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ABSTRACT
Translation-based modal theorem proving has been studied for

decades. By reducing modal formulae to fragments of first-order

logic, methods developed for first-order reasoning can be applied

to modal inference problems. However, the existing translation

approaches are insufficient for modal systems with specific frame

properties, such as transitivity or Euclideanity, since they result in

formulae not in a decidable first-order fragment.

With a revisit of the set-based possible-worlds semantics, we pro-

pose a new translation for multi-agent modal systems of knowledge

and belief, such as 𝐾 (𝐷)45𝑛 and 𝑆5𝑛 . We prove that the resulting

formulae of the translation are in the two-variable guarded frag-

ment. Therefore the decidability of the general satisfiability problem

is preserved and it paves the way for translation-based reasoning

in these modal systems. We also extend our approach to first-order

modal logic and consider a decidable fragment.
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1 INTRODUCTION
Modal logics, particularly epistemic modal logics, extend ordinary

logical systems by introducing modalities for knowledge and belief.

These enable the expression and reasoning about the subjective,

epistemic attitude of agents. Over the past several decades, epis-

temic modal logics have attracted significant attention and have
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been widely applied in various domains, including protocol analy-

sis in distributed systems [16], knowledge-based systems [24] and

epistemic planning [4].

The conventional semantics of modal logic is defined via a set of

possible-worlds and their relations. Such an approach, commonly

known as Kripke semantics, was initially proposed by Hintikka

and Kripke [18, 20]. It was later extended by numerous scholars

(for a detailed overview, see [36]). One of the advantages of Kripke

semantics is that it provides a graphical interpretation for many

characteristics of agent reasoning. It has been shown that normal

modal systems such as K45 for belief and S5 for knowledge can be

precisely captured by Kripke frames satisfying certain relational

properties [7]. Based on Kripke semantics, Ladner [21], Halpern

and Moses [17] proved that the satisfiability problem for modal

logics of knowledge and belief is decidable, yet of a high complexity

especially when multiple agents are involved. Therefore, it is essen-

tial to explore modal inference approaches, which are practically

efficient.

Traditionally, two paradigms in modal reasoning can be distin-

guished. The first is to develop proving techniques directly for

modal logic, such as modal resolution [8, 28, 31] or tableaux cal-

culi [6]. The second is translating the modal formulae into an ordi-

nary system, such as first-order logic. With the second approach,

efficient theorem provers and SAT-solvers developed for classical

logic, such as VAMPIRE[19], Prover9 and MACE4[25], can be ap-

plied for modal reasoning.

The idea of translating modal logic into first-order logic was first

introduced by Fine, van Benthem, and Morgan [11, 26, 35], known

as the standard translation. As shown in [37], this approach can

encode the simplest normal modal logic 𝐾 into the first-order frag-

ment 𝐺𝐹 2, which is the intersection of the guarded fragment 𝐺𝐹

and the two-variables fragment 𝐹𝑂2
[12, 14]. Since𝐺𝐹 2 has an EXP-

TIME complexity upper bound, the translation for 𝐾 is decidability-

preserving.
1
However, for agent-based modal logics with introspec-

tion, i.e. accounts where agents can reflect on their own knowl-

edge and lack of knowledge, the translation is out of the decidable

fragment, mainly because frame properties such as transitivity or

Euclideanity cannot be expressed in 𝐺𝐹 or 𝐹𝑂2
.

To translate modal systems with introspection, many variants of

the standard translation have been studied: Auffray and Enjalbert

1
In fact, it translates into an even more restricted fragment of𝐺𝐹 2

[32, 33].
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proposed a translation into path logic, where a sub-domain of action

is introduced to handle modal operators and their nesting [1]. Non-

nengart combined relational translation with functional translation

[27]. Schmidt and Hustadt associate (sub-)formulae with separate

predicate symbols and propose an axiomatic translation [29, 30],

Demri and de Nivelle studied the translation for regular grammar

logic with converse[9], which can be used to embed somemodal sys-

tems.While some of thementioned approaches including [9, 30] can

preserve decidability, these accounts mostly focus on single-agent

languages. A clear formalism for multi-agent logics of knowledge

and belief, such as 𝐾45𝑛 , 𝑆5𝑛 , cannot be found. Additionally, it is

unclear how these methods can be extended to first-order modal

logics. We notice that all of the existing translation approaches

are based on simulation and axiomatization of Kripke structures,

and the undecidability usually comes from expressing the frame

conditions. It raises the question of whether axiomatizing Kripke

models is the optimal choice to represent modal properties in a

first-order language.

The rest of the paper is organized as follows: In Section 2, a set-based

semantics for propositional modal logic is introduced. We analyze

its properties and compare it with the ordinary Kripke semantics.

Based on explicitly specifying the inclusion relation of the models in

this semantics, we introduce a new translation approach in Section

3. We prove that this approach is decidability-preserving, and the

translation has linear complexity with a small linear scaling factor.

Furthermore, we extend the method to translating first-order modal

formulae and consider a decidable first-order modal fragment.

2 THE LOGIC ML𝑛

We introduce a dialect of modal logic calledML𝑛 . The language

to be expressed is identical to the ordinary modal logic [7]. The

semantics can be considered as a propositional fragment of the

logic proposed in [2, 3].

2.1 Syntax
Let𝐴𝑃 be the set of atomic propositions, which could potentially be

countably infinite. The logic includes the usual Boolean connectives

¬ and ∧. Others like ∨,→,↔ are interpreted as abbreviations.

Let Ag = {1, . . . , 𝑛} denote a finite set of agents. For each 𝑖 ∈ Ag,
an epistemic operator 𝐾𝑖 is used to denote knowledge or belief of

agent 𝑖 . The language of ML𝑛 is defined as follows:

𝜑 := 𝑝 | ¬𝜑 | 𝜑 ∧ 𝜑 |𝐾𝑖𝜑

Where 𝑝 ∈ 𝐴𝑃 and 𝑖 ∈ Ag. We say a formula is objective if it men-

tions no𝐾-operators and a formula is subjective if every proposi-

tion occurs in the scope of a 𝐾-operator. A formula is 𝑖-objective if
every occurrence of 𝐾𝑖 is in the scope of a 𝐾𝑗 where 𝑗 ≠ 𝑖 , and a

formula is 𝑖-subjective if every occurrence of propositions or 𝐾𝑗

for 𝑗 ≠ 𝑖 is in the scope of a 𝐾𝑖 . In addition, we use True := 𝑝 ∨ ¬𝑝
and False := 𝑝 ∧ ¬𝑝 to represent tautologies and falsity.

As Halpern pointed out in [15], the complexity of the modal logic

is affected by the depth of nesting of modal operators. To evaluate

the depth of a formula, we define:

Definition 1 (𝑖-depth). For 𝑖 ∈ Ag, the 𝑖-depth of a formula 𝛼 ,
written as 𝑑𝑒𝑝 [𝛼, 𝑖], is recursively defined as

• 𝑑𝑒𝑝 [𝑝, 𝑖] = 0 for 𝑝 ∈ 𝐴𝑃

• 𝑑𝑒𝑝 [¬𝛼, 𝑖] = 𝑑𝑒𝑝 [𝛼, 𝑖]
• 𝑑𝑒𝑝 [𝛼 ∧ 𝛽, 𝑖] =𝑚𝑎𝑥 (𝑑𝑒𝑝 [𝛼, 𝑖], 𝑑𝑒𝑝 [𝛽, 𝑖])
• 𝑑𝑒𝑝 [𝐾𝑖𝛼, 𝑖] = max{max{𝑑𝑒𝑝 [𝛼, 𝑗] | 𝑗 ≠ 𝑖} + 1, 𝑑𝑒𝑝 [𝛼, 𝑖]}
• 𝑑𝑒𝑝 [𝐾𝑗𝛼, 𝑖] = 0 for 𝑗 ≠ 𝑖

Intuitively, 𝑑𝑒𝑝 [𝛼, 𝑖] stands for the depth of agent 𝑖’s knowledge

in formula 𝛼 . The depth of a formula 𝛼 is defined as the maximal

𝑖-depth, written as 𝑑𝑒𝑝 [𝛼] = max𝑖∈Ag 𝑑𝑒𝑝 [𝛼, 𝑖].

Example 1. Let 𝜑 := ¬𝑝 ∧ ¬𝐾2 (¬𝑝). Suppose that 𝑝 means the
coin is fair. Let 𝛼 := 𝐾1𝜑 , then 𝛼 means that agent 1 knows that the
coin is not fair, and he knows that agent 2 doesn’t know the unfairness.

𝑑𝑒𝑝 [𝛼, 1] = max{𝑑𝑒𝑝 [𝜑, 2] + 1, 𝑑𝑒𝑝 [𝜑, 1]}
= max{1 + 1, 0} = 2

𝑑𝑒𝑝 [𝛼, 2] = 𝑑𝑒𝑝 [𝐾1𝜑, 2] = 0

2.2 Semantics
The logicML𝑛 has a set-based possible-worlds semantics, where

introspection of agents have been embedded. It was first used by

Levesque as the semantics for 𝐾45 [22]. In Levesque’s design, a

model consists of a distinguished state that describes what is "true"

in the real world and a set of states that the agent thinks possible.

Levesque’s model was further developed as the semantics to for-

malize the notion of "only-knowing" [23, 24]. Belle and Lakemeyer

extended the semantics to multi-agent cases by defining a nested

set structure [2, 3] and we adopt similar structures in our semantics.

