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ABSTRACT

In this paper, we study non-obvious manipulability (NOM), a re-

laxed form of strategyproofness, in the context of Hedonic Games

(HGs) with Friends Appreciation (FA) preferences. In HGs, the aim

is to partition agents into coalitions according to their preferences

which solely depend on the coalition they are assigned to. Under FA
preferences, agents consider any other agent either a friend or an

enemy, preferring coalitions with more friends and, in case of ties,

the ones with fewer enemies. Our goal is to design mechanisms

that prevent manipulations while optimizing social welfare.

Prior research established that computing a welfare maximizing

(optimum) partition for FA preferences is not strategyproof, and

the best-known approximation to the optimum subject to strate-

gyproofness is linear in the number of agents. In this work, we

explore NOM to improve approximation results. We first prove

the existence of a NOM mechanism that always outputs the opti-

mum; however, we also demonstrate that the computation of an

optimal partition is NP-hard. To address this complexity, we focus

on approximation mechanisms and propose a NOM mechanism

guaranteeing a (4 + 𝑜 (1))-approximation in polynomial time.

Finally, we briefly discuss NOM in the case of Enemies Aversion

(EA) preferences, the counterpart of FA, where agents give priority
to coalitions with fewer enemies and show that no mechanism

computing the optimum can be NOM.
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1 INTRODUCTION

Hedonic Games (HGs) [13] offer a game-theoretic framework for

understanding the coalition formation of selfish agents and have

been extensively studied in the literature (e.g.,[2, 3, 5, 8, 14, 15, 21]).

In such games, the objective is to partition a set of agents into

disjoint coalitions, with each agent’s satisfaction determined solely

by the members of her coalition. Depending on the nature of the

This work is licensed under a Creative Commons Attribution Inter-
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agents’ preferences, several HGs classes arise that may capture var-

ious social interactions between agents. For example, in additively

separable HGs (ASHGs) [23], agents evaluate coalitions by sum-

ming up the values they assign to every other participant; in HGs

with friends appreciation (FA) preferences [12], each agent splits the

others into friends and enemies and prefers coalitions with more

friends; in case of ties, she favors the ones with less enemies.

Most of the existing literature on HGs has put attention on the

existence and computation of several stability concepts based on

either individual [7, 16, 18, 21] or group deviations [5, 8, 15, 21, 24].

However, a recent stream of research is focusing on designing strat-

egyproof (SP) mechanisms. Such mechanisms prevent agents from

manipulating the outcome by misrepresenting their preferences

while ensuring desirable properties like stability or a reasonable ap-

proximation to the maximum social welfare – the sum of the agents’

utilities in the outcome. Unfortunately, achieving strategyproof-

ness with good social welfare guarantees is challenging: even in

the simple case of FA preferences the best-known SP mechanism

guarantees an approximation linear in the number of agents [19].

Although strategyproofness has been widely studied in several

game-theoretic settings, it turned out to be often incompatible with

other desirable properties or even impossible to achieve [1, 9, 17, 27].

Moreover, there exist mechanisms that are not strategyproof in

a strict sense, but, in order to successfully manipulate, an agent

has to possess the knowledge of others’ strategies and deeply un-

derstand the underlying mechanics. Otherwise, she might end up

with an outcome that is even worse than the one she attempted to

avoid. However, the ability of a cognitively limited agent to satisfy

this requirement seems unrealistic, which has led to the notion of

non-obvious manipulability (NOM) introduced to distinguish the

mechanisms that can be easily manipulated from the ones that are

unlikely to be manipulated in practice [32].

Our Contribution. We initiate the study of NOM in the context

of HGs focusing on FA preferences. We aim at improving upon

the performances, in terms of the social welfare guarantee, of SP

mechanisms in this setting. To this end, we begin by analyzing the

structure of optimal outcomes and give a deeper understanding of

how such outcomes look like for some interesting instances. We

specifically focus on some structures of friendship relationships

which turn out to be very useful for providing a picture of socially

optimal outcomes. This enables us to show that there always ex-

ists a NOM mechanism computing a social welfare maximizing

partition (Theorem 1). Unfortunately, we also show that finding

such an outcome is NP-hard (Theorem 2). We, therefore, propose a

NOM polynomial-time mechanism with (4 + 𝑜 (1))-approximation

(Theorem 3). It provides a significant improvement over the exist-

ing strategyproof mechanism, and, besides NOM, constitutes the
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first constant approximation for the problem of maximizing the

utilitarian welfare for FA preferences. Finally, we investigate NOM

for enemies aversion (EA) preferences, the natural counterpart of
FA where agents give priority to coalitions with fewer enemies,

and show that no optimal mechanism is NOM (Theorem 4). This

shows that NOM, albeit it might be considered a weak notion, is not

always compatible with optimality. Due to the space limits, missing

proofs are deferred to the full paper.

Related Work. Hedonic games with FA and EA preferences have

been widely studied and further extended to capture more involved

social contexts [6, 11, 25, 30]. In this stream of research, a systematic

analysis of stable outcomes has been provided [10]. In addition to

stability, strategyproofness has also been considered: in [12] the

authors show that for FA and EA preferences SP is compatible with

(weak) core stability. However, such solutions are hard to compute

in the case of EA preferences [11]. For more general friends-oriented

preferences [26] and ASHGs [29], SP mechanisms guaranteeing

stability have been investigated. Some recent studies, instead of

seeking stability, have concentrated on strategyproof mechanisms

approximating the maximum social welfare [33]. For ASHGs in

general, even when the agents’ utilities are bounded, it was proven

that a non-manipulable algorithm with a bounded approximation

ratio cannot exist [17]; the authors also provide bounded, but non-

constant SP mechanisms for very restricted settings. Similarly, in

the FA model, a deterministic mechanism with the approximation

ratio linear in the number of agents and a randomized one with

a constant approximation ratio have been provided [19]. Also, in

the case of EA preferences, the best-known polynomial algorithm

achieves a linear approximation in the number of agents, while

a constant approximation ratio is possible when time complex-

ity is not a concern [19], and this result has been proven to be

asymptotically tight. Some attempts in achieving SP and bounded

approximation have been made also for a proper superclass of HGs,

namely, the group activity selection problem [20].

In contrast to SP, in the past few years, non-obvious manipu-

lability has been introduced [32]. This notion turned out to be a

relaxation good enough to circumvent the inherent impossibility

results of strategyprofness. In voting theory, non-obvious manipu-

lability allows to bypass of a famous strong negative result stating

the non-existence of a voting rule for more than two alternatives

which is at the same time strategyproof and not dictatorial [4].

In the assignment problem, under a minor restriction the whole

class of rank-minimising mechanisms, which directly optimize an

objective natural for this problem, turns out to be NOM [31]. In

the problem of fairly allocating indivisible goods, replacing strate-

gyproofness with non-obvious manipulability allows the design of

a Pareto-efficient and non-dictatorial mechanism as well as a mech-

anism that guarantees envy-freeness up to one item [28]. Since

in HGs strategyproof mechanisms often fail to approximate the

maximum social welfare with a constant ratio or turn out to be inef-

fective in the computational sense, this provides us with additional

motivation to study NOM mechanisms.

2 PRELIMINARIES

Hedonic Games and Friends Appreciation preferences. In the clas-

sical framework of HGs, we are given a set of 𝑛 agents, denoted

2

1 3

(a) An FA instance I.

2

1 3

(b) The friendship graph𝐺 𝑓 (I) .

