𝐽𝑘 (𝜃 ) = E𝜏∼𝜋𝜃

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅𝑘 (𝑠𝑡 , 𝑎𝑡 )
]
, (1)

where the expectation is taken over trajectories 𝜏 = (𝑠0, 𝑎0, 𝑠1, . . .)
generated by following policy 𝜋𝜃 in𝑀𝑘 , starting from 𝜌𝑜 (𝑠).

3.1 Incorporating Human Feedback
Unlike conventional RLHF where a single reward function and

policy are learned from aggregated data, FedRLHF allows for client-

specific reward functions 𝑅𝑘 and locally adapted policies 𝜋𝑘 . In Fed-

RLHF, human feedback is integrated locally to shape each client’s

reward function. Specifically, the reward function for client 𝑘 is

Algorithm 1 FedRLHF

Require: Number of clients 𝐾 , total communication rounds 𝑇 ,

local update steps 𝜏 , personalization factor 𝜆, learning rate 𝜂

Ensure: Final global policy parameters 𝜃
final

1: Initialize global policy parameters 𝜃0
2: for 𝑡 = 0 to 𝑇 − 1 do
3: Server broadcasts global parameters 𝜃𝑡 to all clients

4: for each client 𝑘 ∈ {1, 2, . . . , 𝐾} in parallel do
5: Initialize local parameters: 𝜃𝑘

𝑡,0
← 𝜃𝑡

6: for 𝑖 = 0 to 𝜏 − 1 do
7: Sample a mini-batch B𝑘

𝑡,𝑖
using policy 𝜋

𝜃𝑘
𝑡,𝑖

in𝑀𝑘

8: Collect human feedback 𝐻𝑘 (B𝑘𝑡,𝑖 )
9: Calculate shaped reward 𝑅𝑘 per Eq. (2)

10: Estimate policy gradient per 𝐽𝑘 (𝜃𝑘𝑡,𝑖 ) in Eq. (1):

𝑔𝑘𝑡,𝑖 ← ∇𝜃 𝐽𝑘 (𝜃
𝑘
𝑡,𝑖 ;B

𝑘
𝑡,𝑖 )

11: Update local parameters:

𝜃𝑘𝑡,𝑖+1 ← 𝜃𝑘𝑡,𝑖 + 𝜂𝑔
𝑘
𝑡,𝑖

12: Compute local model update:

Δ𝜃𝑘𝑡+1 ← 𝜃𝑘𝑡,𝜏 − 𝜃𝑡

13: Server aggregates local updates:

𝜃𝑡+1 ← 𝜃𝑡 +
1

𝐾

𝐾∑︁
𝑘=1

Δ𝜃𝑘𝑡+1

14: return 𝜃
final
← 𝜃𝑇 or

1

𝑇

∑𝑇−1
𝑡=0 𝜃𝑡

augmented as:

𝑅𝑘 (𝑠, 𝑎) = 𝑅0𝑘 (𝑠, 𝑎) + 𝜆𝐻𝑘 (𝑠, 𝑎), (2)

where 𝑅0
𝑘
(𝑠, 𝑎) is the intrinsic reward provided by the environ-

ment, 𝐻𝑘 (𝑠, 𝑎) is the client-specific human feedback function rep-

resenting additional reward or penalty based on human evaluation,

and 𝜆 > 0 is a scaling factor balancing the influence of human

feedback relative to the intrinsic reward.

3.2 Global Objective
The global objective is to find policy parameters 𝜃 that maximize

the average expected cumulative reward across all clients:

𝐽 (𝜃 ) = 1

𝐾

𝐾∑︁
𝑘=1

𝐽𝑘 (𝜃 ) . (3)

3.3 The FedRLHF Framework
We propose the Federated Reinforcement Learning with Hu-
man Feedback (FedRLHF) framework to optimize the global

objective (3) across all clients in a federated manner while respect-

ing their individual environments and preferences. Algorithm 1

presents the pseudocode for FedRLHF. The key components and

operations of the framework are as follows:

Local RLHF (lines 6-12). : The FedRLHF framework allows clients

to use different RL methods, including Q-learning [42] and policy
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gradient (PG) [43], to perform 𝜏 steps of local optimization. The the-

oretical analysis provided in this manuscript assumes PG methods

for local updates, which was necessary to facilitate the convergence

analysis and derive sample complexity bounds.

Reward Shaping (line 9). : Rewards are shaped as 𝑅𝑘 = 𝑅0
𝑘
+ 𝜆𝐻𝑘 ,

where 𝑅0
𝑘
is the intrinsic reward and 𝜆 controls the influence of

human feedback 𝐻𝑘 .

Privacy Preservation. : Only the model updates Δ𝜃𝑘
𝑡+1 are trans-

mitted to the server, preventing direct access to individual user

data and feedback, thus providing a significant level of privacy

protection. For applications requiring formal privacy guarantees or

protection against advanced inference attacks, additional measures

such as Differential Privacy (DP) [7] could be incorporated into the

framework.

Aggregation (line 13). : Multiple server aggregation methods ex-

ist, such as FedAvg (simple averaging) [24],Weighted Average based

on client data sizes, and robust aggregation techniques like median-

based methods [46]. The choice depends on specific requirements

such as fairness, robustness to outliers, or heterogeneity in client

data. In this algorithm and our theoretical analysis, we employ

FedAvg for its simplicity and to facilitate clearer theoretical results.