By a world we mean a set of atomic propositions considered as true,

i.e.𝑤 ⊆ 𝐴𝑃 . Let W be the set of all possible-worlds. For 𝑘 ≥ 0, we

inductively define the epistemic states (also written as states for

short) and structures as follows:

• E0 = {{∅}};
• S𝑘+1 = {(𝑤, 𝑒1, . . . , 𝑒𝑛−1) |𝑤 ∈ W, 𝑒 𝑗 ∈ E𝑘

for all 𝑗}
• E𝑘+1 = {𝑒𝑘+1 | 𝑒𝑘+1 ⊆ S𝑘+1}

We call 𝑠𝑘 ∈ S𝑘
a𝑘-structure and 𝑒𝑘 ∈ E𝑘

a𝑘-state.We call𝑘 the

depth of 𝑠𝑘 and 𝑒𝑘 . Intuitively, a structure consists of what an agent

considers as possible about theworld and about other agents’ beliefs.

When the context is clear, we omit the superscript 𝑘 . By a model,

we mean a tuple (𝑤, 𝑒1, . . . 𝑒𝑛) (also written as (𝑤, ®𝑒) for simplicity),

where𝑤 is a possible-world and 𝑒𝑖 is the epistemic state of agent

𝑖 . We use M to denote the set of all models. Note the difference

between a structure and a model: a structure consists of 𝑛 − 1 states

of the same depth, while a model consists of 𝑛 states whose depths

can be different. For state 𝑒 and structure 𝑠 = (𝑤, 𝑒1, . . . , 𝑒𝑛−1), we
use 𝑠 ∪𝑖 𝑒 to denote the model obtained by inserting 𝑒 at the 𝑖-th

position, i.e. (𝑤, 𝑒1, . . . 𝑒𝑖−1, 𝑒, 𝑒𝑖 , . . . 𝑒𝑛−1). The satisfaction relation

is defined as follows:

• (𝑤, ®𝑒) |= 𝑝 iff 𝑝 ∈ 𝑤 ;

• (𝑤, ®𝑒) |= ¬𝛼 iff it is not the case that (𝑤, ®𝑒) |= 𝛼 ;
• (𝑤, ®𝑒) |= 𝛼 ∧ 𝛽 iff (𝑤, ®𝑒) |= 𝛼 and (𝑤, ®𝑒) |= 𝛽 ;
• (𝑤, ®𝑒) |= 𝐾𝑖𝜑 iff for all 𝑠 ∈ 𝑒𝑖 , 𝑠 ∪𝑖 𝑒𝑖 |= 𝜑 .

We say a model and a formula 𝛼 is compatible if, for any 𝑖 ∈ Ag, the
𝑖-depth of 𝛼 is not deeper than the epistemic state of agent 𝑖 . Given

a finite set Σ ⊆ ML𝑛 ,
2 𝛼 ∈ ML𝑛 , we say Σ entails 𝛼 (written as

Σ |= 𝛼) iff for any model (𝑤, ®𝑒) compatible with each formula in

2Σ can also be an infinite set, provided that the depth of formulae is bounded, i.e. it

exists 𝑘 ∈ N s.t. 𝑑𝑒𝑝 [𝜑 ] ≤ 𝑘 for all 𝜑 ∈ Σ.
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𝑒1

({𝑟 }, { }) ({𝑟 }, { })

({𝑟 }, { }) ({𝑝, 𝑞}, { })

{∅}

Figure 1: state 𝑒1 in Example 2, arrows stand for inclusion.

Σ ∪ {𝛼}, if (𝑤, ®𝑒) |= 𝜑 for all 𝜑 ∈ Σ, then (𝑤, ®𝑒) |= 𝛼 . We say 𝛼 is

valid (written as |= 𝛼) iff {} |= 𝛼 . We say a formula 𝛼 is satisfiable
if there is a compatible model (𝑤, ®𝑒) s.t. (𝑤, ®𝑒) |= 𝛼 .
When 𝛼 is objective, we write𝑤 |= 𝛼 instead of (𝑤, ®𝑒) |= 𝛼 . When

𝛼 is 𝑖-subjective, we write 𝑒𝑖 |= 𝛼 . Note that this account cannot
handle unbounded depth of formulae. When Σ is an infinite set of

formulae with unbounded depth, i.e. for any 𝑘 it exists 𝜓 ∈ Σ s.t.

𝑑𝑒𝑝 [𝜓 ] > 𝑘 , then Σ |= 𝛼 is not well-defined.

Example 2. Suppose that Ag = {1, 2}, let 𝑝, 𝑞, 𝑟 ∈ 𝐴𝑃 , 𝑤0 = {𝑟 },
𝑤1 = {𝑝, 𝑞}. We define two states of depth 1 for agent 2:

𝑒2 = {(𝑤0, {∅}), (𝑤1, {∅})} 𝑒 ′
2
= {(𝑤1, {∅})}

and a state of depth 2 for agent 1: 𝑒1 = {(𝑤0, 𝑒2), (𝑤0, 𝑒
′
2
)}. Consider

the formula in Example 1, we have 𝑒1 |= 𝐾1 (¬𝑝 ∧ ¬𝐾2 (¬𝑝)). A
diagram of 𝑒1 is given in the Figure 1.

A model in ML𝑛 cannot assign truth values to all formulae,

mainly because the depth of the model is bounded. For instance, in

the above example the state 𝑒 ′
1
= {(𝑤0, {∅})} can not determine

the truth of formula 𝐾1 (¬𝑝 ∧ ¬𝐾2 (¬𝑝)). We argue that this is

not a problem because for any formula 𝛼 , any model (𝑤, ®𝑒) can be

extended to a deeper one that is compatible with 𝛼 while preserv-

ing the truth value of all compatible formulae. To understand the

relation among models of different depths, we introduce the notion

of regression:

Definition 2 (Regression). The regression of structures and
epistemic states is inductively defined as follows:

• For 𝑠 ∈ S1, i.e. 𝑠 = (𝑤, {∅}, . . . , {∅}), the regression of 𝑠 ,
written as 𝑠 ↓, is ∅;

• For 𝑒 ∈ E𝑘+1, 𝑒 ′ ∈ E𝑘 , we say 𝑒 ′ is the regression of 𝑒 , written
as 𝑒 ′ = 𝑒 ↓, if and only if 𝑒 ′ = {𝑠 ↓ | 𝑠 ∈ 𝑒};

• For 𝑠 ∈ S𝑘+1, 𝑠 ′ ∈ S𝑘 , 𝑠 ′ is the regression of 𝑠 , written as
𝑠 ′ = 𝑠 ↓, if 𝑠 = (𝑤, ®𝑒) and 𝑠 ′ = (𝑤, ®𝑒 ′) where 𝑒 ′

𝑗
= 𝑒 𝑗 ↓.

As shown in the following lemma, regression preserves the truth

values of compatible formulae.

Lemma 1. For 𝑖 ∈ Ag, ®𝑒 and ®𝑒 ′ s.t. 𝑒 ′
𝑖
= 𝑒𝑖 ↓ and 𝑒 𝑗 = 𝑒 ′𝑗 for any

𝑗 ≠ 𝑖 . For any𝑤 ∈ W and 𝛼 compatible with ®𝑒 ′ and ®𝑒 ,

(𝑤, ®𝑒) |= 𝛼 iff (𝑤, ®𝑒 ′) |= 𝛼

A proof is given in Lem. 8 of [3].

2.3 Comparison with Kripke Semantics
We briefly recap Kripke semantics to compare with ours. See [16,

17, 21] for more details on Kripke semantics.

Definition 3 (Kripke structure). A Kripke structure for a set
of agents Ag is a tuple 𝑀 = (Ω, 𝑅1, . . . , 𝑅𝑛, 𝜋), where Ω is a set of
Kripke worlds.3 For 𝑖 ∈ Ag, 𝑅𝑖 is a binary relation on the worlds in
Ω. 𝜋 assigns each ω ∈ Ω a set of propositions considered to be true
under ω, i.e. 𝜋 (ω) ⊆ 𝐴𝑃 .

Given a Kripke model𝑀 and a world ω ∈ Ω,

• (𝑀,ω) |= 𝑝 iff 𝑝 ∈ 𝜋 (ω);
• (𝑀,ω) |= ¬𝛼 iff it is not the case that (𝑀,ω) |= 𝛼 ;
• (𝑀,ω) |= 𝛼 ∧ 𝛽 iff (𝑀,ω) |= 𝛼 and (𝑀,ω) |= 𝛽 ;
• (𝑀,ω) |= 𝐾𝑖𝛼 iff (𝑀,ω′) |= 𝛼 for all ω′

s.t. ω𝑅𝑖ω
′
.

The relation between frame conditions and the axiom systems of

different modal logics are investigated in [7, 20], for example. We

only introduce some conditions related to our account:

• Transitivity: If ω𝑅𝑖ω′
and ω′𝑅𝑖ω′′

, then ω𝑅𝑖ω
′′
.

• Euclideanity: Ifω𝑅𝑖ω′
and ω𝑅𝑖ω

′′
, then ω′𝑅𝑖ω′′

.

Theorem 1 (Halpern [17]). A Kripke structure𝑀 is a model of
𝐾45𝑛 iff all relations 𝑅𝑖 are Euclidean and transitive.