Figure 1: An FA instance and the corresponding 𝐺 𝑓 . Solid

(resp. dashed) edges represent friend (resp. enemy) relations.

by N = {1, . . . , 𝑛}, and the goal is to partition them into disjoint

coalitions. In other words, we aim at creating a disjoint partition

𝜋 = {𝐶1, . . . ,𝐶𝑚} such that ∪𝑚
ℎ=1

𝐶ℎ = N and 𝐶ℎ ∩ 𝐶𝑘 = ∅ for
ℎ ≠ 𝑘 . Such a partition is also called an outcome or a coalition struc-

ture. The grand coalition GC is a partition consisting of exactly one

coalition containing all the agents, while a singleton coalition is any

coalition of size 1. We denote by Π the set of all possible outcomes

of the game, i.e., all possible partitions of the agents, and by 𝜋 (𝑖)
the coalition that agent 𝑖 belongs to in a given outcome 𝜋 ∈ Π.

In HGs, the agents evaluate an outcome on the sole basis of the

coalition they belong to and not on how the others aggregate. As a

result, each agent 𝑖 has a preference relation ⪰𝑖 over N𝑖 , where N𝑖
is the family of subsets of N containing 𝑖 . Given 𝑋,𝑌 ∈ N𝑖 , we say
that agent 𝑖 prefers, or equally prefers, 𝑋 to 𝑌 whenever 𝑋 ⪰𝑖 𝑌 .

In HGs with friends appreciation (FA) preferences, each agent

𝑖 partitions the other agents into a set of friends 𝐹𝑖 and a set of

enemies 𝐸𝑖 , with 𝐹𝑖 ∪𝐸𝑖 = N \ {𝑖} and 𝐹𝑖 ∩𝐸𝑖 = ∅. The preferences
of 𝑖 among coalitions in N𝑖 are as follows: 𝑋 ⪰𝑖 𝑌 if and only if

|𝑋 ∩ 𝐹𝑖 | > |𝑌 ∩ 𝐹𝑖 | or
|𝑋 ∩ 𝐹𝑖 | = |𝑌 ∩ 𝐹𝑖 | and |𝑋 ∩ 𝐸𝑖 | ≤ |𝑌 ∩ 𝐸𝑖 | .

In otherwords, a coalition is preferred over another one if it contains

a higher number of friends; if the number of friends is the same,

the coalition with fewer enemies is preferred.

Example 1. Let us describe a simple instance with friends appre-

ciation preferences: Let N = {1, 2, 3} be the set of agents, and let

𝐹1 = {2}, 𝐹2 = {3}, 𝐹3 = {2} and 𝐸1 = {3}, 𝐸2 = {1}, 𝐸3 = {1} be
the agents’ sets of friends and enemies, respectively. This instance

is depicted in Figure 1a, where a directed edge from agent 𝑖 to agent

𝑗 represents 𝑖’s opinion of 𝑗 ; solid edges and dashed edges represent

friend and enemy relations, respectively.

For our convenience, we shall denote by 𝐹−1
𝑖

= { 𝑗 ∈ N | 𝑖 ∈ 𝐹 𝑗 },
that is, the set of agents considering 𝑖 a friend.

FA are a proper subclass of ASHGs, where each agent 𝑖 has a

value 𝑣𝑖 ( 𝑗) for every other agent 𝑗 and her utility for being in a

given coalition 𝐶 ∈ N𝑖 is 𝑢𝑖 (𝐶) =
∑
𝑗∈𝐶\{𝑖 } 𝑣𝑖 ( 𝑗). Specifically, to

comply with the FA preferences, 𝑢𝑖 can be defined as follows:

𝑣𝑖 ( 𝑗) = 1, if 𝑗 ∈ 𝐹𝑖 , and 𝑣𝑖 ( 𝑗) = −
1

𝑛
, if 𝑗 ∈ 𝐸𝑖 .

For every agent the sum of the absolute values of all enemies never

exceeds the value of one friend, therefore, FA preferences are cor-

rectly encoded. These valuation functions were already assumed

in [11, 17]. Since the utility of an agent depends only on the coalition

she belongs to, we might write 𝑢𝑖 (𝜋) to denote 𝑢𝑖 (𝜋 (𝑖)).
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Example 2. Let us consider the instance described in Example 1

and the partition 𝜋 = {{1, 2, 3}}. Then, 𝑢1 (𝜋) = 𝑣1 (2) + 𝑣1 (3) =
1 − 1

3
= 2

3
. Similarly, since the utility of an agent depends only on

the number of friends/enemies in her coalition, 𝑢2 (𝜋) = 𝑢3 (𝜋) = 2

3
.

An FA instance I is given by a set of agents N and a set of

friends 𝐹𝑖 , for each 𝑖 ∈ N . Alternatively, I = (N , {𝑣𝑖 }𝑖∈N), where
𝑣𝑖 is the valuation of 𝑖 for the other agents representing her FA
preferences. For simplicity, we might also write I = ({𝑣𝑖 }𝑖∈N).

Social Welfare and Optimum. One of the challenges in HGs is

to maximize the overall happiness of the agents measured by the

social welfare (SW). Specifically, in an HG instance I the social

welfare of a partition 𝜋 is given by SWI (𝜋) = ∑
𝑖∈N 𝑢𝑖 (𝜋).

When the instance is clear from the context we simply write SW.

We call social optimum, or simply optimum, any outcome OPT in

argmax𝜋∈Π SW(𝜋) and denote by opt the value SW(OPT). When

considering a coalition 𝐶 , to denote

∑
𝑖∈𝐶 𝑢𝑖 (𝐶) we write SW(𝐶).

Graph Representation. A very convenient representation of an

FA instance I is by means of a directed and unweighted graph

where the agents of the instance are the vertices. With 𝐸𝑖 being

N \ {𝐹𝑖 ∪ {𝑖}}, we represent only friendship relationships through

directed edges: if {𝑖, 𝑗} is an edge of this graph, it means 𝑗 ∈ 𝐹𝑖 ; if
such an edge does not exist, we have 𝑗 ∈ 𝐸𝑖 . We call this graph the

friendship graph of I, and we denote it by 𝐺 𝑓 (I) = (N , 𝐹 ), where
𝐹 = {{𝑖, 𝑗} | 𝑗 ∈ 𝐹𝑖 }. If the instance is clear from the context, we

simply write 𝐺 𝑓 . The friendship graph of the instance described

in Example 1 is shown in Figure 1b. Moreover, we denote by 𝑁 (𝑖),
for 𝑖 ∈ N , the weakly connected neighborhood of 𝑖 , that is, 𝑁 (𝑖) =
𝐹𝑖 ∪ 𝐹−1𝑖 . We denote by 𝛿 (𝑖) the size of 𝑁 (𝑖). We further extend the

definition of weekly connected neighborhood to a subset of agents

𝑋 ⊆ N , specifically 𝑁 (𝑋 ) = ∪𝑖∈𝑋𝑁 (𝑖).

Strategyproofness and Non-obvious Manipulability. The sets 𝐹𝑖
and 𝐸𝑖 might be private information of the agent 𝑖; therefore, to

compute the outcome we need to receive this information from the

agents. Let us denote by d = (𝑑1, . . . , 𝑑𝑛) the agents’ declarations
vector, where 𝑑𝑖 contains the information related to agent 𝑖 . We

assume direct revelation, and hence 𝑑𝑖 ( 𝑗) ∈ {1,− 1

𝑛 } represents the
value 𝑖 declared for an agent 𝑗 . We denote byD the space of feasible

declarations d. For our convenience, we denote by d−𝑖 the agents’
declarations except the one of 𝑖 , by D−𝑖 the set of all feasible d−𝑖 ,
and by D𝑖 the feasible declarations for 𝑖 .