However, our framework is flexible and can accommodate other

aggregation methods if needed.

Mechanism of Personalization. Although the server broadcasts

a single global policy parameter vector, personalization arises be-

cause each client’s local objective includes its own reward function,

shaped by both intrinsic rewards and the local human feedback

function 𝐻𝑘 . At each round, client 𝑘 adapts the global parameters

to better optimize 𝜆𝐻𝑘 alongside 𝑅0
𝑘
. This leads to client-specific

parameter updates. While the global model aggregates these up-

dates to improve overall performance, each client’s environment

and feedback distribution remain unique. In practice, clients can

also maintain partially fine-tuned local parameters or personalized

embeddings, thus capturing their distinct preferences or constraints.

Consequently, even though the server aggregates all updates, the

local RLHF step ensures that each client’s policy is guided by its

private human feedback, achieving personalization in a federated

manner.

4 CONVERGENCE RESULTS
In this section, we provide theoretical guarantees on the conver-

gence and sample complexity of the FedRLHF framework. These

results apply to implementations of the framework that adhere to

the core principles and structure outlined in Algorithm 1, under

the necessary assumptions stated below:

4.1 Assumptions
Assumption 1 (𝐿-smooth gradients). For all 𝜃, 𝜃 ′ ∈ R𝑑 and

𝑘 ∈ [𝐾], the gradients of the clients’ objective functions are 𝐿-
Lipschitz continuous:

∥∇𝐽𝑘 (𝜃 ) − ∇𝐽𝑘 (𝜃 ′)∥ ≤ 𝐿∥𝜃 − 𝜃 ′∥.

Assumption 2 (𝐺-bounded gradients). For all 𝜃 ∈ R𝑑 and
𝑘 ∈ [𝐾], the gradients are bounded:

∥∇𝐽𝑘 (𝜃 )∥ ≤ 𝐺.

Assumption 3 (𝜎-bounded variance). For all 𝜃 ∈ R𝑑 and 𝑘 ∈
[𝐾], the variance of the stochastic gradient estimator is bounded:

E
[
∥∇𝐽𝑘 (𝜃 ) − ∇𝐽𝑘 (𝜃 )∥2

]
≤ 𝜎2,

where ∇𝐽𝑘 (𝜃 ) is the stochastic gradient computed from a mini-batch.

Assumption 4 (Bounded second moment). For all 𝜃 ∈ R𝑑 and
𝑘 ∈ [𝐾], the second moment of the stochastic gradient is bounded:

E
[
∥∇𝐽𝑘 (𝜃 )∥2

]
≤ 𝑀2 .

Assumption 5 (Polyak-Łojasiewicz (PL) condition). The global
objective function satisfies the PL condition:

2𝜇
(
𝐽 (𝜃∗) − 𝐽 (𝜃 )

)
≤ ∥∇𝐽 (𝜃 )∥2, ∀𝜃 ∈ R𝑑 ,

where 𝜇 > 0 is a constant and 𝜃∗ = argmax𝜃 𝐽 (𝜃 ).

Remark. Assumptions 1–4 are common in the stochastic optimiza-
tion literature. The PL condition (Assumption 5) is stronger, especially
for reinforcement learning’s typically non-convex objectives. However,
it approximates scenarios where objective functions exhibit proper-
ties conducive to linear convergence. Policy gradient methods with
trust region constraints, such as TRPO [33], or those using proximal
objectives, like PPO [34], often result in smoother updates to the pol-
icy parameters, making the PL condition more reasonable. Recent
works [2, 16, 48, etc.] have used the PL condition for non-convex con-
vergence guarantees for RL, further justifying its use in our analysis.

Assumption 6 (Bounded Human Feedback). For all 𝑠 ∈ S,
𝑎 ∈ A, and 𝑘 ∈ [𝐾], the human feedback is bounded:

|𝐻𝑘 (𝑠, 𝑎) | ≤ 𝐻max .

Remark. Assumption 6 limits the variance introduced by human
feedback in the learning process. In our experiments with the Movie-
Lens task, we implement this by bounding feedback values and options
(Section 6.1.2), similar to practical systems like ChatGPT that curate
feedback for consistency.

4.2 Convergence and Sample Complexity
We now present the main theoretical results, starting with key

lemmas leading up to the convergence theorem. The complete proof

for theorems presented in this section is provided in Appendix B.

Lemma 4.1 (Bounded Local-Global Difference). Under As-
sumptions 1, 2, and 3, for any communication round 𝑡 and client 𝑘 ,
we have:

E
[
∥𝜃𝑘𝑡 − 𝜃𝑡 ∥2

]
≤ 𝜂2𝜏2 (𝐺2 + 𝜎2)

where 𝜃𝑘𝑡 is the local model of client 𝑘 , 𝜃𝑡 is the global model, 𝜂 is
the learning rate, 𝜏 is the number of local updates, 𝐺 is the gradient
bound, and 𝜎2 is the variance bound.