Intuitively, 𝐾45𝑛 axiom system requires both positive and negative
introspection. Namely, for any 𝛼 and agent 𝑖 ∈ Ag,

• |= 𝐾𝑖𝛼 → 𝐾𝑖𝐾𝑖𝛼

• |= ¬𝐾𝑖𝛼 → 𝐾𝑖¬𝐾𝑖𝛼

Given aML𝑛 model (𝑤, ®𝑒), we show that it amounts to a tree-like

exploration of a Kripke model up to a finite depth. Therefore it does

not utilize the global transitivity or Euclideanity of all worlds. This

is part of the reason why the translation can avoid axioms on frame

conditions. For Kripke model 𝑀 = (Ω, 𝑅1, . . . , 𝑅𝑛, 𝜋), we define a
set of mappings from Ω to structures and models in ML𝑛 :

Definition 4. Given𝑀 = (Ω, 𝑅1, . . . , 𝑅𝑛, 𝜋), 𝜎 ∈ Ag∗,ω ∈ Ω,

• For |𝜎 | = 𝑘 , 𝜙 (𝜎 ·𝑖)
𝑀,𝑘

(ω) = ∅;
• For |𝜎 | < 𝑘 , 𝜙 (𝜎 ·𝑖)

𝑀,𝑘
(ω) = (𝑤, 𝑒1, . . . , 𝑒𝑖−1, 𝑒𝑖+1, . . . , 𝑒𝑛), where

𝑤 = 𝜋 (ω), 𝑒 𝑗 = {𝜙 (𝜎 ·𝑖 · 𝑗)
𝑀,𝑘

(ω′) | for any ω′ s.t. ω𝑅 𝑗ω′};
• Φ𝑀,𝑘 (ω) = (𝜋 (ω), ®𝑒), where 𝑒𝑖 = {𝜙 (𝑖)

𝑀,𝑘
(ω′) |ω𝑅𝑖ω′}.

When the context is clear, we fix the Kripke model and omit𝑀

for short. Here 𝜎 is a finite word which uses Ag as the alphabet.4

We use 𝑠𝑡𝑎𝑟𝑡 (𝜎) and 𝑒𝑛𝑑 (𝜎) to denote the first and the last letter

in 𝜎 . The length of 𝜎 is denoted as |𝜎 |. For any 𝜎 , e.g. 𝜎 = 1 · 2, the
mapping 𝜙

(𝜎)
𝑘

(ω) returns a structure, which agent 1 believes that

agent 2 considers as possible. Clearly, the mappings are defined

recursively from longer words to their prefix.

Lemma 2. For any ω ∈ Ω, 𝑘 ∈ N and 𝜎 ∈ Ag+,

• For any 𝑗 ≠ 𝑠𝑡𝑎𝑟𝑡 (𝜎), 𝜙 (𝜎)
𝑘

(ω) = 𝜙 ( 𝑗 ·𝜎)
𝑘+1 (ω)

• 𝜙 (𝜎)
𝑘+1 (ω) ↓= 𝜙 (𝜎)

𝑘
(ω)

3
Note the difference between Kripke’s worlds and Levesque’s. To avoid confusion, we

use the Latin letter 𝑤 for Levesque’s world and the Greek letterω for Kripke’s.

4
We only consider 𝜎 , where the adjacent letters are distinct i.e. 𝜎 ∉ (Ag∗ · 𝑖 · 𝑖 · Ag∗)
for any 𝑖 ∈ Ag.
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Proof. When 𝑘 − |𝜎 | = 0, the proof is trivial. Suppose that the

lemma holds for any 𝑘 ′ and |𝜎 ′ | s.t. 𝑘 ′ − |𝜎 ′ | < 𝑚. For 𝑘, 𝜎 s.t.

𝑘 − |𝜎 | =𝑚, let 𝜙
(𝜎)
𝑘

(ω) = (𝑤, 𝑒1, . . . , 𝑒𝑖−1, 𝑒𝑖+1, . . . , 𝑒𝑛), then for all

𝑙 ≠ 𝑒𝑛𝑑 (𝜎), by the induction hypothesis we have

𝑒𝑙 = {𝜙 (𝜎 ·𝑙)
𝑘

(ω′) |ω𝑅𝑙ω′} = {𝜙 ( 𝑗 ·𝜎 ·𝑙)
𝑘+1 (ω′) |ω𝑅𝑙ω′}

𝑒𝑙 = {𝜙 (𝜎 ·𝑙)
𝑘

(ω′) |ω𝑅𝑙ω′} = {𝜙 (𝜎 ·𝑙)
𝑘+1 (ω′) ↓ |ω𝑅𝑙ω′}

Thus 𝜙
(𝜎)
𝑘

(ω) = 𝜙 ( 𝑗 ·𝜎)
𝑘+1 (ω) and 𝜙 (𝜎)

𝑘+1 (ω) ↓= 𝜙 (𝜎)
𝑘

(ω). □

With the above mappings, we show the bi-simulation between

Kripke models and ML𝑛 models up to any finite depth.

Lemma 3. For any 𝐾45𝑛 Kripke model𝑀 , ω ∈ Ω and 𝑘 ∈ N+, let
Φ𝑘 (ω) = (𝑤, ®𝑒). For any formula 𝛼 s.t. 𝑑𝑒𝑝 [𝛼] ≤ 𝑘 ,

(𝑀,ω) |= 𝛼 iff (𝑤, ®𝑒) |= 𝛼 (1)

Proof. We prove it via induction on the structure of 𝛼 .

• Base case: Given 𝛼 := 𝑝 for 𝑝 ∈ 𝐴𝑃 , then for any 𝑘

(𝑀,ω) |= 𝑝 ⇐⇒𝑝 ∈ 𝜋 (ω) (Kripke semantics)

⇐⇒𝑝 ∈ 𝑤 for (𝑤, ®𝑒) = Φ𝑘 (ω) (Def. Φ𝑘 )

⇐⇒𝑤, ®𝑒 |= 𝑝 (ML𝑛 semantics)

• Induction on ∧ and ¬ is straightforward.

• Induction on 𝐾𝑖 : suppose that Eq. 1 holds for all ω and 𝑘 .

Let (𝑤, ®𝑒) = Φ𝑘+1 (ω),
(𝑀,ω) |= 𝐾𝑖𝛼

⇐⇒(𝑀,ω′) |= 𝛼 for all ω′
s.t. ω𝑅𝑖ω

′
(Kripke semantics)

⇐⇒𝑤 ′, ®𝑒 ′ |= 𝛼 for all ω′
s.t. ω𝑅𝑖ω

′,Φ𝑘 (ω′) = (𝑤 ′, ®𝑒 ′) (I.H.)

⇐⇒ for all 𝑠 ∈ 𝑒𝑖 , 𝑠 ∪𝑖 𝑒 ′𝑖 |= 𝛼 (#)

⇐⇒ for all 𝑠 ∈ 𝑒𝑖 , 𝑠 ∪𝑖 𝑒𝑖 |= 𝛼 (𝑒 ′
𝑖
= 𝑒𝑖 ↓, Lem.1)

⇐⇒(𝑤, ®𝑒) |= 𝐾𝑖𝛼 (ML𝑛 semantics)

To explain step (#): consider (𝑤 ′, ®𝑒 ′) = Φ𝑘 (ω′) of a fixed ω′
s.t.

ω𝑅𝑖ω
′
. By definition, 𝑒 ′

𝑖
= {𝜙 (𝑖)

𝑘
(ω′′) |ω′𝑅𝑖ω′′}. Since 𝑅𝑖 is tran-

sitive and Euclidean, for any ω̃, 𝜙
(𝑖)
𝑘+1 (ω̃) ∈ 𝑒𝑖 iff 𝜙

(𝑖)
𝑘

(ω̃) ∈ 𝑒 ′
𝑖
.

Thus 𝑒 ′
𝑖
is the regression of 𝑒𝑖 , i.e. 𝑒𝑖 ↓= 𝑒 ′𝑖 .

For 𝑗 ≠ 𝑖 , by Lem. 2 we have 𝑒 ′
𝑗
= {𝜙 (𝑖 · 𝑗)

𝑘+1 (ω′′) |ω′𝑅 𝑗ω′′}. Thus
(𝑤 ′, 𝑒 ′

1
, . . . , 𝑒 ′

𝑖−1, 𝑒
′
𝑖+1, . . . 𝑒

′
𝑛) = 𝜙

(𝑖)
𝑘+1 (ω

′) and by definition of 𝑒𝑖 , we

have 𝜙
(𝑖)
𝑘+1 (ω

′) ∈ 𝑒𝑖 . Conversely, for each 𝑠 ∈ 𝑒𝑖 , 𝑠 = 𝜙 (𝑖))
𝑘+1 (ω

′) with
some ω′

s.t. ω𝑅𝑖ω
′
. By Lem.2, 𝑠 ∪𝑖 𝑒 ′𝑖 = Φ𝑘 (ω′). □

2.4 Properties of the Logic
ML𝑛 precisely captures the 𝐾45𝑛 properties in the sense that

𝐾45𝑛 modal system forms a sound and complete axiomatization

for ML𝑛 . The soundness is implied by the following theorem:

Theorem 2. For any 𝛼, 𝛽 ∈ ML𝑛 and 𝑖 ∈ Ag,
• (Prop) If 𝛼 is a propositional tautology, then |= 𝛼
• (MP) If |= 𝛼 and |= 𝛼 → 𝛽 then |= 𝛽
• (Dist) |= (𝐾𝑖𝛼 ∧𝐾𝑖 (𝛼 → 𝛽)) → 𝐾𝑖𝛽

• (Nec) If |= 𝛼 then |= 𝐾𝑖𝛼

• (4) |= 𝐾𝑖𝛼 → 𝐾𝑖𝐾𝑖𝛼

• (5) |= ¬𝐾𝑖𝛼 → 𝐾𝑖¬𝐾𝑖𝛼

Proving the completeness is equivalent to proving that every

𝐾45𝑛-consistent formula is ML𝑛-satisfiable. By [17] every 𝐾45𝑛-

consistent formula 𝛼 is satisfiable in some Kripke structure with

transitive, Euclidean relations. Then by Lem. 3 we prove that 𝛼 is

ML𝑛-satisfiable. With the soundness and completeness, we have

the following result:

Theorem 3. 𝛼 is 𝐾45𝑛-consistent iff 𝛼 is ML𝑛-satisfiable .