In this setting, the natural challenge is to design algorithms,

a.k.a. mechanisms, inducing truthful behavior of the agents. We

shall denote byM a mechanism and byM(d) the output of the
mechanism – a partition upon the declaration d of the agents.

The agents might be strategic, which means, an agent 𝑖 could

declare 𝑑𝑖 ≠ 𝑡𝑖 , where 𝑡𝑖 ∈ D𝑖 is the real information of agent

𝑖 , also called her real type. For this reason, the design of mecha-

nisms preventing manipulations is fundamental. The most desirable

characteristic for such kind of mechanisms is strategyproofness.

Definition 1 (Strategyproofness and Manipulability). A mecha-

nismM is said to be strategyproof (SP) if for each 𝑖 ∈ N having

real type 𝑡𝑖 , and any declaration of the other agents d−𝑖

𝑢𝑖 (M(𝑡𝑖 , d−𝑖 )) ≥ 𝑢𝑖 (M(𝑑𝑖 , d−𝑖 )) (1)

holds true for any possible false declaration 𝑑𝑖 ≠ 𝑡𝑖 of agent 𝑖 .

In turn, a mechanism is said to be manipulable if there exists an

agent 𝑖 , a real type 𝑡𝑖 and declarations d−𝑖 and 𝑑𝑖 ≠ 𝑡𝑖 such that

Equation (1) does not hold. Then, such 𝑑𝑖 is called a manipulation.

Since SP mechanisms may be quite inefficient w.r.t. the truthful

opt, we aim to understand if mechanisms satisfying milder condi-

tions lead to more efficient outcomes. Considering that 𝑖 might be

unaware of which are the declarations d−𝑖 of the other agents, she
could not be able to determine a manipulation without knowing d−𝑖 .
Thus, we next consider a relaxation of SPwhere an agent 𝑖 decides to

misreport her true values only if it is clearly profitable for her. Given

a mechanismM, let us denote by Π𝑖 (𝑑𝑖 ,M) = {M(𝑑𝑖 , d−𝑖 ) | d−𝑖 ∈
D−𝑖 } , the space of possible outcomes ofM given the declaration

𝑑𝑖 of 𝑖 . Notice the space Π𝑖 (𝑑𝑖 ,M) is finite.

Definition 2 (Non-obvious Manipulability). A mechanismM is

said to be non-obviously manipulable (NOM) if for every 𝑖 ∈ N , real

type 𝑡𝑖 , and any other declaration 𝑑𝑖 the following hold true:

Condition 1: max

𝜋∈Π𝑖 (𝑡𝑖 ,M)
𝑢𝑖 (𝜋) ≥ max

𝜋∈Π𝑖 (𝑑𝑖 ,M)
𝑢𝑖 (𝜋)

Condition 2: min

𝜋∈Π𝑖 (𝑡𝑖 ,M)
𝑢𝑖 (𝜋) ≥ min

𝜋∈Π𝑖 (𝑑𝑖 ,M)
𝑢𝑖 (𝜋)

If there exist 𝑖 , 𝑡𝑖 , and 𝑑𝑖 such that Condition 1 or 2 is violated, then,

M is obviously manipulable and 𝑑𝑖 is an obvious manipulation.

In other words, a mechanismM is NOM if for every agent 𝑖

neither the best nor the worst possible outcome can be improved in

terms of 𝑖’s utility by manipulating, i.e., declaring some 𝑑𝑖 instead of

𝑡𝑖 (worst/best outcomes are always determined according to 𝑖’s true

preferences). In contrast, the strategyproofness of a mechanism

M ensures that for every d−𝑖 , including the ones inducing the

best/worst case outcome of Π𝑖 (𝑡𝑖 ,M), is not strictly convenient to

misreport; therefore, SP⇒ NOM.

In what follows, we always denote by 𝑡𝑖 the real type of 𝑖 and

by 𝑒𝑖 = |𝐸𝑖 | and 𝑓𝑖 = |𝐹𝑖 |, where 𝐸𝑖 and 𝐹𝑖 are the truthful set of
friends and enemies of 𝑖 , respectively.

2.1 Preliminary Results on Optimal Outcomes

In this section, we discuss in detail some useful properties of optimal

outcomes putting particular attention on specific graph structures

for the friendship graph. Let us start by observing that to compute

the social welfare of a coalition it suffices to know its size and the

number of friendship relationships within the coalition.

Lemma 1 (From [19]). For any 𝐶 ⊆ N of size 𝑐 and containing 𝑓𝐶

friendship relations, SW(𝐶) = 𝑓𝐶 ·
(
1 + 1

𝑛

)
− 𝑐 (𝑐−1)

𝑛 .

Example 3. Consider, for example, an FA instance where 𝐺 𝑓 is a

star whose edges are directed from its center 𝑖 towards the leaves,

that is, 𝐹 = {{𝑖, 𝑗} | 𝑗 ∈ N \ {𝑖}}. For such an instance, if we put

the agents together in the grand coalition, we have SW(GC) =
𝑛−1
𝑛 . Clearly, in any optimum 𝜋∗, any node that is not in the same

coalition as 𝑖 must be in a singleton coalition: otherwise, the SW
of its coalition would be negative. Let 𝐶 be the coalition of 𝑖 in

𝜋∗, SW(𝜋∗) = SW(𝐶) = (𝑐 − 1) ·
(
1 + 1

𝑛 −
𝑐
𝑛

)
, which is maximized

at 𝑐 = 𝑛+2
2
, for even 𝑛, and at 𝑐 = 𝑛+2

2
± 1

2
, otherwise. Note that

optimality does not depend on the edges direction.
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Example 3 shows that when the graph is particularly sparse it

is more convenient to split weakly connected components rather

than put all agents with all their friends. In turn, when there exists

a cluster of nodes𝐶 ⊂ N such that𝐶 is a bidirectional clique in𝐺 𝑓 ,

whose nodes are weakly connected only to another node 𝑖 ∈ N \𝐶 ,
it is never convenient to split the agents in 𝐶 . We call 𝐶 an almost

isolated clique with the hinge node 𝑖 . We next formalize how almost

isolated cliques place in an optimum outcome.

Lemma 2. If 𝐶 is an almost isolated clique in 𝐺 𝑓 with the hinge

node 𝑖 , for any optimal partition 𝜋∗ there exists 𝐶′ ∈ 𝜋∗ such that

𝐶 ⊆ 𝐶′. Furthermore, if 𝑖 ∉ 𝐶′ then 𝐶′ = 𝐶 .

Next, we consider more involved structures for 𝐺 𝑓 and explain

how their optimal outcomes look like.

Definition 3 (Octopus Graph). Given an agent 𝑖 and 𝐻 ⊆ N \ {𝑖},
𝐺 𝑓 = (N , 𝐹 ) is an 𝑖-centered octopus graph with the head 𝐻 if:

• 𝐻 is a bidirectional clique in 𝐺 𝑓 ;

• for each 𝑗 ∈ 𝐻 , { 𝑗, 𝑖} ∈ 𝐹 ;
• for each 𝑗 ∈ N \ 𝑖 and 𝑘 ∈ N \ ({𝑖} ∪ 𝐻 ), none of { 𝑗, 𝑘},
{𝑘, 𝑗}, {𝑘, 𝑖} belongs to 𝐹 while {𝑖, 𝑗} may belong to 𝐹 .

A picture of an 𝑖-centered octopus graph is given in Figure 2a.

Lemma 3. Let𝐺 𝑓 be an 𝑖-centered octopus graph with the head𝐻 . If

|𝐻 | ≥
⌈
𝑛
2

⌉
, there exists a unique optimum consisting of the coalition

𝐻 ∪ {𝑖} and remaining agents put in singleton coalitions.