Remark. Lemma 4.1 quantifies the extent to which local models
diverge from the global model after 𝜏 local updates. This deviation is
influenced by the learning rate 𝜂 and the number of local updates 𝜏 ,
both of which amplify the divergence when increased.
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Lemma 4.2 (One-Step Descent). Under Assumptions 1–6, for any
round 𝑡 , the expected improvement in the global objective satisfies:

E[𝐽 (𝜃𝑡+1)] ≥ 𝐽 (𝜃𝑡 ) + 𝜂𝜏
(
1 − 𝐿𝜂𝜏

2

)
∥∇𝐽 (𝜃𝑡 )∥2

− 𝐿
2

(
𝜂2𝜏2

𝐾

)
(𝐺2 + 𝜎2) − 𝜆𝐻max

where 𝜃𝑡+1 is the updated global model.

Remark. This lemma establishes that each communication round
in FedRLHF yields a quantifiable improvement in the global objective

𝐽 (𝜃 ). The positive term 𝜂𝜏

(
1 − 𝐿𝜂𝜏

2

)
∥∇𝐽 (𝜃𝑡 )∥2 signifies progress

towards maximizing the objective, while the negative terms 𝜆𝐻max

and 𝐿
2

(
𝜂2𝜏2

𝐾

)
(𝐺2+𝜎2) account for the inherent variance in stochastic

gradients and the bounded impact of human feedback, respectively.

Theorem 4.1 (Convergence of FedRLHF). Under Assumptions 1–
6, if we choose the constant learning rate 𝜂 = 1

𝐿𝜏
, then the output

𝜃avg =
1

𝑇

∑𝑇−1
𝑡=0 𝜃𝑡 of Algorithm 1 satisfies:

E
[
𝐽 (𝜃∗) − 𝐽 (𝜃avg)

]
≤ 𝐿

𝜇𝑇

(
𝐽 (𝜃∗) − 𝐽 (𝜃0)

)
+ 1

2𝜇𝐾
(𝐺2 + 𝜎2) + 𝐿

𝜇
𝜆𝐻max .

Theorem 4.1 establishes that the FedRLHF algorithm converges

to an optimal policy within a bounded suboptimality gap. This

bound elucidates several key aspects of the algorithm’s perfor-

mance:

(1) ConvergenceRate (O(1/𝑇 )):The first term 𝐿
𝜇𝑇
(𝐽 (𝜃∗) − 𝐽 (𝜃0))

indicates that the algorithm achieves a linear convergence rate

with respect to the number of communication rounds 𝑇 , which

aligns well with expectations in federated optimization under

the PL condition.

(2) Impact of Client Diversity and Variance (O(1/𝐾)): The
second term

1

2𝜇𝐾
(𝐺2 + 𝜎2) scales inversely with the number of

clients 𝐾 . This indicates that aggregating updates from more

clients reduces the effect of gradient variance 𝜎2 and bounded

gradient norms 𝐺 , leading to a tighter convergence bound.

(3) Influence ofHumanFeedback (O(1)):The third term 𝐿
𝜇 𝜆𝐻max

represents the bounded influence of human feedback on the

convergence. The scaling factor 𝜆 and the maximum human

feedback bound 𝐻max determine how much human feedback

can potentially offset the objective’s improvement. While hu-

man feedback guides the policy towards user preferences, this

term ensures that its impact remains controlled, preventing

excessive deviations that could hinder convergence.

Theorem 4.2 (Sample Complexity of FedRLHF). Under As-
sumptions 1–6, to achieve an expected optimality gap of

E
[
𝐽 (𝜃∗) − 𝐽 (𝜃avg)

]
≤ 𝜖,

the total number of samples required across all clients is:

𝑁 = 𝑂

(
𝐿(𝐺2 + 𝜎2)

𝜇2𝜖2

)
,

subject to:

𝐾 ≥ 𝑂
(
𝐺2 + 𝜎2
𝜇𝜖

)
, 𝜆𝐻max ≤ 𝑂

( 𝜇𝜖
𝐿

)
.

Theorem 4.2 provides an estimate of the total number of samples

required across all clients to achieve a desired expected optimal-

ity gap 𝜖 . The bound, which scales with 𝑂 (𝜖−2) and aligns with

standard results in stochastic optimization, reveals several insights:

(1) Dependence on Problem Constants: The constants 𝜇 and 𝐿
reflect the curvature properties of the objective function 𝐽 (𝜃 ).
A larger 𝜇 (stronger PL condition) and smaller 𝐿 (less curvature)

lead to a lower sample complexity. The term 𝐺2 + 𝜎2 captures
the combined effect of the gradient bound and the variance of

the stochastic gradients. Reducing them through techniques

like gradient clipping or variance reduction methods [27] can

significantly lower sample complexity.

(2) Per-Client SampleComplexity:Diving the bound by𝐾 yields

the sample complexity per client: 𝑁𝑐 =
𝑁
𝐾

= 𝑂

(
𝐿 (𝐺2+𝜎2 )
𝐾𝜇2𝜖2

)
. As

𝐾 increases, the per-client sample complexity 𝑁𝑐 decreases

proportionally, suggesting that individual clients require fewer

samples to achieve the same level of accuracy whenmore clients

participate. This per-client sample efficiency gain aligns with

the collaborative nature of federated reinforcement learing [9].

(3) Cost of Personalization: As detailed in the proof in Appen-

dix B, a larger 𝜆𝐻max increases 𝜖𝐻 , effectively consuming more

of the allowable error budget. If 𝜖𝐻 becomes significant rela-

tive to 𝜖 , the remaining error budget for 𝜖𝑇 and 𝜖𝑉 decreases.