2.5 Adaptation for Other Modal Systems
In Kripke’s semantics, the consistency of belief and the truthfulness

of knowledge can be interpreted as the seriality and the reflexivity

of the accessible relations. We show that in our set-based semantics,

they amount to considering a subset of ML𝑛 models.

The consistency of beliefs, also known as the 𝐷-property, requires

that for any 𝑖 ∈ Ag and formula 𝛼 in the language,

|= 𝐾𝑖𝛼 → ¬𝐾𝑖¬𝛼
It can be achieved by ruling out models with empty (sub-)structures.

Definition 5 (D-state). The set of D-states is defined as follows:
• If 𝑒 ∈ E1, then 𝑒 is a D-state iff 𝑒 ≠ {}.
• If 𝑒 ∈ E𝑘 , where 𝑘 > 1, then 𝑒 is a D-state iff 𝑒 ≠ {} and for all
(𝑤 ′, 𝑒 ′

1
, . . . , 𝑒 ′

𝑖−1, 𝑒
′
𝑖+1, . . . , 𝑒

′
𝑛−1) ∈ 𝑒 and 𝑗 ≠ 𝑖 , 𝑒

′
𝑗
is a D-state.

We call (𝑤, ®𝑒) a D-model if for all 𝑖 ∈ Ag, 𝑒𝑖 is a D-state. We say

a formula 𝛼 isML𝐷
𝑛 -satisfiable iff 𝛼 is satisfied in some D-models.

The truthfulness of knowledge requires that for 𝑖 ∈ Ag and 𝛼 ,

|= 𝐾𝑖𝛼 → 𝛼

The truthfulness of knowledge requires that the actual world is

always considered possible and the actual epistemic state of an

agent is always considered possible by any other agents. We say

a model (𝑤, ®𝑒) is homogeneous if all 𝑒𝑖 are of the same depth, i.e.

there is a 𝑘 s.t. 𝑒𝑖 ∈ E𝑘
for all 𝑖 ∈ Ag.

Definition 6. A T-model is a homogeneous model (𝑤, ®𝑒) s.t.
• 𝑒𝑖 = {∅} for all 𝑖 ∈ Ag, or
• F.a. 𝑖 ∈ Ag, 𝑠 ∈ 𝑒𝑖 , 𝑠 ∪𝑖 (𝑒𝑖 ↓) is a T-model and
(𝑤, 𝑒1 ↓, . . . , 𝑒𝑖−1 ↓, 𝑒𝑖+1 ↓, . . . , 𝑒𝑛 ↓) ∈ 𝑒𝑖

We say 𝛼 is ML𝑇
𝑛 -satisfiable iff 𝛼 is satisfied in some T-models.

Theorem 4. For any 𝛼 ∈ ML𝑛 ,
• 𝛼 is 𝐾𝐷45𝑛-consistent iff 𝛼 isML𝐷

𝑛 -satisfiable;
• 𝛼 is 𝑆5𝑛-consistent iff 𝛼 isML𝑇

𝑛 -satisfiable.

The proof is analogous to Thm. 3. Soundness is proved by the

validity of axioms (similar to Thm. 2) and completeness is proved

by constructing a D-model (T-model) given a Kripke frame and the

formula to be satisfied (similar to Lem. 3).

3 TRANSLATION
In this section, we propose a new approach to translate modal

formulae into first-order ones. The translation is mainly based on

explicitly specifying the inclusion relation ofML𝑛 structures. The

form is similar to the standard translation, yet some essential differ-

ences exist: Binary predicates of the form 𝐸𝜎 are used to represent

the inclusion relation instead of the accessibility of Kripke states.
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For 𝜎 ∈ Ag∗ s.t. 𝑒𝑛𝑑 (𝜎) = 𝑖 , 𝐸𝜎 (𝑢, 𝑣) means that the epistemic state

at the 𝑖-th position of structure 𝑣 contains structure 𝑢. We prove

that such a translation preserves satisfiability, without explicitly ex-

pressing the frame conditions as the standard translation does. For

any ML𝑛 formula, the translation results in a first-order formula

in the 𝐺𝐹 2 fragment.

3.1 Translation Function
We define a recursive translation function R[𝛼, 𝜎,𝑢, 𝑣]. Here 𝛼 is

the ML𝑛 formula to be translated, 𝜎 ∈ Ag∗ is a finite word, 𝑢, 𝑣
are variables used for the translation.

Definition 7 (translation function). Given 𝜎 ∈ Ag∗,
(1) For 𝑝 ∈ 𝐴𝑃 , R[𝑝, 𝜎,𝑢, 𝑣] := 𝑃 (𝑢)
(2) R[¬𝛼, 𝜎,𝑢, 𝑣] := ¬R[𝛼, 𝜎,𝑢, 𝑣]
(3) For ⊙ ∈ {∧,∨,→,↔},

R[𝛼1 ⊙ 𝛼2, 𝜎,𝑢, 𝑣] := R[𝛼1, 𝜎,𝑢, 𝑣] ⊙ R[𝛼2, 𝜎,𝑢, 𝑣]
(4) If 𝑒𝑛𝑑 (𝜎) = 𝑖 ,

R[𝐾𝑖𝛼, 𝜎,𝑢, 𝑣] := ∀𝑢 𝐸𝜎 (𝑢, 𝑣) → (R[𝛼, 𝜎,𝑢, 𝑣])
(5) If 𝑒𝑛𝑑 (𝜎) ≠ 𝑖 ,

R[𝐾𝑖𝛼, 𝜎,𝑢, 𝑣] := ∀𝑣 𝐸𝜎 ·𝑖 (𝑣,𝑢) → (R[𝛼, 𝜎 · 𝑖, 𝑣,𝑢])

Where 𝑃 is a unary predicate associated with proposition 𝑝 .

Example 3. Let 𝛼 := 𝐾1 (¬𝑝 ∧¬𝐾2 (¬𝑝)) The translation of 𝛼 is

R[𝛼, 𝜖,𝑢, 𝑣]
=R[𝐾1 (¬𝑝 ∧ ¬𝐾2 (¬𝑝)), 𝜖,𝑢, 𝑣]
=∀𝑣 𝐸1 (𝑣,𝑢) → R[¬𝑝 ∧ ¬𝐾2 (¬𝑝), 1, 𝑣,𝑢]
=∀𝑣 𝐸1 (𝑣,𝑢) → (¬𝑃 (𝑣) ∧ ¬∀𝑢 (𝐸1·2 (𝑢, 𝑣) → R[¬𝑝, 1 · 2, 𝑢, 𝑣]))
=∀𝑣 𝐸1 (𝑣,𝑢) → (¬𝑃 (𝑣) ∧ ¬∀𝑢 (𝐸1·2 (𝑢, 𝑣) → ¬𝑃 (𝑢))

For 𝐾𝐷45𝑛 system, we define function R𝐷 which is identical to

R except for items (4) and (5):

(4’) If 𝑒𝑛𝑑 (𝜎) = 𝑖 , R𝐷 [𝐾𝑖𝛼, 𝜎,𝑢, 𝑣] :=
(∀𝑢 𝐸𝜎 (𝑢, 𝑣) → (R𝐷 [𝛼, 𝜎,𝑢, 𝑣])) ∧ ∃𝑢 𝐸𝜎 (𝑢, 𝑣)

(5’) If 𝑒𝑛𝑑 (𝜎) ≠ 𝑖 , R𝐷 [𝐾𝑖𝛼, 𝜎,𝑢, 𝑣] :=
(∀𝑣 𝐸𝜎 ·𝑖 (𝑣,𝑢) → (R𝐷 [𝛼, 𝜎 · 𝑖, 𝑣,𝑢])) ∧ ∃𝑣 𝐸𝜎 ·𝑖 (𝑣,𝑢)

For 𝑆5𝑛 , we define R𝑇 which also differs only on (4) and (5):

(4”) If 𝑒𝑛𝑑 (𝜎) = 𝑖 , R𝑇 [𝐾𝑖𝛼, 𝜎,𝑢, 𝑣] :=
(∀𝑢 𝐸𝜎 (𝑢, 𝑣) → (R𝐷 [𝛼, 𝜎,𝑢, 𝑣])) ∧ 𝐸𝜎 (𝑣, 𝑣)

(5”) If 𝑒𝑛𝑑 (𝜎) ≠ 𝑖 , R𝐷 [𝐾𝑖𝛼, 𝜎,𝑢, 𝑣] :=
(∀𝑣 𝐸𝜎 ·𝑖 (𝑣,𝑢) → (R𝐷 [𝛼, 𝜎 · 𝑖, 𝑣,𝑢])) ∧ 𝐸𝜎 ·𝑖 (𝑢,𝑢)

3.2 Construction of Canonical FOL Model
To prove that ML𝑛 can be embedded into FOL, we construct a

canonical FOL model as follows:

Definition 8. We define𝑀𝑐 = ⟨D𝑐 , 𝐼 ⟩ as follows:
C1 Domain of discourse D𝑐 is the set of ML𝑛 modelsM.
C2 For 𝑃 ∈ 𝐴𝑃 and (𝑤, ®𝑒) ∈ D𝑐 , (𝑤, ®𝑒) ∈ 𝑃𝑀𝑐

iff 𝑃 ∈ 𝑤
C3 For ω,ω′ ∈ D𝑐 , 𝜎 ∈ Ag+ s.t. 𝑒𝑛𝑑 (𝜎) = 𝑖 . (ω′,ω) ∈ 𝐸𝑀𝑐

𝜎 iff
ω = (𝑤, ®𝑒) and ω′ = 𝑠 ∪𝑖 𝑒𝑖 for some 𝑠 ∈ 𝑒𝑖

Since C1-C3 specifies different aspects of themodel, the existence

of the canonical model is obvious. For each satisfiable formula in

ML𝑛 , we show the satisfiability of the resulting formula.