Sketch. Let us start by noticing that 𝐻 is an almost isolated

clique with the hinge 𝑖 . By Lemma 2, in the social optimum, all

agents from𝐻 will end up in the same coalition. Moreover, for each

agent 𝑘 ∈ N \ ({𝑖} ∪ 𝐻 ), 𝑘 can be weakly connected only to 𝑖 , so, if

𝑘 is not in the same coalition as 𝑖 , then 𝑘 forms a singleton coalition.

This leaves us with three possible types of optimal partition:

𝜋1 where 𝐻 and 𝑖 are in the same coalition, while all remaining

agents are in singletons;

𝜋2 where agents from 𝐻 form a coalition, while 𝑖 is in a differ-

ent coalition together with some 𝐶1 ⊆ N \ ({𝑖} ∪ 𝐻 ), and
remaining agents are in singletons;

𝜋3 where 𝐻 , 𝑖 and some𝐶2 ⊆ N \ ({𝑖} ∪ 𝐻 ) form one coalition,

while all other agents are in singletons.

Let us compare 𝜋1 and 𝜋2. The number of positive relationships

between 𝐻 and 𝑖 is at least |𝐻 | while the positive connections

between 𝑖 and 𝐶1 are at most |𝐶1 |. Since |𝐶1 | ≤ 𝑛 − |𝐻 | − 1 ≤
𝑛 −

⌈
𝑛
2

⌉
− 1 < |𝐻 |, it is strictly more convenient to put 𝑖 in coalition

with 𝐻 rather than with 𝐶1, showing SW(𝜋1) > SW(𝜋2).
Let us compare 𝜋1 and 𝜋3. Consider the coalition 𝐻 ∪𝐶2 ∪ {𝑖}.

The friendship relationships between 𝐻 ∪ {𝑖} and 𝐶2 are only the

ones in 𝐹𝑖 ∩ 𝐶2, which are at most |𝐶2 |. So, if we remove and

split 𝐶2 into singletons, the loss in social welfare will be of at most

|𝐶2 | ·
(
1 + 1

𝑛

)
− 2· ( |𝐻 |+1) · |𝐶2 |

𝑛 ≤ |𝐶2 | ·
𝑛+1−2· 𝑛

2
−2

𝑛 < 0, where the first

inequality holds as |𝐻 | ≥ 𝑛
2
. Therefore, SW(𝜋1) > SW(𝜋3). □

We now further generalize the definition of octopus graph.

Definition 4 (Generalized Octopus Graph). Given an agent 𝑖 ∈ N
and {𝐻,𝑇1, . . . ,𝑇𝑚}, a disjoint partition of N \ {𝑖}; 𝐺 𝑓 = (N , 𝐹 ) is
an 𝑖-centered generalized octopus graph with the head 𝐻 and the

tentacles 𝑇1, . . . ,𝑇𝑚 if, for each 𝑙 ∈ [𝑚]:

𝑖

· · ·· · ·

𝐻

(a) Octopus graph.

𝑖

𝐻

𝑇ℎ

· · ·· · ·
𝑇𝑚𝑇1

(b) Generalized octopus graph.

Figure 2: Octopus graph structures having center 𝑖. Undi-

rected edges represent bidirectional edges in 𝐺 𝑓 .

• 𝐻 and 𝑇𝑙 are bidirectional cliques in 𝐺
𝑓
;

• for each 𝑗 ∈ 𝐻 , { 𝑗, 𝑖} ∈ 𝐹 ;
• for each 𝑗 ∈ N \ {𝑇𝑙 ∪ {𝑖}} and 𝑘 ∈ 𝑇𝑙 , none of { 𝑗, 𝑘}, {𝑘, 𝑗},
{𝑘, 𝑖} belongs to 𝐹 while {𝑖, 𝑗} may belong to 𝐹 .

Given a node 𝑖 , we denote by 𝑔𝑂𝑐𝑡 (𝑖) the set of all possible 𝑖-
centered generalized octopus graphs. In Figure 2b, we draw an

example of an 𝑖-centered generalized octopus graph. Let us note

that an octopus graph is a generalized octopus graph having all

tentacles of size 1. Furthermore, if 𝐺 𝑓 (𝑑𝑖 , d−𝑖 ) ∈ 𝑔𝑂𝑐𝑡 (𝑖), for any
declaration𝑑′

𝑖
∈ D𝑖 ,𝐺 𝑓 (𝑑′𝑖 , d−𝑖 ) ∈ 𝑔𝑂𝑐𝑡 (𝑖); in fact, in the definition

there is no constraint on how the set of friends of 𝑖 should be.

Lemma 4. Let 𝐺 𝑓 be a generalized 𝑖-centered octopus graph with

head 𝐻 and tentacles 𝑇1, . . . ,𝑇𝑚 . If 𝜋∗ = {𝐻 ∪ {𝑖},𝑇1, . . . ,𝑇𝑚} is an
optimum outcome, then |𝐻 | ≥ max𝑙∈[𝑚]

|𝐹𝑖∩𝑇𝑙 |
|𝑇𝑙 | ·

𝑛+1
2
− 1.

Proof. Let us set 𝑔𝑙 = |𝐹𝑖 ∩𝑇𝑙 |. Consider the partition 𝜋 ob-

tained from 𝜋∗ by merging the coalitions𝐻 ∪ {𝑖} and𝑇𝑙 . Since 𝜋∗ is
optimum, SW(𝜋) − SW(𝜋∗) = 𝑔𝑙 −

2 |𝑇𝑙 |−𝑔𝑙
𝑛 − 2 |𝑇𝑙 | · |𝐻 |

𝑛 ≤ 0 . There-

fore, |𝐻 | ≥ 𝑔𝑙 (𝑛+1)
2 |𝑇𝑙 | − 1, and hence it holds for the maximum. □

Next, we provide an interesting connection between the opti-

mum for arbitrary instances and the one for octopus graphs.

Lemma 5. If 𝜋∗ is an optimum partition for I = (𝑑𝑖 , 𝑑−𝑖 ), then, 𝜋∗
is also optimum for I′ = (𝑑𝑖 , 𝑑′−𝑖 ), where𝐺

𝑓 (I′) ∈ 𝑔𝑂𝑐𝑡 (𝑖) with the
head 𝜋 (𝑖) \ {𝑖} and the remaining coalitions of 𝜋 being the tentacles.

In a nutshell: Strengthening friendships within and enmities

between the coalitions of 𝜋 maintains optimality.

Proof. Let us denote by 𝐹 I and 𝐹 I
′
the friendship relationship

in I and I′, respectively. We set 𝑝 =

���𝐹 I′ \ 𝐹 I ��� and 𝑞 =

���𝐹 I \ 𝐹 I′ ���,
which denote the number of added and removed edges when trans-

forming𝐺 𝑓 (I) into𝐺 𝑓 (I′). Then, we have SWI′ (𝜋) −SWI (𝜋) =
𝑝 ·

(
1 + 1

𝑛

)
since the edges we added are within coalitions and the

edges we removed are between coalitions. Consider now an out-

come 𝜋 ′ ≠ 𝜋 and let 𝑝′ and 𝑞′ be the number of the added and

removed edges, whose endpoints are in the same coalition in 𝜋 ′,
when transforming 𝐺 𝑓 (I) into 𝐺 𝑓 (I′). In this case, being 𝑝′ ≤ 𝑝 ,

SWI
′
(𝜋 ′) − SWI (𝜋 ′) = 𝑝′ ·

(
1 + 1

𝑛

)
−𝑞′ ·

(
1 + 1

𝑛

)
≤ 𝑝 ·

(
1 + 1

𝑛

)
.
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Therefore, SWI
′ (𝜋) − SWI′ (𝜋 ′) ≥ SWI (𝜋) − SWI (𝜋 ′) ≥ 0, for

any 𝜋 ′ ∈ Π, showing the optimality of 𝜋 for I′. □

3 AN OPTIMAL AND NOMMECHANISM

In [19], it has been shown that no strategyproof mechanism can

have an approximation better than 2. In contrast, we next show

there is a way to simultaneously guarantee optimality and NOM.