This necessitates tighter convergence in these terms, requiring

a larger number of communication rounds 𝑇 and potentially

more clients𝐾 . Consequently, the total sample complexity 𝑁 in-

creases indirectly due to a higher emphasis on personalization,

suggesting a trade-off between personalization and efficiency

5 PERSONALIZATION-PERFORMANCE
TRADE-OFF ANALYSIS

In this section, we establish a formal relationship between per-

sonalization and global performance within the FedRLHF frame-

work. The convergence analysis in Section 4 already hints at the

personalization-performance trade-off, particularly through the in-

fluence of the human feedback weight 𝜆 on the convergence. Here,

we provide a quantitative measure of this trade-off by analyzing

how personalization affects global performance of intrinsic rewards

and sample complexity. The complete proof for theorems presented

in this section is provided in Appendix C.

5.1 Definitions and Preliminaries
Definition 5.1 (Maximum Reward). We define 𝑅max as the max-

imum absolute value of the intrinsic reward function across all clients
and state-action pairs:

𝑅max = max

𝑘∈{1,2,...,𝐾 }, 𝑠∈S, 𝑎∈A
|𝑅0
𝑘
(𝑠, 𝑎) |.

Definition 5.2 (Personalization Score). For a client 𝑘 with
policy 𝜋𝑘 (·|𝑠, 𝜃 ) and the global policy 𝜋 (·|𝑠, 𝜃 ), the personalization
score is defined as:

𝑃𝑘 (𝜃 ) = E𝑠∼𝜌 [𝐷KL (𝜋𝑘 (·|𝑠, 𝜃 ) ∥ 𝜋 (·|𝑠, 𝜃 ))] ,

where 𝜌 is the state distribution and 𝐷KL denotes the Kullback-Leibler
divergence.
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Definition 5.3 (Global Performance Metric). We define the
global performance metric as the average expected cumulative intrin-
sic reward across all clients:

𝐽𝑔 (𝜃 ) =
1

𝐾

𝐾∑︁
𝑘=1

𝐽 0
𝑘
(𝜋),

where

𝐽 0
𝑘
(𝜋) = E𝜏∼𝜋

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅0
𝑘
(𝑠𝑡 , 𝑎𝑡 )

]
,

and the expectation is over trajectories 𝜏 = (𝑠0, 𝑎0, 𝑠1, . . .) generated
by following policy 𝜋 in client 𝑘’s MDP𝑀𝑘 , starting from 𝜌0 (𝑠).

5.2 Personalization-Performance Trade-off
We now present our main theorem on the trade-off between per-

sonalization and global performance.

Theorem 5.1 (Personalization-Performance Trade-off). Un-
der Assumptions 1–6 and Definition 5.1–5.3, for any set of client
policies {𝜋𝑘 (·|𝑠, 𝜃 )}𝐾𝑘=1 and the global policy 𝜋 (·|𝑠, 𝜃 ), the global per-
formance metric satisfies:

𝐽𝑔 (𝜃 ) ≥
1

𝐾

𝐾∑︁
𝑘=1

𝐽 0
𝑘
(𝜋𝑘 ) −𝐶 ·

(
1

𝐾

𝐾∑︁
𝑘=1

√︁
𝑃𝑘 (𝜃 )

)
,

where𝐶 > 0 is a constant given by:𝐶 =
2

√
2𝑅total,max

(1−𝛾 )2 , and 𝑅total,max
=

𝑅max + 𝜆𝐻max is the maximum possible total reward.

Theorem 5.1 establishes that the global performance 𝐽𝑔 (𝜃 ) is
lower bounded by the average client-specific performance (intrin-

sic rewards)
1

𝐾

∑𝐾
𝑘=1

𝐽 0
𝑘
(𝜋𝑘 ) minus a penalty term proportional

to the average of the square roots of the personalization scores

1

𝐾

∑𝐾
𝑘=1

√︁
𝑃𝑘 (𝜃 ). The constant 𝐶 encapsulates the maximum possi-

ble total reward and the discount factor, indicating that in environ-

ments with higher rewards or longer planning horizons, the impact

of personalization on global performance is more pronounced.

5.3 Impact of Human Feedback
We analyze how the incorporation of human feedback, governed by

the weight 𝜆, influences personalization and global performance.

Theorem 5.2 (Impact of Human Feedback). Under the same
assumptions and definitions in Theorem 5.1, as the human feedback
weight 𝜆 increases:

(1) The average personalization score 1

𝐾

∑𝐾
𝑘=1

𝑃𝑘 (𝜃 ) increases at
a rate of 𝑂 (𝜆2).

(2) The global performance 𝐽𝑔 (𝜃 ) decreases at a rate of 𝑂 (𝜆).
(3) The sample complexity 𝑁 increases at a rate of 𝑂 (𝜆).

Theorem 5.2 quantitatively demonstrates that increasing the

human feedback weight 𝜆 intensifies personalization (as the per-

sonalization score grows at 𝑂 (𝜆2)) but leads to a linear decrease in

global performance and an increase in sample complexity.

(1) Personalization Score Increases at 𝑂 (𝜆2): The personal-
ization score 𝑃𝑘 (𝜃 ) for each client scales quadratically with 𝜆,
indicating that the degree of personalization becomes more

pronounced as 𝜆 increases.