Theorem 5. For any compatible model (𝑤, ®𝑒) and sentence 𝛼 ,

(1) 𝑤, ®𝑒 |= 𝛼 iff𝑀𝑐 , 𝜇 |=𝐹𝑂 R[𝛼, 𝜖,𝑢, 𝑣] for 𝜇 (𝑢) = (𝑤, ®𝑒).
(2) If (𝑤 ′, ®𝑒 ′) exists s.t. (𝑤, ®𝑒) = 𝑠 ∪𝑖 𝑒 ′𝑖 for some 𝑠 ∈ 𝑒𝑖 , then

𝑤, ®𝑒 |= 𝛼 iff𝑀𝑐 , 𝜇 |=𝐹𝑂 R[𝛼, 𝜎 · 𝑖, 𝑢, 𝑣]

Where 𝜇 (𝑢) = (𝑤, ®𝑒) and 𝜇 (𝑣) = (𝑤 ′, ®𝑒 ′).

Proof. We prove this via induction on the formula structure.

As for the base case, let 𝑝 ∈ 𝐴𝑃 , 𝜎 ∈ Ag∗

𝑤, ®𝑒 |= 𝑝 ⇐⇒𝑝 ∈ 𝑤 (ML𝑛 semantics)

⇐⇒𝜇 (𝑢) ∈ 𝑃𝑀
𝑐

(C2)

⇐⇒𝑀𝑐 , 𝜇 |= 𝑃 (𝑢) (FOL semantics)

⇐⇒𝑀𝑐 , 𝜇 |= R[𝑝, 𝜎,𝑢, 𝑣] (Def. R[·])

The induction on ¬,∧ is straightforward. For induction on the

𝐾𝑖 -operator where 𝑒𝑛𝑑 (𝜎) ≠ 𝑖 , as hypothesis we assume that for

any (𝑤, ®𝑒), 𝑠 ∈ 𝑒𝑖 ,

𝑠 ∪𝑖 𝑒𝑖 |= 𝛼 iff𝑀𝑐 , 𝜇 ′ |= R[𝛼, 𝜎 · 𝑖, 𝑢 ′, 𝑢] (2)

Where 𝜇 ′(𝑢 ′) = (𝑠 ∪𝑖 𝑒𝑖 ), 𝜇 ′(𝑢) = (𝑤, ®𝑒), then

𝑤, ®𝑒 |= 𝐾𝑖𝛼

⇐⇒for all 𝑠 ′ ∈ 𝑒𝑖 , 𝑠 ′ ∪𝑖 𝑒𝑖 |= 𝛼 (ML𝑛 semantics)

⇐⇒for all 𝑠 ′ ∈ 𝑒𝑖 and 𝜇 ′ s.t. 𝜇 ′(𝑢 ′) = (𝑠 ′ ∪𝑖 𝑒𝑖 ),
𝜇 ′(𝑢) = (𝑤, ®𝑒), 𝑀𝑐 , 𝜇 ′ |= R[𝛼, 𝜎 · 𝑖, 𝑢 ′, 𝑢] ( I.H.)

⇐⇒for all 𝜇 ′ s.t. 𝜇 ′(𝑢) = (𝑤, ®𝑒) and𝑀𝑐 , 𝜇 ′ |= 𝐸𝜎 ·𝑖 (𝑢 ′, 𝑢),
𝑀𝑐 , 𝜇 ′ |= R[𝛼, 𝜎 · 𝑖, 𝑢 ′, 𝑢] ( cond. C3)

⇐⇒𝑀𝑐 , 𝜇 |= ∀𝑢 ′𝐸𝜎 ·𝑖 (𝑢 ′, 𝑢) → R[𝛼, 𝜎 · 𝑖, 𝑢 ′, 𝑢] (FOL semantics)

⇐⇒𝑀𝑐 , 𝜇 |= R[𝐾𝑖𝛼, 𝜎,𝑢, 𝑣] (Def. R[·])

Considering the case 𝜎 = 𝜖 , then it is proved that for 𝜇 (𝑢) = (𝑤, ®𝑒),

(𝑤, ®𝑒) |= 𝐾𝑖𝛼 iff𝑀𝑐 , 𝜇 |= R[𝐾𝑖𝛼, 𝜖,𝑢, 𝑣], (3)

which is part (1) of the theorem. To complete the induction on 𝐾𝑖

for part (2), it remains to prove that for any 𝜎 ∈ Ag∗,

𝑤, ®𝑒 |= 𝐾𝑖𝛼 iff𝑀𝑐 , 𝜇 |=𝐹𝑂 R[𝐾𝑖𝛼, 𝜎 · 𝑖, 𝑢, 𝑣] (4)

𝑀𝑐 , 𝜇 |= R[𝐾𝑖𝛼, 𝜎 · 𝑖, 𝑢, 𝑣]
⇐⇒𝑀𝑐 , 𝜇 |= ∀𝑢 ′.𝐸𝜎 ·𝑖 (𝑢 ′, 𝑣) → R[𝛼, 𝜎 · 𝑖, 𝑢 ′, 𝑣] (Def. R[·])
⇐⇒𝑀𝑐 , 𝜇 ′ |= 𝐸𝜎 ·𝑖 (𝑢 ′, 𝑣) → R[𝛼, 𝜎 · 𝑖, 𝑢 ′, 𝑣] for all 𝜇 ′ ∼𝑢′ 𝜇

(FOL semantics)

⇐⇒ for all 𝜇 ′ ∼𝑢′ 𝜇,𝑀𝑐 , 𝜇 ′ |= 𝐸𝜎 ·𝑖 (𝑢 ′, 𝑣) ⇒ 𝑀𝑐 , 𝜇 ′ |= R[𝛼, 𝜎 · 𝑖, 𝑢 ′, 𝑣]
⇐⇒ for all 𝜇 ′ ∼𝑢′ 𝜇, if 𝜇 ′(𝑢 ′) = (𝑠 ∪𝑖 𝑒𝑖 ) for some 𝑠 ∈ 𝑒𝑖

then𝑀𝑐 , 𝜇 ′ |= R[𝛼, 𝜎 · 𝑖, 𝑢 ′, 𝑣] (cond. C3, 𝑒 ′
𝑖
= 𝑒𝑖 )

⇐⇒ for all 𝜇 ′ ∼𝑢′ 𝜇, if 𝜇 ′(𝑢 ′) = (𝑠 ∪𝑖 𝑒𝑖 ) for some 𝑠 ∈ 𝑒𝑖
then 𝑠 ∪𝑖 𝑒𝑖 |= 𝛼 (I.H case 2)

Since for all 𝑠 ∈ 𝑒𝑖 , 𝜇 ′ exists s.t. 𝜇 ′ ∼𝑢′ 𝜇 and 𝜇 ′(𝑢 ′) = 𝑠 ∪𝑖 𝑒𝑖
⇐⇒(𝑠 ∪𝑖 𝑒𝑖 ) |= 𝛼 for all 𝑠 ∈ 𝑒𝑖
⇐⇒𝑤, ®𝑒 |= 𝐾𝑖𝛼 (ML𝑛 semantics)

□
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3.3 Preserving Satisfiability and Decidability
Thm. 5 implies that if the original formula isML𝑛-satisfiable, then

the translation is FO-satisfiable. In particular, it is satisfied by the

canonical model𝑀𝑐
. We are also interested in the other direction,

namely, when the translation is satisfied in some model 𝑀 (not

necessarily the canonical one), whether a model for the modal

formula exists. We construct a set of mappings from the domain of

𝑀 to structures and models ofML𝑛 . It is similar to the proof of

Lem. 3: Given a FO model𝑀 , elementω,ω′ ∈ D𝑀
and 𝑘 > 0, we

define mappings to structures 𝜙
(𝜎)
𝑀,𝑘

and mapping to models Φ
(𝜎)
𝑀,𝑘

.

• When |𝜎 | = 𝑘 , 𝜙 (𝜎 ·𝑖)
𝑀,𝑘

(ω) = ∅;
• When |𝜎 | < 𝑘 , 𝜙 (𝜎 ·𝑖)

𝑀,𝑘
= (𝑤, 𝑒1, . . . , 𝑒𝑖−1, 𝑒𝑖+1, . . . , 𝑒𝑛), where

𝑤 = {𝑝 |ω ∈ 𝑃𝑀 }, 𝑒 𝑗 = {𝜙 (𝜎 ·𝑖 · 𝑗)
𝑀,𝑘

(ω′) | (ω′,ω) ∈ 𝐸𝑀
𝜎 ·𝑖 · 𝑗 }.