Let us first introduce our optimal mechanism.

MechanismM1. It always returns an optimum partition with the

smallest number of coalitions, ties among partitions with the same

number of coalitions are broken arbitrarily.

Theorem 1. MechanismM1 is NOM.

To show the theorem, we at first need to understand which are

the worst/best outcomes for 𝑖 in Π𝑖 (𝑡𝑖 ,M1), the space of possible
outcomes of M1 when 𝑖 reports 𝑡𝑖 . We will then compare their

utility for 𝑖 with the one of the worst/best outcomes in Π𝑖 (𝑑𝑖 ,M1)
for any other feasible 𝑑𝑖 . Recall that 𝑒𝑖 = |𝐸𝑖 | and 𝑓𝑖 = |𝐹𝑖 | are the
sizes of the truthful set of friends and enemies of 𝑖 , respectively.

Lemma 6. For any agent 𝑖 ∈ N , among the outcomes in Π𝑖 (𝑡𝑖 ,M1):
(1) any outcome where 𝑖 is put in the coalition {𝑖} ∪ 𝐹𝑖 maximizes

the utility of 𝑖 ;

(2) any outcomewhere 𝑖 is put in a coalition with𝐸𝑖 andmax{
⌈
𝑛
2

⌉
−

𝑒𝑖 , 0} friends minimizes the utility of 𝑖 .

Proof. We first show 1. Given 𝑡𝑖 , let us set d−𝑖 in such a way

that {𝑖}∪𝐹𝑖 is a bidirectional clique in the corresponding friendship

graph 𝐺 𝑓 while all remaining agents are isolated nodes. For such

instance, there is a unique optimum and it is attained by the parti-

tion where {𝑖} ∪ 𝐹𝑖 is the only non-singleton coalition. Clearly, no

partition can guarantee 𝑖 strictly higher utility, therefore 1 follows.

We now show 2 and distinguish between 𝑒𝑖 ≥
⌈
𝑛
2

⌉
and 𝑒𝑖 <

⌈
𝑛
2

⌉
.

If 𝑒𝑖 ≥
⌈
𝑛
2

⌉
, consider a declaration of the others d−𝑖 such that the

friendship graph 𝐺 𝑓 (𝑡𝑖 , d−𝑖 ) is an 𝑖-centered octopus graph with

the head 𝐸𝑖 . By Lemma 3, there exists a unique optimum, which

is therefore the output ofM1, and 𝐸𝑖 ∪ {𝑖} is one of its coalitions.
Since there exists no coalition where 𝑖 gets strictly lower utility, we

can conclude it is the worst possible outcome ofM1 for 𝑖 .

Assume now 𝑒𝑖 <
⌈
𝑛
2

⌉
. We first show there exists d−𝑖 such that

inM1 (𝑡𝑖 , d−𝑖 ), 𝑖 is in a coalition with the agents 𝐶 ⊂ N \ {𝑖} with
𝑓 ′ =

⌈
𝑛
2

⌉
− 𝑒𝑖 many friends. In fact, in this case, |𝐶 | ≥

⌈
𝑛
2

⌉
and we

can build as before d−𝑖 so as the friendship graph 𝐺 𝑓 (𝑡𝑖 , d−𝑖 ) is an
𝑖-centered octopus graph with the head 𝐶 and apply Lemma 3. To

conclude this is the worst outcome for 𝑖 declaring 𝑡𝑖 , we next show

there is no outcome where 𝑖 has strictly less friends.

Assume 𝑖 is put into a coalition together with𝐶 ⊂ N \ {𝑖} where
𝑓 ′ = |𝐶 ∩ 𝐹𝑖 | <

⌈
𝑛
2

⌉
− 𝑒𝑖 . Note that having the same number of

friends and a greater number of enemies is not possible.

Assume such 𝐶 ∪ {𝑖}, having size 𝑐 = |𝐶 |, is a coalition in the

social optimum, say 𝜋∗ = {𝐶 ∪ {𝑖},𝑇1, . . . ,𝑇𝑚}, for a game instance

(𝑑𝑖 , d−𝑖 ). Let us then select d′−𝑖 so that𝐺 𝑓 (𝑑𝑖 , d′−𝑖 ) is an 𝑖-centered
generalized octopus graph having head 𝐶 and tentacles 𝑇1, . . . ,𝑇𝑚 .

From the proof of Lemma 5 𝜋∗ is optimum also for (𝑑𝑖 , d′−𝑖 ). By
Lemma 4, 𝜋∗ is optimum only if 𝑐 > max𝑙

{
|𝑇𝑙∩𝐹𝑖 |
|𝑇𝑙 |

}
· 𝑛+1

2
− 1. We

notice that, in Lemma 4, the last inequality is ≥; however, the proof

can be easily adjusted to show that forM1 the inequality turns out

to be strict, as the mechanism selects an optimum with the lowest

number of coalitions.

Now, max𝑙

{
|𝑇𝑙∩𝐹𝑖 |
|𝑇𝑙 |

}
≥

∑𝑚
𝑙=1
|𝑇𝑙∩𝐹𝑖 |∑𝑚

𝑙=1
|𝑇𝑙 | =

���(⋃𝑙 ∈ [𝑚] 𝑇𝑙
)
∩𝐹𝑖

�����⋃
𝑙 ∈ [𝑚] 𝑇𝑙

�� =
|𝑇∩𝐹𝑖 |
|𝑇 | ,

where𝑇 =
⋃
𝑙∈[𝑚] 𝑇𝑙 . This implies, 𝑐 >

|𝑇∩𝐹𝑖 |
|𝑇 | ·

𝑛+1
2
− 1. Therefore,

𝑐 >
𝑛−1−𝑒𝑖−𝑓 ′
𝑛−𝑐−1 · 𝑛+1

2
−1 as𝑇 = N \{𝐶∪{𝑖}} and |𝑇 ∩ 𝐹𝑖 | = 𝑓𝑖 − 𝑓 ′ =

𝑛 − 1 − 𝑒𝑖 − 𝑓 ′, and hence

𝑓 ′ > 𝑛 − 1 − 𝑒𝑖 − (𝑐 + 1) (𝑛 − 𝑐 − 1) ·
2

𝑛 + 1 .

Now, recall that 𝑓 ′ ≤
⌈
𝑛
2

⌉
− 𝑒𝑖 − 1, thus,⌈𝑛

2

⌉
− 𝑒𝑖 − 1 > 𝑛 − 1 − 𝑒𝑖 − (𝑐 + 1) (𝑛 − 𝑐 − 1) ·

2

𝑛 + 1
2𝑐2 + 2(2 − 𝑛)𝑐 + 𝑛2 − 𝑛 + 2 −

⌈𝑛
2

⌉
· (𝑛 + 1) < 0 .

The discriminant of the left side with respect to 𝑐 is equal to

4

(
−𝑛2 − 2𝑛 + 2

⌈
𝑛
2

⌉
· (𝑛 + 1)

)
. When 𝑛 is even,

⌈
𝑛
2

⌉
= 𝑛

2
and this

expression equals −4𝑛; therefore, the inequality above does not

have a solution. If 𝑛 is odd,

⌈
𝑛
2

⌉
= 𝑛+1

2
and the inequality has

the solution
𝑛−3
2

< 𝑐 < 𝑛−1
2
. However, this interval does not

contain integer numbers. In conclusion, such 𝐶 cannot exist when

𝑓 ′ <
⌈
𝑛
2

⌉
− 𝑒𝑖 . □

We are now ready to showM1 is NOM.