(2) Global Performance Decreases at 𝑂 (𝜆): The global per-
formance 𝐽𝑔 (𝜃 ) experiences a linear decrease with respect

to 𝜆. This implies that while personalization enhances client-

specific performance, it concurrently introduces a controlled

degradation in overall system performance.

(3) Sample Complexity Increases at 𝑂 (𝜆): The total number

of samples 𝑁 required to achieve a desired level of perfor-

mance grows linearly with 𝜆. This reflects the increased data

demands associated with higher levels of personalization to

maintain convergence guarantees.

6 EMPIRICAL RESULTS
We evaluate FedRLHF’s effectiveness in integrating human feed-

back within a federated reinforcement learning setting through

two real-world tasks: movie rating prediction using the MovieLens

dataset and sentiment-controlled review generation using the IMDb

dataset. Our experiments benchmark FedRLHF against a centralized

RLHF baseline, with a focus on personalization, and maintaining

performance levels.

All experiments were conducted on an NVIDIA GeForce RTX

3090 GPU, using the Flower framework [1] to simulate a realistic

federated learning environment with gRPC communication, mim-

icking real-world distributed systems. Detailed experimental results

and analyses are provided in Appendix D.

6.1 Movie Rating Prediction on MovieLens
6.1.1 Task Description and Setup. In this task, we simulate a stream-

ing service enhancing its recommendation system while preserv-

ing user privacy and catering to individual preferences. Using the

ml-latest-small version of the MovieLens dataset [13] which

contains 100,836 ratings from 610 users on 9,742 movies, we ran-

domly selected 𝐾 = 10 users as clients, each with unique viewing

histories and preferences. The objective is to predict whether a

user would assign a high rating (4 stars or above) to a given movie,

effectively framing this as a binary classification task.

6.1.2 Human Feedback Simulation. To emulate realistic user be-

havior and feedback mechanisms, we developed a noise-aware,

rule-based feedback simulator generating two types of feedback: a.
Direct Feedback: Categorizes predictions as "too high" (-1), "too

low" (1), or "about right" (0) based on the difference between pre-

dicted and actual ratings; b. Comparative Feedback: Expresses
preferences between movie pairs, mirroring real-world scenarios

where users more easily compare options than provide absolute

ratings. Feedback values are bounded within [-1, 1], satisfying As-

sumption 6. This feedback trains a local reward (preference) model

for each client. Full details on the feedback simulation are provided

in Appendix D.1.2.

6.1.3 Implementation. We implemented a neural network model

with embedding layers for users and movies. The model inputs in-

cluded user IDs, movie IDs, and movie genre information to capture

complex user-movie interactions. In the federated learning process,

each client trained the model locally using intrinsic rewards and

simulated human feedback, employing Q-learning as the local RLHF

step. We employ Q-learning in this task due to its effectiveness in

handling discrete action spaces (movie recommendations) and its
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Figure 2: Learning curves on MovieLens: (top) Global vs.
Client Accuracy, (bottom) Client Spearman correlation.

ability to learn optimal policies in environments with delayed re-

wards. Clients performed 5 local epochs per federated round, using

the Adam optimizer [18] (learning rate 1 × 10−3). Global model ag-

gregation used a weighted average based on client example counts,

following a FedAvg variant [24]. The process spanned 5 communi-

cation rounds. More details are provided in Appendix D.1.3.

6.1.4 Results and Analysis. Figure 2 presents the learning curves

for both global and client-specific accuracies (top), along with the

Spearman rank correlations (bottom) for each of the 𝐾 = 10 clients

across 5 federated rounds. All results are averaged over five inde-

pendent runs. For clarity, only client means across runs are shown.

Global performance is depicted by the red dashed line (mean) with

shaded area (standard deviation).

Global Performance Improvements. The global performance in

accuracy improves from 62.86% ± 3.45% to 77.71% ± 2.64% over 5

rounds. The steady improvement in global performance, which is

also evident from the client-specific accuracies distribution shown

in the violin plot in Figure 3 (top subplot), aligns with the 𝑂 (1/𝑇 )
convergence rate established in Theorem 4.1.

Personalization-Performance Trade-off. We use Spearman rank

correlation to evaluate how well the model captured user-specific

movie preferences, serving as a surrogate for the personalization-

performance trade-off discussed in Theorem 5.1. Figure 2 (bot-

tom) reveals substantial variability in Spearman correlations across

clients, ranging from 0.0613 (Client 5) to 0.6126 (Client 2) in the last

round, with high correlations indicating effective personalization

and low correlations suggesting challenges in capturing nuanced

preferences. The upward trend in median Spearman correlations

(Figure 3 bottom) demonstrates the framework’s increasing ability

to develop personalized models aligned with individual preferences,

while steadily improving global performance (Figure 3 top).

Scaling to 𝐾 = 50 Clients. Similar trends were observed when

scaling to 𝐾 = 50 clients, with details provided in Appendix D.1.4.
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Figure 3: Distribution of 𝐾 = 10 client accuracies and Spear-
man rank correlations per round for the MovieLens task.