Given ω,ω′ ∈ D𝑀
, we define Φ

(𝜎)
𝑀,𝑘

(ω,ω′) = (𝑤, ®𝑒) as follows

• 𝑤 = {𝑝 ∈ 𝐴𝑃 |ω ∈ 𝑃𝑀 }
• For any 𝑗 ≠ 𝑒𝑛𝑑 (𝜎), 𝑒 𝑗 = {𝜙 (𝜎 · 𝑗)

𝑀,𝑘
(ω′′) | (ω′′,ω) ∈ 𝐸𝑀

𝜎 · 𝑗 }
• For 𝑖 = 𝑒𝑛𝑑 (𝜎), 𝑒𝑖 = {𝜙 (𝜎)

𝑀,𝑘
(ω′′) | (ω′′,ω′) ∈ 𝐸𝑀𝜎 }

For simplicity, we omit the subscripts 𝑀,𝑘 when the context is

clear. When 𝜎 = 𝜖 , the model is completely determined by ω. By

definition of 𝜙 (𝜎)
and Φ(𝜎)

, we have the following property:

Lemma 4. (ω,ω′) ∈ 𝐸𝑀
𝜎 ·𝑖 if and only if Φ(𝜎 ·𝑖) (ω,ω′) = 𝑠 ∪𝑖 𝑒𝑖

for some 𝑠 ∈ 𝑒𝑖 and 𝑒𝑖 = {𝜙 (𝜎 ·𝑖) (ω′′) | (ω′′,ω′) ∈ 𝐸𝑀
𝜎 ·𝑖 }

As we will show, given that (𝑀, 𝜇) satisfies the translating for-
mulaR[𝛼, 𝜖,𝑢, 𝑣], the original formula will be satisfied by theML𝑛

model (𝑤, ®𝑒) = Φ(𝜖) (𝜇 (𝑢), 𝜇 (𝑣)).

Lemma 5. Given 𝛼 ∈ ML𝑛 and 𝜎 ∈ Ag∗, Then for 𝜇 such that
𝜇 (𝑢) = ω, 𝜇 (𝑣) = ω′,

(1) If (𝑤, ®𝑒) = Φ(𝜖) (ω,ω′), then
𝑀, 𝜇 |= R[𝛼, 𝜖,𝑢, 𝑣] iff (𝑤, ®𝑒) |= 𝛼

(2) If (𝑤, ®𝑒) = Φ(𝜎 ·𝑖) (ω,ω′) and (ω,ω′) ∈ 𝐸𝑀
𝜎 ·𝑖

𝑀, 𝜇 |= R[𝛼, 𝜎 · 𝑖, 𝑢, 𝑣] iff (𝑤, ®𝑒) |= 𝛼

Proof. Since induction proofs with similar spirit are shown

repeatedly, we only give the induction step for 𝐾-operators.

For each 𝑖 ∈ Ag, when 𝑖 ≠ 𝑒𝑛𝑑 (𝜎),
𝑀, 𝜇 |= R[𝐾𝑖𝛼, 𝜎,𝑢, 𝑣]

⇐⇒𝑀, 𝜇 |= ∀𝑣 𝐸𝜎 ·𝑖 (𝑣,𝑢) → R[𝛼, 𝜎 · 𝑖, 𝑣,𝑢] (Def. R[·])

⇐⇒ for all 𝜇 ′ ∼𝑣 𝜇, if (𝜇 ′(𝑣), 𝜇 ′(𝑢)) ∈ 𝐸𝑀𝜎 ·𝑖 then
𝑀, 𝜇 ′ |= R[𝛼, 𝜎 · 𝑖, 𝑣,𝑢] (FOL semantics)

⇐⇒ for all 𝜇 ′ ∼𝑣 𝜇, if (𝜇 ′(𝑣), 𝜇 ′(𝑢)) ∈ 𝐸𝑀𝜎 ·𝑖 then

𝑤 ′, ®𝑒 ′ |= 𝛼 for (𝑤 ′, ®𝑒 ′) = Φ(𝜎 ·𝑖) (𝜇 ′(𝑣), 𝜇 ′(𝑢)) (I.H. case 2)

⇐⇒ for all 𝑠 ∈ 𝑒𝑖 , 𝑠 ∪𝑖 𝑒𝑖 |= 𝛼 ( Lem. 4)

⇐⇒𝑒𝑖 |= 𝐾𝑖𝛼 (ML𝑛 semantics)

⇐⇒𝑤, ®𝑒 |= 𝐾𝑖𝛼

Part (1) is covered when 𝜎 = 𝜖 . Analogously we proof the induction

for the case when 𝑖 = 𝑒𝑛𝑑 (𝜎).
□

We introduce a constant 𝑐 and define T [𝛼] as a sentence replac-
ing every free appearance of 𝑢 in R[𝛼, 𝜖,𝑢, 𝑣] by 𝑐 .

Theorem 6. 𝛼 isML𝑛-satisfiable iff T [𝛼] is FO-satisfiable.

Proof. Suppose that 𝛼 is ML𝑛-satisfiable, by Thm. 5𝑀𝑐
satis-

fies R[𝛼, 𝜖,𝑢, 𝑣] with some 𝜇. By Skolemization, we replace the free

variable 𝑢 with constant 𝑐𝑤 and it results in T [𝛼] (𝑣 never occurs
in R[𝛼, 𝜖,𝑢, 𝑣] as a free variable so it can be ignored). For the other

direction, suppose that T [𝛼] is FO-satisfiable, then R[𝛼, 𝜖,𝑢, 𝑣] is
satisfied in some (𝑀, 𝜇). By Lem. 5, 𝛼 isML𝑛-satisfiable. □

With satisfiability-preservation, the properties of validity checking

and theorem proving can also be derived:

Corollary 1. Given finite Σ and 𝛼 ∈ ML𝑛 ,
• Σ |= 𝛼 iff T [Σ] |= T [𝛼];
• 𝛼 is valid iff T [𝛼] is FO-valid.

We also show that the translationwill convert anyML𝑛 formula

to a decidability-preserving formula in linear time and space.

Theorem 7. For any 𝛼 ∈ ML𝑛 , T [𝛼] can be computed in𝑂 ( |𝛼 |),
T [𝛼] ∈ 𝐺𝐹 2 and the size of T [𝛼] is linear in |𝛼 |.

Proof. Let 𝜑 = T [𝛼], it is obvious that 𝜑 ∈ 𝐹𝑂2
since the

translation only uses variables 𝑢, 𝑣 . By induction on the structure of

𝜑 we prove𝜑 ∈ 𝐺𝐹 . As for the base case,R[𝑃, 𝜎,𝑢, 𝑣] = 𝑃 (𝑢), which
is guarded. Negation or conjunction does not affect the guarded

condition. Quantifiers only occur in translating a (sub-)formula

of form 𝐾𝑖𝛼 . Apparently, the resulting formula has a guard 𝐸𝜎
containing all free variables in the conclusion. Linear complexity in

terms of time and size is straightforward. By Def. 7, the number of

translation steps is linear in |𝛼 |, and for each step, only a constant

number of symbols will be added to the resulting formulae. □

Since the translation results in𝐺𝐹 2, as the straightforward result,

the satisfiability of the resulting formulae is decidable.

Corollary 2. Given 𝛼 ∈ ML𝑛 , the satisfiability of T [𝛼] can be
decided in EXPTIME.

Note that the size of standard translation 𝑆𝑇𝑢 also grows linearly,

our approach T is as succinct as 𝑆𝑇𝑢 . We use the following example

to compare two translations.

Example 4. Let 𝛼 := 𝐾1𝑝∧¬𝐾1𝐾1𝑝 . Apparently, 𝛼 is not𝐾45𝑛-
satisfiable. The standard translation 𝑆𝑇𝑢 [𝛼] is
∀𝑣 (𝑅1 (𝑢, 𝑣) → 𝑃 (𝑣)) ∧ ¬∀𝑣 (𝑅1 (𝑢, 𝑣) → ∀𝑢 (𝑅1 (𝑣,𝑢) → 𝑃 (𝑣)))

The resulting formula is FO-satisfiable. To reason about the 𝐾45𝑛-
properties via the standard translation, for each 𝑖 ∈ Ag the following
axioms need to be added:

∀𝑢∀𝑣∀𝑣 ′(𝑅𝑖 (𝑢, 𝑣) ∧ 𝑅𝑖 (𝑣, 𝑣 ′)) → 𝑅𝑖 (𝑢, 𝑣 ′) (Transitivity)

∀𝑢∀𝑣∀𝑣 ′(𝑅𝑖 (𝑢, 𝑣) ∧ 𝑅𝑖 (𝑢, 𝑣 ′)) → 𝑅𝑖 (𝑣, 𝑣 ′) (Euclideanity)

Apparently, these axioms are not in 𝐹𝑂2 since three variables are
needed, and they are not in 𝐺𝐹 since a guard containing all free vari-
ables does not exist.5 Considering the same formula 𝛼 , our translation
R[𝛼, 𝜖,𝑢, 𝑣] is as follows:
∀𝑣 (𝐸1 (𝑣,𝑢) → 𝑃 (𝑣)) ∧ ¬∀𝑣 (𝐸1 (𝑣,𝑢) → ∀𝑣 (𝐸1 (𝑣,𝑢) → 𝑃 (𝑣)))

5
It can be shown that these axioms are not even in the loosely guarded fragment [34]
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Which preserves the 𝐾45𝑛-(un)satisfiability and no extra axioms are
needed.