Proof of Theorem 1. We prove both Condition 1 and 2 of the

definition of NOM hold true for any agent 𝑖 .

Condition 1. This condition is the simplest to show. By Lemma 6,

if 𝑖 truthfully reports, the best outcome is attained by a partition

where 𝑖 is in a coalition with all her friends and no enemies. This

coalition provides her the highest possible utility, so, Condition 1

holds true as no misreport can guarantee a strictly higher utility.

Condition 2. To understand the worst-case scenario we will make

a case distinction depending on the number of enemies 𝑖 has.

If 𝑒𝑖 ≥
⌈
𝑛
2

⌉
, for any 𝑑𝑖 ∈ D𝑖 , consider a declaration of the others

d−𝑖 such that the friendship graph 𝐺 𝑓 for the resulting instance

(𝑑𝑖 , d−𝑖 ) is an 𝑖-centered octopus graph with the head 𝐻 = 𝐸𝑖 .

By Lemma 3, for this instance,M1 outputs a partition containing

𝐸𝑖 ∪ {𝑖}. This is the worst possible coalition for 𝑖 according to her

truthful declaration 𝑡𝑖 . Since for any possible reporting of 𝑖 there

always exists a declaration of the others such that 𝑖 ens up in a

coalition together with all her enemies, Condition 2 is satisfied.

Assume now 𝑒𝑖 <
⌈
𝑛
2

⌉
. Let us choose𝑋 ⊆ 𝐹𝑖 such that |𝐸𝑖 ∪ 𝑋 | =⌈

𝑛
2

⌉
. We first show that, regardless of the declaration of 𝑖 , there

always exists an instance where the unique optimum has 𝐸𝑖∪𝑋∪{𝑖}
as a coalition. Given 𝑑𝑖 ∈ D𝑖 , let us choose d−𝑖 in such a way that

𝐺 𝑓 (𝑑𝑖 , d−𝑖 ) is an 𝑖-centered octopus graphwith the head𝐻 = 𝐸𝑖∪𝑋 .
Being |𝐻 | ≥

⌈
𝑛
2

⌉
, by Lemma 3 we have that, in the unique optimum

for this instance, 𝐻 ∪ {𝑖} is a coalition and remaining agents form

singleton coalitions. By Lemma 6, such an outcome is the worst

possible when declaring 𝑡𝑖 , therefore, misreporting cannot improve

the worst-case. This concludes our proof. □

4 COMPUTING THE OPTIMUM IS NP-HARD

Despite the existence of an optimum and NOM mechanism, in this

section we show that computing an optimum partition is NP-hard.
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Theorem 2. For FA preferences, computing the optimum is NP-hard.

We prove Theorem 2 with a reduction from the 3-Partition

problem, which can be formulated as follows:

3-Partition problem

Input: A ground set {𝑥1, 𝑥2, . . . , 𝑥3𝑚} of 3𝑚 elements such that

(i)

∑
3𝑚
ℎ=1

𝑥ℎ =𝑚𝑇 , for some 𝑇 > 0;

(ii) 𝑥ℎ ∈ N, for each ℎ ∈ [3𝑚];
(iii)

𝑇
4
< 𝑥ℎ < 𝑇

2
, for each ℎ ∈ [3𝑚].

Question: Does there exist a partition of the ground set into𝑚

disjoint subsets 𝑆1, . . . , 𝑆𝑚 such that, for every 𝑘 ∈ [𝑚],
𝑆𝑘 = {𝑠1

𝑘
, 𝑠2
𝑘
, 𝑠3
𝑘
} and 𝑠1

𝑘
+ 𝑠2

𝑘
+ 𝑠3

𝑘
= 𝑇 ?

Let us note that in the standard formulation of 3-Partition,

condition (iii) is usually not required, however, the problem re-

mains strongly NP-hard even under such a condition [22]. More-

over, condition (iii) also implies that for any 𝑆 ⊆ {𝑥1, 𝑥2, . . . , 𝑥3𝑚} if∑
𝑥∈𝑆 𝑥 = 𝑇 , then |𝑆 | = 3. Consequently, any partition into subsets,

each having sum 𝑇 , is a partition into triples.

Reduction. Given a 3-Partition instance, let us construct the

friendship graph 𝐺 𝑓 representing the corresponding FA instance.

Element-cliques: Each of these cliques represents a specific ele-

ment in the ground set of the 3-Partition instance. In particular,

for every ℎ ∈ [3𝑚], we create a bidirectional clique 𝐾ℎ of size 𝑥ℎ .

Set-cliques: We create 𝑚 bidirectional cliques 𝐾1

𝑋
, . . . , 𝐾𝑚

𝑋
each

one being of size 𝑋 = 4𝑚2𝑇 . The choice of 𝑋 is made in such a way

that we can use the cliques 𝐾1

𝑋
, . . . , 𝐾𝑚

𝑋
to interpret a coalition in

an optimum partition, for the FA instance, as a set in the partition

of the ground set for the 3-Partition instance.

Connections between cliques: We add 𝑥ℎ bidirectional edges

between 𝐾ℎ and each 𝐾𝑘
𝑋
in such a way that there is exactly one

bidirectional edge between each vertex of 𝐾ℎ and some node in 𝐾𝑘
𝑋
.

Since |𝐾ℎ | = 𝑥ℎ < 𝑋 , this is always possible.

Notice that the number of agents is 𝑛 =
∑
3𝑚
ℎ=1

𝑥ℎ + 𝑚𝑋 =

𝑚𝑇 + 4𝑚3𝑇 ; thus, with 3-Partition being strongly NP-hard the

correctness of the reduction proves the NP-hardness of our problem.

The optimum in the reduced instance. As a first step to prove The-

orem 2, we need to understand the structure of a socially optimum

outcome for the reduced instance. Thanks to a number of auxiliary

lemmas, deferred to the full paper, we can conclude the following:

Proposition 1. In the reduced instance, any socially optimum

partition 𝜋∗ is made by exactly𝑚 coalitions and, for each 𝐶 ∈ 𝜋∗,
(a) there exists a unique 𝑘 ∈ [𝑚] such that 𝐾𝑘

𝑋
⊆ 𝐶 , and

(b) for every ℎ ∈ [3𝑚], either 𝐾ℎ ⊆ 𝐶 or 𝐾ℎ ∩𝐶 = ∅.

To give an intuition, we chose𝑋 sufficiently large so that putting

two cliques of size 𝑋 in the same coalition would introduce too

many negative relationships. Moreover, the positive connections

between a clique (of both types, 𝐾𝑘
𝑋
or 𝐾ℎ) are particularly sparse

if compared to their size, which guarantees that these cliques will

not be split in any optimum outcome.