6.2 Sentiment-Controlled Review Generation
6.2.1 Task Description and Setup. In this task we simulate multiple

movie review platforms collaborating to fine-tune a language model

for sentiment-controlled text generation without sharing data. Each

client represents a distinct platformwith its own collection of movie

reviews, introducing natural data heterogeneity. Using the IMDb

dataset [22], we partitioned 50,000 reviews among 𝐾 = 5 clients,

each receiving approximately 10,000 unique reviews.

6.2.2 Implementation (details in Appendix D.2.2). We employed

a GPT-2 model [30] fine-tuned using PPO [34] within the TRL

library [39]. Clients conducted local RLHF training for 5 epochs

per federated round, using Adam optimizer (learning rate 1× 10−5).
Global aggregation used FedAvg [24] over 5 communication rounds.

6.2.3 Human Feedback Simulation. We simulated human feedback

using a sentiment analysis model (DistilBERT [32] fine-tuned on

IMDb) implemented locally on each client. The reward function

combined sentiment score and language model log probability:

𝑅𝑘 = 𝜆𝑘 ·𝑅sentiment+ (1−𝜆𝑘 ) ·𝑅0𝑘 , where 𝑅sentiment is the sentiment

alignment reward, 𝑅0
𝑘
is the intrinsic fluency reward and 𝜆𝑘 ∈

[0, 1] is a client-specific parameter controlling personalization. This

formulation closely aligns with the reward shaping in Equation 2

and validates Assumption 6, allowing clients to personalize the

importance of sentiment alignment.

6.2.4 Results and Analysis. We report the results using a single

random seed (42) to maintain consistency across experiments.

Comparison with Centralized RLHF. Figure 4b compares the av-

erage rewards and losses between centralized RLHF and FedRLHF

(𝐾 = 5) over the total number of samples. The rewards comparison

reveals that while the centralized model initially achieves slightly

higher rewards, FedRLHF quickly catches up and even surpasses

the centralized model’s performance in later stages. This is evident

from the FedRLHF reward curve (in red) consistently lying above

the centralized RLHF curve (in blue) after approximately 1500 sam-

ples. This improvement arises from FedRLHF’s ability to leverage

diverse client data and regular model aggregation, which enhance
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Figure 4: Performance evaluation of FedRLHF in comparison
to centralized RLHF. (a) Tracks the rewards and losses of
clients and the global performance over federation rounds.
(b) Compares the sample efficiency of FedRLHF (K = 5) with
centralized RLHF in terms of average rewards and losses over
training samples.

generalization and reduce overfitting compared to the centralized

approach. The loss comparison shows that both approaches achieve

similar loss reduction. This result corroborates the sample complex-

ity analysis in Theorem 4.2, indicating that FedRLHF can match or

even exceed centralized performance while preserving privacy and

distributing computation.

Personalization-Performance Trade-off. The global average re-

ward, represented by the dashed line in Figure 4a, shows steady

improvement from approximately 0.52 to 0.68 over five rounds,

indicating overall system convergence. To analyze the trade-off

between personalization and global performance in FedRLHF, we

conducted a detailed evaluation of how clients’ personalized ob-

jectives affected their individual rewards over the training rounds.

For each client, we randomly sampled 30 queries from their evalu-

ation dataset at the beginning of training and kept these queries

fixed throughout all rounds. Each client was assigned a different
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Figure 5: Trends of intrinsic rewards, sentiment rewards,
and combined rewards over communication rounds for each
client. Each subplot corresponds to one client, illustrating
personalization effects due to varying 𝜆𝑘 values.

personalization weight 𝜆𝑘 , ranging from 0.1 to 0.9. In each commu-

nication round, we supplied these 30 queries to the client’s GPT

model, recorded the generated responses, and calculated the corre-

sponding average of intrinsic rewards (𝑅intrinsic), sentiment rewards

(𝑅sentiment), and combined rewards (𝑅𝑘 ), as shown in Figure 5.

The results reveal distinct patterns aligned with the personal-

ization weights 𝜆𝑘 . Client 0 (𝜆0 = 0.1) prioritizes intrinsic rewards,

while Client 1 (𝜆1 = 0.3) shows more balanced improvement. Client

2 (𝜆2 = 0.5) exhibits clear equilibrium between sentiment and

intrinsic rewards. For Client 3 (𝜆3 = 0.7), sentiment rewards domi-

nate with a steady increase, and Client 4 (𝜆4 = 0.9) demonstrates

the highest emphasis on sentiment rewards. As 𝜆 increases across

clients, we observe a clear shift from intrinsic to sentiment reward

prioritization, with combined rewards increasingly aligning with

sentiment rewards for higher 𝜆 values.

7 CONCLUSION AND FUTUREWORK
In this work, we have introduced FedRLHF, a novel framework that

integrates federated reinforcement learning principles with RLHF

to address privacy and personalization challenges of data central-

ization. Our theoretical analysis provides convergence guarantees

and sample complexity bounds, demonstrating stable, linear conver-

gence. The personalization-performance trade-off analysis shows

how FedRLHF balances global performance with individual client

needs. Empirical evaluations on MovieLens and IMDb validate our

approach, achieving results comparable to centralized RLHF while

preserving privacy and enhancing personalization.