Let T𝐷 [𝛼] be the sentence which replaces every free appearance

of 𝑢 in R𝐷 [𝛼, 𝜖,𝑢, 𝑣] by 𝑐 ( and T𝑇 [𝛼] is defined similarly). The

translation for 𝐾𝐷45𝑛/𝑆5𝑛 systems is obtained.

Theorem 8. For any 𝛼 ∈ ML𝑛 ,
• 𝛼 is 𝐾𝐷45𝑛-consistent iff T𝐷 [𝛼] is FO-satisfiable.
• 𝛼 is 𝑆5𝑛-consistent iff T𝑇 [𝛼] is FO-satisfiable.

Theorem 9. For ∗ ∈ {𝑇, 𝐷}, 𝛼 ∈ ML𝑛 , T∗ [𝛼] can be computed
in 𝑂 ( |𝛼 |), |T∗ [𝛼] | ∈ 𝑂 ( |𝛼 |) and T∗ [𝛼] ∈ 𝐺𝐹 2.

4 FIRST-ORDER MODAL LOGIC
Our translation method can be extended to first-order modal logic

(FOML). We lift ML𝑛 to KL𝑛 , which can be considered as the

multi-agent extension of the logic KL [24] and the fragment of

OL𝑛 [3] without mentioning only-knowing or the "knowing at

most" modalities.

4.1 Syntax and Semantics of logic KL𝑛

Compared with ordinary first-order (modal) logic, KL𝑛 contains a

fixed, countably infinite domain of discourseN , where each element

refers to a unique standard name. There is a countably infinite

supply of predicate and functional symbols of every arity. Formally,

we have the following definition:

• By terms of the language we mean the minimal set which

contains all variables, standard names, and expressions of

form 𝑓 (𝑡1, . . . , 𝑡𝑚) where 𝑓 is a functional symbol and each

𝑡 𝑗 itself is a term.

• The well-formed formulae are inductively defined as follows:

– For terms 𝑡 and 𝑡 ′, 𝑡 = 𝑡 ′ is a formula,

– For predicate symbol 𝑃 and terms 𝑡1, . . . , 𝑡𝑚 , 𝑃 (𝑡1, . . . , 𝑡𝑚)
is a formula,

– If 𝛼, 𝛽 are formulae, then¬𝛼, 𝛼∧𝛽,∀𝑥 𝛼,𝐾𝑖𝛼 are formulae.

We say a term is ground if it contains no variables. A ground term

containing only a single function symbol is called primitive. A
formula of form 𝑃 (𝑡1, . . . , 𝑡𝑙 ) is called an atomic formula or simply

an atom. Furthermore, an atom with no variables is called ground
and a ground atom with no function symbols is called primitive.

Similar to ML𝑛 , the semantics of KL𝑛 is also based on 𝑘-

structures, but the worlds in KL𝑛 are defined as assignments of

primitive terms to the co-referring standard names and primitive

atoms to {0, 1}. For any ground term 𝑡 , the value of 𝑡 at world 𝑤 ,

written as |𝑡 |𝑤 , is defined as follows:

• If 𝑡 is a standard name, then |𝑡 |𝑤 = 𝑡 ;

• For function 𝑓 , |𝑓 (𝑡1, . . . , 𝑡𝑚) |𝑤 = 𝑤 [𝑓 ( |𝑡1 |𝑤 , . . . , |𝑡𝑚 |𝑤)].
The satisfaction relation is defined as follows:

• (𝑤, ®𝑒) |= 𝑃 (𝑡1, . . . , 𝑡𝑚) iff𝑤 [𝑃 ( |𝑡1 |𝑤 , . . . , |𝑡𝑚 |𝑤)] = 1;

• (𝑤, ®𝑒) |= (𝑡1 = 𝑡2) iff |𝑡1 |𝑤 is the same name as |𝑡2 |𝑤 ;
• (𝑤, ®𝑒) |= ¬𝛼 iff it is not the case that (𝑤, ®𝑒) |= 𝛼
• (𝑤, ®𝑒) |= 𝛼 ∧ 𝛽 iff (𝑤, ®𝑒) |= 𝛼 and (𝑤, ®𝑒) |= 𝛽
• (𝑤, ®𝑒) |= ∀𝑥 𝛼 iff (𝑤, ®𝑒) |= 𝛼𝑥𝑛 for all 𝑛 ∈ N
• (𝑤, ®𝑒) |= 𝐾𝑖𝜑 iff for all 𝑠 ∈ 𝑒𝑖 , 𝑠 ∪𝑖 𝑒𝑖 |= 𝜑

Here 𝛼𝑥𝑛 means the formula obtained by substituting each occur-

rence of free 𝑥 in 𝛼 by 𝑛. Notions such as satisfiability, validity, or

entailment are defined similar toML𝑛 . The properties ofKL𝑛 and

the comparison with the ordinary first-order logic are discussed

in [3, 24]. It is shown that KL𝑛 satisfies the 𝐾45𝑛 properties and

first-order properties such as the Barcan formula:
• |= ∀𝑥 𝐾𝑖𝛼 → 𝐾𝑖∀𝑥 𝛼
• |= ∃𝑥 𝐾𝑖𝛼 → 𝐾𝑖∃𝑥 𝛼

4.2 Translation for KL𝑛

We extend the translation R to deal with first-order modal formulae.

Note that the translation implicitly results in a two-sorted first-

order logic[5]: Quantifiers in the original formulae are of sort object
and quantifiers introduced during translation are of sort state. It
is commonplace that many-sorted logic is easily convertible to

ordinary first-order logic [10]. Here we present the version where

one-sorted conversion has been embedded:

(1) For atomic formula 𝛼 , R[𝛼, 𝜎,𝑢, 𝑣] := 𝛼 ↑𝑢 , where:
• For 𝑛 ∈ N , 𝑛 ↑𝑢 := 𝑛
• For variable 𝑥 , 𝑥 ↑𝑢 := 𝑥
• 𝑓 (𝑡1, . . . 𝑡𝑚) ↑𝑢 := 𝑓 (𝑡1 ↑𝑢 , . . . , 𝑡𝑚 ↑𝑢 , 𝑢)
• 𝑃 (𝑡1, . . . 𝑡𝑚) ↑𝑢 := 𝑃 (𝑡1 ↑𝑢 , . . . , 𝑡𝑚 ↑𝑢 , 𝑢)
• (𝑡1 = 𝑡2) ↑𝑢 := (𝑡1 ↑𝑢= 𝑡2 ↑𝑢 )

(2) R[¬𝛼, 𝜎,𝑢, 𝑣] := ¬R[𝛼, 𝜎,𝑢, 𝑣]
(3) For ⊙ ∈ {∧,∨,→,↔},

R[𝛼1 ⊙ 𝛼2, 𝜎,𝑢, 𝑣] := R[𝛼1, 𝜎,𝑢, 𝑣] ⊙ R[𝛼2, 𝜎,𝑢, 𝑣]
(4) If 𝑒𝑛𝑑 (𝜎) = 𝑖 , R[𝐾𝑖𝛼, 𝜎,𝑢, 𝑣] :=

∀𝑢 (𝐸𝜎 (𝑢, 𝑣) ∧ 𝑆 (𝑢)) → (R[𝛼, 𝜎,𝑢, 𝑣])
(5) If 𝑒𝑛𝑑 (𝜎) ≠ 𝑖 , R[𝐾𝑖𝛼, 𝜎,𝑢, 𝑣] :=

∀𝑣 (𝐸𝜎 ·𝑖 (𝑣,𝑢) ∧ 𝑆 (𝑣)) → (R[𝛼, 𝜎 · 𝑖, 𝑣,𝑢])
(6) R[∀𝑥 𝛼, 𝜎,𝑢, 𝑣] := ∀𝑥 𝑂 (𝑥) → R[𝛼, 𝜎,𝑢, 𝑣]
(7) R[∃𝑥 𝛼, 𝜎,𝑢, 𝑣] := ∃𝑥 𝑂 (𝑥) ∧ R[𝛼, 𝜎,𝑢, 𝑣]

Predicates 𝑂 and 𝑆 denote the membership of sort object and state.

Let T [𝛼] be to replace every free appearance of 𝑢 in R[𝛼, 𝜖, 𝑐, 𝑣].

Theorem 10. If 𝛼 is KL𝑛-satisfiable then T [𝛼] is FO-satisfiable.

Similar to Thm. 5, we prove it by constructing a canonical model.

Different from the propositional case, the other direction does not

hold naively. A counter-example can be easily constructed:

Example 5. Let𝛼 := ∀𝑥 (𝑥 = 𝑛1∨𝑥 = 𝑛2), thenT [𝛼] is satisfiable
but 𝛼 is not KL𝑛-satisfiable.