Proposition 1 turns out to be very helpful in restricting the

outcomes that may possibly be optimum: in an optimum outcome,

there are exactly𝑚 coalitions 𝐶1, . . . ,𝐶𝑚 each one consisting of a

clique 𝐾𝑘
𝑋
and possibly some of the cliques {𝐾1, . . . , 𝐾3𝑚}. Let us

denote by Σ the set of such partitions and then let us make some

important observations about any 𝜋 ∈ Σ, which will help us to

establish the optimum social welfare. Let us count the number of

friendship and enemy relationships within coalitions of 𝜋 :

(1) The cliques never get split, and hence, inside the coalitions of

𝜋 there are always exactly 𝛼 =𝑚𝑋 (𝑋 −1) +∑3𝑚
ℎ=1

𝑥ℎ (𝑥ℎ −1)
friendship relations between the members of the cliques;

(2) any element-clique is in a coalition with exactly one set-

clique 𝐾𝑘
𝑋
, thus, the total number of the friendship relations

between element- and set-cliques within the coalitions of 𝜋

is constant and equals to 𝛽 =
∑
3𝑚
ℎ=1

2𝑥ℎ = 2𝑚𝑇 ;

(3) similarly, the total number of enemy relations between these

groups is also always equaling 𝛾 =
∑
3𝑚
𝑖=1 2𝑥ℎ · (𝑋 − 𝑥ℎ).

It remains to determine the enemy relationships between element-

cliques that are in the same coalition. Assume w.l.o.g. that 𝜋 =

(𝐶1, . . . ,𝐶𝑚) and 𝐾𝑘𝑋 ⊆ 𝐶𝑘 and denote by 𝑠𝑘 =
∑
ℎ: 𝐾ℎ⊆𝐶𝑘

𝑥ℎ .

Hence, the enemy relationships between element-cliques are∑𝑚
𝑘=1

𝑠𝑘 (𝑠𝑘 − 1) −
∑
3𝑚
ℎ=1

𝑥ℎ (𝑥ℎ − 1). Putting all together, ∀𝜋 ∈ Σ,

SW(𝜋) = 𝛼 + 𝛽 − 𝛾
𝑛
− 1

𝑛

(
𝑚∑︁
𝑘=1

𝑠𝑘 (𝑠𝑘 − 1) −
3𝑚∑︁
ℎ=1

𝑥ℎ (𝑥ℎ − 1)
)
.

The only aspect affecting the SW of 𝜋 ∈ Σ is how 𝐾1, . . . , 𝐾3𝑚
are

located in its coalitions. In particular, the social welfare is maximum

when

∑𝑚
𝑘=1

𝑠𝑘 (𝑠𝑘 −1) is minimum. Such a quantity is minimized for

𝑠1 = 𝑠2 = · · · = 𝑠𝑚 = 𝑇 . In conclusion, the 3-Partition instance is

a “yes” instance if and only if in the social optimum of the reduced

FA we have 𝑠1 = · · · = 𝑠𝑚 = 𝑇 . This proves Theorem 2.

5 AN APPROXIMATION MECHANISM

For the sake of achieving NOM in polynomial time, in this section,

we present a (4 + 𝑜 (1))-approximation mechanism. We recall that

in [19] it was shown that creating a coalition for each weakly con-

nected component of 𝐺 𝑓 is SP and guarantees an 𝑛-approximation

to the optimum. This is so far the best approximation achieved by

an SP mechanism. The bad performances of this mechanism can

be attributed to the fact that when 𝐺 𝑓 is weakly connected but

really sparse it would be convenient to split the unique weakly

connected component of 𝐺 𝑓 into smaller coalitions, see for in-

stance Example 3. To circumvent this problem, in [19], the authors

presented a randomized mechanism, which we will hereafter call

RandMech. It randomly splits the agents into two sets, each agent

having probability
1

2
of being in one of them, and then computes

the weakly connected components on the two sides. RandMech is

SP (in expectation) and guarantees an expected approximation ≤ 4.

Inspired by RandMech, we draw our deterministic and NOM

mechanism. Specifically, it partitions the agents into two sets, 𝑃1
and 𝑃2, of size

⌈
𝑛
2

⌉
and

⌊
𝑛
2

⌋
, respectively. It then updates 𝑃1 and 𝑃2,

through the subroutine ImproveSWmore formally described in the

full paper. ImproveSW repeatedly tries to improve SW({𝑃1, 𝑃2})
by swapping two agents, that is, simultaneously moving 𝑖 ∈ 𝑃1
to 𝑃2 and 𝑗 ∈ 𝑃2 to 𝑃1, or moving an agent from the largest to

the smallest coalition (in case the two sets have the same size

the algorithm will never perform move). ImproveSW terminates

when no swap or move can increase the SW. The mechanism then
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computes the weakly connected components in 𝑃1 and 𝑃2 which

will be the coalitions of the returned coalition structure.

To show themechanism is NOM, the initialization of {𝑃1, 𝑃2}will
be crucial. Recall that 𝛿 (𝑖) is the number of nodes weakly connected

to 𝑖 , while 𝑁 (𝑋 ), for 𝑋 ⊆ N , is the set of agents weakly connected

to 𝑋 . The mechanism will create the initial {𝑃1, 𝑃2} by greedily

adding agents to the set 𝑃1 in the following way: At first, it inserts

an agent 𝑖 ∈ N with highest 𝛿 (𝑖), then, iteratively proceeds by

including an agent 𝑗 ∈ 𝑁 (𝑃1) \ 𝑃1 with highest 𝛿 ( 𝑗) – ties broken

arbitrarily. This process continues until 𝑃1 contains exactly ⌈𝑛
2
⌉

agents. If at some point 𝑁 (𝑃1) \ 𝑃1 = ∅, the mechanism selects a

new agent 𝑖 ∈ N \ 𝑃1 with highest 𝛿 (𝑖), and proceeds as before. We

call this partition a greedy 2-partition of N . In summary:

MechanismM2. Given a set of agents N and their declarations

d, the mechanism creates a greedy 2-partition {𝑃1, 𝑃2}. Then, while
possible, it updates the partition using ImproveSW: {𝑃1, 𝑃2} ←
ImproveSW(𝑃1, 𝑃2). Finally, it computes 𝐶1, . . . ,𝐶𝑚 , the weakly

connected components of 𝑃1 and 𝑃2, and returns 𝜋 = {𝐶1, . . . ,𝐶𝑚}.

Theorem 3. For FA instances, MechanismM2 is NOM and guar-

antees a (4 + 𝑜 (1))-approximation of the optimum in polynomial

time.

Let 𝜋M2 = {𝐶1, . . . ,𝐶𝑚} be the outcome ofM2. We denote by

𝑓𝜋 the number of friendships within the coalitions in a partition 𝜋 .

Observation 1. If 𝜋 and 𝜋 ′ are the partitions before and after the
execution of a swap or move step by ImproveSW duringM2, then,

SW(𝜋 ′) − SW(𝜋) = (𝑓𝜋 ′ − 𝑓𝜋 ) (1 + 1/𝑛) .

Proof. Let 𝑠 = ⌈𝑛
2
⌉ ·

(
⌈𝑛
2
⌉ − 1

)
+ ⌊𝑛

2
⌋ ·

(
⌊𝑛
2
⌋ − 1

)
be the total

number of possible connections within the coalitions of 𝜋 . We

notice that 𝑠 is also the number of possible connections within the

coalitions of 𝜋 ′. In fact, a swap or move executed by the mechanism

does not change the sizes and the number of coalitions. Therefore,

SW(𝜋) = 𝑓𝜋
(
1 + 1

𝑛

)
− 𝑠
𝑛 , and the same holds for SW(𝜋 ′) replacing

𝑓𝜋 with 𝑓𝜋 ′ . Hence, the thesis follows. □

In other words, a swap or a move in {𝑃1, 𝑃2} is convenient for
the social welfare if and only if it strictly increases the number of

positive relationships within coalitions. Such an observation implies

that at most 𝑓 ≤ 𝑛(𝑛 − 1) swaps and moves will occur, therefore,

the mechanism is polynomial. We next showM2 is NOM.