Future work will focus on enhancing FedRLHF’s robustness

through advanced aggregation techniques and strengthening pri-

vacy preservation by integration of formal privacy guarantees, such

as differential privacy. Additionally, we aim to investigate the trade-

off between communication efficiency and personalization, optimiz-

ing FedRLHF’s performance by balancing communication overhead

with personalized model adaptations in federated environments.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

720



REFERENCES
[1] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, and

Nicholas D Lane. 2020. Flower: A friendly federated learning research framework.

arXiv preprint arXiv:2007.14390 (2020).
[2] Jalaj Bhandari and Daniel Russo. 2024. Global optimality guarantees for policy

gradient methods. Operations Research (2024).

[3] Paul F Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and

Dario Amodei. 2017. Deep reinforcement learning from human preferences. In

Advances in Neural Information Processing Systems, Vol. 30.
[4] Nathan Corecco, Giorgio Piatti, Luca A Lanzendörfer, Flint Xiaofeng Fan, and

Roger Wattenhofer. 2024. An LLM-based Recommender System Environment.

arXiv preprint arXiv:2406.01631 (2024).
[5] Zhongxiang Dai, Flint Xiaofeng Fan, Cheston Tan, Trong Nghia Hoang, Bryan

Kian Hsiang Low, and Patrick Jaillet. 2024. Federated sequential decision making:

Bayesian optimization, reinforcement learning, and beyond. In Federated Learning.
Elsevier, 257–279.

[6] Zhongxiang Dai, Yao Shu, Arun Verma, Flint Xiaofeng Fan, Bryan Kian Hsiang

Low, and Patrick Jaillet. 2023. Federated Neural Bandits. In Proceedings of the
Eleventh International Conference on Learning Representations.

[7] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In Theory of cryptography
conference. Springer, 265–284.

[8] European Parliament and Council of the European Union. 2016. Regulation (EU)

2016/679 of the European Parliament and of the Council of 27 April 2016 on the

protection of natural persons with regard to the processing of personal data and

on the free movement of such data, and repealing Directive 95/46/EC (General

Data Protection Regulation). https://eur-lex.europa.eu/eli/reg/2016/679/oj

[9] Flint Xiaofeng Fan, Yining Ma, Zhongxiang Dai, Wei Jing, Cheston Tan, and

Bryan Kian Hsiang Low. 2021. Fault-Tolerant Federated Reinforcement Learning

with Theoretical Guarantee. In Advances in Neural Information Processing Systems.
1007–1021.

[10] Flint Xiaofeng Fan, Yining Ma, Zhongxiang Dai, Cheston Tan, Bryan Kian Hsiang

Low, and Roger Wattenhofer. 2023. Fedhql: Federated heterogeneous q-learning.
arXiv:2301.11135.

[11] Flint Xiaofeng Fan, Cheston Tan, Yew-Soon Ong, Roger Wattenhofer, and Wei-

Tsang Ooi. 2024. FedRLHF: A Convergence-Guaranteed Federated Framework

for Privacy-Preserving and Personalized RLHF. arXiv preprint arXiv:2412.15538
(2024). https://arxiv.org/abs/2412.15538

[12] Koki Fujita, Shugo Fujimura, Yuwei Sun, Hiroshi Esaki, and Hideya Ochiai. 2022.

Federated Reinforcement Learning for the Building Facilities. In 2022 IEEE Inter-
national Conference on Omni-layer Intelligent Systems (COINS). 1–6.

[13] F Maxwell Harper and Joseph A Konstan. 2015. The MovieLens datasets: History

and context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4 (2015),
1–19.

[14] Wenzheng Jiang, Ji Wang, Xiongtao Zhang, Weidong Bao, Cheston Tan, and

Flint Xiaofeng Fan. 2025. FedHPD: Heterogeneous Federated Reinforcement

Learning via Policy Distillation. arXiv preprint arXiv:2502.00870 (2025).
[15] Philip Jordan, Florian Grötschla, Flint Xiaofeng Fan, and RogerWattenhofer. 2024.

Decentralized Federated Policy Gradient with Byzantine Fault-Tolerance and

Provably Fast Convergence. In Proceedings of the 2024 International Conference
on Autonomous Agents and Multiagent Systems.

[16] Hamed Karimi, Julie Nutini, and Mark Schmidt. 2016. Linear convergence of

gradient and proximal-gradient methods under the polyak-łojasiewicz condition.

In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part I
16. Springer, 795–811.

[17] Sajad Khodadadian, Pranay Sharma, Gauri Joshi, and Siva Theja Maguluri. 2022.

Federated Reinforcement Learning: Linear Speedup Under Markovian Sampling.

In Proceedings of the 39th International Conference on Machine Learning (ICML).
[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-

tion. arXiv:1412.6980.
[19] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated

learning: Challenges, methods, and future directions. IEEE signal processing
magazine 37, 3 (2020), 50–60.

[20] Xinyu Li, Zachary C Lipton, and Liu Leqi. 2024. Personalized language modeling

from personalized human feedback. arXiv preprint arXiv:2402.05133 (2024).
[21] Boyi Liu, Lujia Wang, and Ming Liu. 2019. Lifelong federated reinforcement

learning: a learning architecture for navigation in cloud robotic systems. IEEE
Robotics and Automation Letters 4, 4 (2019), 4555–4562.

[22] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng,

and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis.

In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. 142–150.