Note that the difference has already been discussed in [24]. It

is mainly because KL𝑛 interprets equality in the usual sense, and

requires a countably infinite domain of discourse where each ele-

ment has a unique name. To achieve satisfiability-preservation, it

requires additional assumptions Σ𝑒𝑞 about equality:
6

• (𝑥 = 𝑥)
• (𝑥 = 𝑦) → (𝑦 = 𝑥)
• ((𝑥 = 𝑦) ∧ (𝑦 = 𝑧)) → (𝑥 = 𝑧)
• for any function symbol 𝑓 in T [𝛼]:
((𝑥1 = 𝑦1)∧. . .∧(𝑥𝑚 = 𝑦𝑚)) → 𝑓 (𝑥1, . . . , 𝑥𝑚) = 𝑓 (𝑦1, . . . , 𝑦𝑚)

• for any predicate symbol 𝑃 in T [𝛼]:
((𝑥1 = 𝑦1)∧. . .∧(𝑥𝑚 = 𝑦𝑚)) → 𝑃 (𝑥1, . . . , 𝑥𝑚) ≡ 𝑃 (𝑦1, . . . , 𝑦𝑚)

Σ𝑢𝑛𝑎 = {(𝑛 ≠ 𝑛′) | 𝑛, 𝑛′ are distinct standard names in N}.
Σ𝑠𝑜𝑟𝑡 includes the following formulae:

6
Here all free variables are implicitly universally quantified.
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• ∃𝑥 𝑂 (𝑥)
• 𝑆 (𝑐)
• For each function symbol 𝑓 in T [𝛼]:
(𝑂 (𝑥1) ∧ . . . ∧𝑂 (𝑥𝑚) ∧ 𝑆 (𝑢)) → 𝑂 (𝑓 (𝑥1, . . . 𝑥𝑚, 𝑢))

• 𝑂 (𝑛) for all 𝑛 ∈ N
Intuitively, Σ𝑒𝑞 means that the symbol = is interpreted in its usual

sense. Σ𝑢𝑛𝑎 requires the domain of discourse to be infinite. Σ𝑠𝑜𝑟𝑡
preserves the satisfiability in the conversion from many-sorted to

one-sorted (See [10, 24] for details). Let Σ = Σ𝑒𝑞 ∪ Σ𝑢𝑛𝑎 ∪ Σ𝑠𝑜𝑟𝑡 ,
similar with Lem. 5 we have

Lemma 6. Given 𝛼 ∈ KL𝑛 , if T [𝛼] ∪ Σ is FO-satisfiable, then 𝛼
is KL𝑛-satisfiable.

By Thm. 10 and Lem. 6, we derive the following theorem.

Theorem 11. 𝛼 is KL𝑛-satisfiable iff T [𝛼] ∪ Σ is FO-satisfiable.

As shown in the following corollary, the infinite set of axioms

Σ is needed only when equality or standard names occur in the

formula. Let Σ′𝑠𝑜𝑟𝑡 be the subset of Σ𝑠𝑜𝑟𝑡 without 𝑂 (𝑛) of any 𝑛:

Corollary 3. For 𝛼 ∈ KL𝑛 without standard names or equality,
𝛼 is KL𝑛-satisfiable iff T [𝛼] ∪ Σ′𝑠𝑜𝑟𝑡 is FO-satisfiable.

Since FOL is a fragment of KL𝑛 , it is clear that the decision

problems of KL𝑛 are undecidable. Thus it is valuable to investi-

gate decidable first-order modal fragments. However, as shown in

previous work including [5], the full modal extensions of many de-

cidable first-order fragments, including the monadic fragment (with

only unary predicates), 𝐺𝐹 and 𝐹𝑂2
, cannot preserve decidability.

With an analysis of the translation, we study the decidability of

a fragment, which we call the modal bounded guarded fragment
(𝑀𝐵𝐺𝐹 ).

Definition 9 (modal bounded guarded fragment). A for-
mula 𝛼 ∈ KL𝑛 is in 𝑀𝐵𝐺𝐹 , if it contains no standard names or
functional symbols,7 and one of the following holds:

• 𝛼 is an atom 𝑃 (®𝑡);
• 𝛼 is a Boolean combination of formulae in𝑀𝐵𝐺𝐹 ;
• 𝛼 is of form 𝐾𝑖𝜑 , where 𝜑 is a bounded𝑀𝐵𝐺𝐹 ;
• 𝛼 is of form ∀®𝑥 .𝐺 ( ®𝑥, ®𝑦) → 𝜑 , where 𝜑 is objective and is in
𝑀𝐵𝐺𝐹 , 𝐺 ( ®𝑥, ®𝑦) is an atom and 𝐹𝑟𝑒𝑒 (𝜑) ⊆ {®𝑥, ®𝑦}, i.e. all free
variables in 𝜑 are in ®𝑥 or ®𝑦.

Intuitively, a formula is in𝑀𝐵𝐺𝐹 if all the objective sub-formulae

are in 𝐺𝐹 , and all subjective sub-formulae are bounded. For ex-

ample, a formula of form 𝐾1 (𝛼 ∧ (𝐾2𝛽 → 𝐾1𝛾)) is in 𝑀𝐵𝐺𝐹 ,
provided that 𝛼, 𝛽,𝛾 are all bounded formulae in 𝐺𝐹 . However,

𝐾1∀𝑥 (𝐺 (𝑥) → 𝐾1𝐹 (𝑥)) is not in𝑀𝐵𝐺𝐹 .

We consider the loosely guarded fragment (𝐿𝐺𝐹 ), where the no-

tion of guard is relaxed. In 𝐿𝐺𝐹 quantifiers can be guarded by a con-

junction of atomic formulae, provided that each quantified variable

co-exists with each free or bounded variable in some atom. 𝐿𝐺𝐹 has

very similar properties with 𝐺𝐹 . It has been proved that the satisfi-

ability problem for both 𝐺𝐹 and 𝐿𝐺𝐹 is 2EXPTIME-complete [13].

Theorem 12. For any 𝛼 ∈ 𝑀𝐵𝐺𝐹 , R[𝛼, 𝜎,𝑢, 𝑣] ∈ 𝐿𝐺𝐹 .
7
Constants, which can be understood as nullary functions, can be accepted though.

Proof. When 𝛼 := 𝑃 (®𝑡), R[𝛼, 𝜎,𝑢, 𝑣] = 𝑃 (®𝑡 ↑𝑢 , 𝑢). Thus the
theorem holds for all atomic formulae. The induction on ∨,∧,¬ is

trivial. Suppose that 𝛼 is of form𝐾𝑖𝜑 where 𝜑 is a bounded𝑀𝐵𝐺𝐹 ,

i.e. 𝜑 has no free variables. When 𝑒𝑛𝑑 (𝜎) = 𝑖 ,

R[𝛼, 𝜎,𝑢, 𝑣] = ∀𝑢 (𝐸𝜎 (𝑢, 𝑣) ∧ 𝑆 (𝑢)) → R[𝜑, 𝜎,𝑢, 𝑣]

By induction hypothesis R[𝜑, 𝜎,𝑢, 𝑣] ∈ 𝐿𝐺𝐹 and has no free vari-

ables other than 𝑢, 𝑣 . Thus R[𝛼, 𝜎,𝑢, 𝑣] ∈ 𝐿𝐺𝐹 . The proof is similar

when 𝑒𝑛𝑑 (𝜎) ≠ 𝑖 . Suppose that 𝛼 is of form ∀®𝑥 .𝐺 ( ®𝑥, ®𝑦) → 𝜑 , then

R[∀®𝑥 .𝐺 ( ®𝑥, ®𝑦) → 𝜑, 𝜎,𝑢, 𝑣]
=∀®𝑥 (𝑂 (𝑥1) ∧ . . . ∧𝑂 (𝑥𝑚) ∧𝐺 ( ®𝑥, ®𝑦,𝑢)) → R[𝜑, 𝜎,𝑢, 𝑣]

By induction hypothesis R[𝜑, 𝜎,𝑢, 𝑣] ∈ 𝐿𝐺𝐹 and R[𝜑, 𝜎,𝑢, 𝑣] has
free variables among {®𝑥, ®𝑦,𝑢}. Since each pair in {®𝑥, ®𝑦} co-occurs
in 𝐺 ( ®𝑥, ®𝑦,𝑢), we have R[𝛼, 𝜎,𝑢, 𝑣] ∈ 𝐿𝐺𝐹 . □

Corollary 4. Given 𝛼 ∈ 𝑀𝐵𝐺𝐹 , the satisfiability of 𝛼 can be
decided in 2EXPTIME.

Proof. By Cor. 3, 𝛼 is satisfiable iffT [𝛼]∪Σ′𝑠𝑜𝑟𝑡 is FO-satisfiable.
Thm. 12 shows that T [𝛼] ∈ 𝐿𝐺𝐹 . Since 𝛼 ∈ 𝑀𝐵𝐺𝐹 , 𝛼 contains at

most nullary functions and hence T [𝛼] contains functional terms

with at most one variable. Thus Σ′𝑠𝑜𝑟𝑡 ∈ 𝐿𝐺𝐹 , and T [𝛼] ∪ Σ′𝑠𝑜𝑟𝑡
can be decided in 2EXPTIME. □

5 CONCLUSION
With the representation of a set-based semantics in first-order logic,

we propose a decidability-preserving translation for multi-agent

logics of knowledge and belief, and extend the approach to first-

order modal logics. To the best of our knowledge, this approach is

the first that preserves the concision of the standard translation and

maintains the translation in a decidable fragment. Our approach

enables the translation-based reasoning for multi-agent modal sys-

tems, including 𝐾45𝑛 , 𝐾𝐷45𝑛 and 𝑆5𝑛 , which has been open for

decades. In addition, the methodology we follow shows the poten-

tial of non-Kripke semantics and it appeals to more attention to

them.

As for future work, we plan to extend our approach to con-

sider temporal modalities. Translation for common knowledge or

probabilistic belief will also be possible directions. For the study

on complexity and decidability, we believe there could be a first-

order fragment which is more essential for representing modal

logics. On the one hand, the translation does not utilize the full

language of 𝐺𝐹 2 and it can be further restricted to the so-called

monadic 𝐺𝐹 2− with binary guards and no constants. On the other

hand, the decision problem of propositional modal logic is known to

be PSPACE-complete [17]. With the conjecture PSPACE⊊EXPTIME,

translation into a more essential fragment would be possible.
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