[23] Hei Yi Mak, Flint Xiaofeng Fan, Luca A Lanzendörfer, Cheston Tan, Wei Tsang

Ooi, and Roger Wattenhofer. 2024. CAESAR: Enhancing Federated RL in Het-

erogeneous MDPs through Convergence-Aware Sampling with Screening. In

Proceedings of the Sixteenth Workshop on Adaptive and Learning Agents.

[24] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics. PMLR, 1273–1282.

[25] OpenAI. 2023. ChatGPT. https://openai.com/blog/chatgpt.

[26] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.

Training language models to follow instructions with human feedback. In Ad-
vances in Neural Information Processing Systems.

[27] Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Mar-

cello Restelli. 2018. Stochastic variance-reduced policy gradient. In International
conference on machine learning. 4026–4035.

[28] Chanwoo Park, Mingyang Liu, Kaiqing Zhang, and Asuman Ozdaglar. 2024.

Principled rlhf from heterogeneous feedback via personalization and preference

aggregation. arXiv preprint arXiv:2405.00254 (2024).
[29] Jing Qiao, Zuyuan Zhang, Sheng Yue, Yuan Yuan, Zhipeng Cai, Xiao Zhang,

Ju Ren, and Dongxiao Yu. 2024. BR-DeFedRL: Byzantine-Robust Decentralized

Federated Reinforcement Learning with Fast Convergence and Communication

Efficiency. In IEEE INFOCOM 2024 - IEEE Conference on Computer Communications.
141–150. https://doi.org/10.1109/INFOCOM52122.2024.10621347

[30] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI
blog 1, 8 (2019), 9.

[31] Shyam Sundhar Ramesh, Yifan Hu, Iason Chaimalas, Viraj Mehta, Pier Giuseppe

Sessa, Haitham Bou Ammar, and Ilija Bogunovic. 2024. Group Robust Preference

Optimization in Reward-free RLHF. arXiv preprint arXiv:2405.20304 (2024).
[32] V Sanh. 2019. DistilBERT, A Distilled Version of BERT: Smaller, Faster, Cheaper

and Lighter. arXiv preprint arXiv:1910.01108 (2019).
[33] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

2015. Trust region policy optimization. In ICML. 1889–1897.
[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[35] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In

Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security. ACM, 1310–1321.

[36] Virginia Smith, Dmitriy Smola, and Ameet Talwalkar. 2017. Federated multi-task

learning. In Advances in Neural Information Processing Systems, Vol. 30.
[37] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel M Ziegler, Ryan Lowe, Chelsea

Voss, Alec Radford, Dario Amodei, and Paul Christiano. 2020. Learning to sum-

marize with human feedback. In NeurIPS, Vol. 33. 3008–3021.
[38] United States Congress. 1996. Health Insurance Portability and Accountability

Act of 1996. https://www.hhs.gov/hipaa/index.html.

[39] Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan

Thrush, Nathan Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec.

2020. TRL: Transformer Reinforcement Learning.

[40] Han Wang, Sihong He, Zhili Zhang, Fei Miao, and James Anderson. 2024. Mo-

mentum for the Win: Collaborative Federated Reinforcement Learning across

Heterogeneous Environments. arXiv preprint arXiv:2405.19499 (2024).
[41] Xiaofei Wang, Chenyang Wang, Xiuhua Li, Victor CM Leung, and Tarik Taleb.

2020. Federated deep reinforcement learning for Internet of Things with decen-

tralized cooperative edge caching. IEEE IoT-J 7, 10 (2020), 9441–9455.
[42] Christopher John Cornish Hellaby Watkins. 1989. Learning from delayed rewards.

PhD thesis, University of Cambridge England.

[43] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.

[44] Jiin Woo, Gauri Joshi, and Yuejie Chi. 2023. The Blessing of Heterogeneity in

Federated Q-Learning: Linear Speedup and Beyond. In Proceedings of the 40th
International Conference on Machine Learning.

[45] Jiin Woo, Laixi Shi, Gauri Joshi, and Yuejie Chi. 2024. Federated offline rein-

forcement learning: Collaborative single-policy coverage suffices. arXiv preprint
arXiv:2402.05876 (2024).

[46] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. 2018.

Byzantine-robust distributed learning: Towards optimal statistical rates.
arXiv:1803.01498.

[47] Shuai Yu, Xu Chen, Zhi Zhou, Xiaowen Gong, and Di Wu. 2020. When deep

reinforcement learning meets federated learning: Intelligent multi-timescale

resource management for multi-access edge computing in 5G ultra dense network.

IEEE Internet of Things Journal (2020).
[48] Rui Yuan, Robert M Gower, and Alessandro Lazaric. 2022. A general sample

complexity analysis of vanilla policy gradient. In International Conference on
Artificial Intelligence and Statistics. PMLR, 3332–3380.

[49] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, and

Dario Amodei. 2019. Fine-Tuning Language Models from Human Preferences.

arXiv preprint arXiv:1909.08593 (2019).
[50] James Zou, Yu Lu, Balakrishnan Narayanaswamy, and Devi Parikh Agarwal. 2019.

Reinforcement learning to optimize long-term user engagement in recommender

systems. In Proceedings of the 25th ACM SIGKDD KDD. 2810–2818.

Research Paper Track  AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA 

721

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://arxiv.org/abs/2412.15538
https://openai.com/blog/chatgpt
https://doi.org/10.1109/INFOCOM52122.2024.10621347
https://www.hhs.gov/hipaa/index.html