ProofM2 is NOM. We show that for any agent 𝑖 there is no

incentive to misreport her true preferences to improve either the

best- or the worst-case scenario showing that both Condition 1 and

2 of the definition of NOM hold true.

Condition 1. Recall that 𝐹𝑖 is the truthful set of 𝑖’s friends of

size 𝑓𝑖 . We start by noticing that, regardless of 𝑑𝑖 , in any outcome

of the mechanism 𝑖 cannot be put in a coalition with more than

min{𝑓𝑖 ,
⌈
𝑛
2

⌉
− 1} friends; in fact, no coalition can have more than⌈

𝑛
2

⌉
agents. We next show that if 𝑖 truthfully reports 𝑡𝑖 , there exists

d−𝑖 such that 𝑖 gets inM2 (𝑡𝑖 , d−𝑖 ) utility equal to min{𝑓𝑖 ,
⌈
𝑛
2

⌉
− 1}.

If 𝑓𝑖 ≤
⌈
𝑛
2

⌉
− 1, let d−𝑖 be such that 𝐹𝑖 is a bidirectional clique in

𝐺 𝑓 (𝑡𝑖 , d−𝑖 ) and all agents in 𝐹𝑖 consider 𝑖 a friend. The remaining

agents are isolated. In this case, it is easy to see, the mechanism will

output 𝐹𝑖 ∪ {𝑖} in a coalition and the other agents in singletons.

If 𝑓𝑖 >
⌈
𝑛
2

⌉
− 1, let 𝐴 ⊆ 𝐹𝑖 such that |𝐴| =

⌈
𝑛
2

⌉
− 1. We choose

d−𝑖 so that 𝐴 is a bidirectional clique and 𝑖 is a friend for 𝑗 if and

only if 𝑗 ∈ 𝐴. No other friendship relationship exists. In this case,

when initializing 𝑃1, 𝑃2, the mechanism will set 𝑃1 = 𝐴 ∪ {𝑖} and
𝑃2 = N \ 𝑃1. In fact, for any agent 𝑗 ∉ 𝐴 ∪ {𝑖}, we have 𝛿 ( 𝑗) ≤ 1

while 𝐴 ∪ {𝑖} is weakly connected and each agent 𝑗 ′ ∈ 𝐴 ∪ {𝑖} has
𝛿 ( 𝑗 ′) = |𝐴| > 1. The subroutine ImproveSW will not change the

partition {𝑃1, 𝑃2} as no agent in 𝐴 is weakly connected to 𝑃2 and

the number of positive relations between 𝑖 and 𝐴 is higher than for

the ones between 𝑖 and 𝑃2, hence, no swap or move is profitable for

the SW.

Putting all together, by truthfully reporting, it is possible for 𝑖 to

end up in a coalition of value min{𝑓𝑖 ,
⌈
𝑛
2

⌉
− 1}. Since, regardless of

the declaration of 𝑖 , she cannot achieve a strictly higher utility in

an outcome ofM2, Condition 1 of NOM is satisfied.

Condition 2. Recall 𝑒𝑖 is the size of the truthful set of enemies 𝐸𝑖 .

If 𝑒𝑖 ≥
⌈
𝑛
2

⌉
− 1, given𝐴 ⊆ 𝐸𝑖 with |𝐴| =

⌈
𝑛
2

⌉
− 1, for any possible

declaration 𝑑𝑖 of 𝑖 , we select d−𝑖 so that 𝐴 is a bidirectional clique

and 𝑖 is a friend for 𝑗 if and only if 𝑗 ∈ 𝐴. No other friendship

relationship exists. Also in this case, the mechanism will set 𝑃1 =

𝐴 ∪ {𝑖} and 𝑃2 = N \ 𝑃1 and no swap and move will take place.

Being 𝑃1 weakly connected, 𝑖 will end up in a coalition with

⌈
𝑛
2

⌉
− 1

enemies. Since the mechanism outputs coalitions of size at most

⌈
𝑛
2

⌉
,

in no outcome ofM2 𝑖 has a worse utility. Therefore, no misreport

of 𝑖 can guarantee her a strictly better worst-case.

If 𝑒𝑖 <
⌈
𝑛
2

⌉
− 1, which implies, 𝑒𝑖 ≤

⌊
𝑛
2

⌋
− 1, we start by showing

that if 𝑖 truthfully reports 𝑡𝑖 , then, 𝑖 cannot be in a coalition with

less than

⌊
𝑛
2

⌋
− 𝑒𝑖 − 1 friends. In fact, let 𝜋 = {𝑃1, 𝑃2} be the

partition beforeM2 computes the weakly connected components.

Assume 𝑖 ∈ 𝑃ℎ , for some ℎ ∈ [2]. Then, the number of agents

other than 𝑖 in 𝑃ℎ is at least

⌊
𝑛
2

⌋
− 1. Thus, |𝐹𝑖 ∩ 𝑃ℎ | is minimized

when |𝑃ℎ \ {𝐹𝑖 ∪ {𝑖}}| = 𝑒𝑖 , and hence 𝑖 has at least
⌊
𝑛
2

⌋
− 𝑒𝑖 − 1

friends in 𝑃ℎ . Since the coalition of 𝑖 will be the weakly connected

component of 𝑖 in 𝑃ℎ , 𝑖 will be put in a coalition containing 𝐹𝑖 ∩ 𝑃ℎ .
In conclusion, whatever the partition of 𝑖 is, by truthfully reporting,

𝑖 will always be in a coalition with at least

⌊
𝑛
2

⌋
−𝑒𝑖 −1many friends.

We next show that, regardless of the declaration of 𝑖 , there exists

d−𝑖 such that 𝑖 is put in a coalition with all her enemies and

⌊
𝑛
2

⌋
−

𝑒𝑖 − 1 many friends. Let 𝐴 = N \ {𝐸𝑖 ∪𝑋 ∪ {𝑖}} where 𝑋 ⊂ 𝐹𝑖 such
that |𝐸𝑖 ∪ 𝑋 ∪ {𝑖}| =

⌊
𝑛
2

⌋
, which implies, |𝐴| =

⌈
𝑛
2

⌉
. Let d−𝑖 be such

that 𝐴 is a bidirectional clique, all agents in 𝐸𝑖 consider 𝑖 a friend.

In this case, initially, the mechanism will set 𝑃1 = 𝐴 \ { 𝑗} ∪ {𝑖},
for some 𝑗 ∈ 𝐴. In fact, for this instance, 𝛿 (𝑖) = 𝑛 − 1, 𝛿 ( 𝑗 ′) =
|𝐴| > 1, for all 𝑗 ′ ∈ 𝐴, and 𝛿 ( 𝑗 ′′) = 1, for all 𝑗 ′′ ∈ N \ {𝐴 ∪
{𝑖}}. Moreover, 𝐴 ∪ {𝑖} is weakly-connected, hence, computing the

greedy 2-partition the mechanism selects at first 𝑖 and then

⌈
𝑛
2

⌉
− 1

agents in𝐴. The mechanism will then improve the social welfare of

{𝑃1, 𝑃2} with ImproveSW. ImproveSW(𝑃1, 𝑃2) will perform only

the swap of 𝑖 and 𝑗 as this strictly increases the number of friendship

relationships within coalitions – no agent in 𝐴 considers 𝑖 a friend

while all of them consider 𝑗 a friend, and 𝑗 is not connected to any

agent in 𝐴 ∪ {𝑖} while 𝑖 possibly is. Once 𝑃1 = 𝐴, no other swap

or move will occur – a swap or move cannot strictly increase the

number of positive relationships within coalitions. Therefore, the

mechanisms will compute the weakly connected components in 𝑃1
and 𝑃2. Since 𝑃2 = 𝐸𝑖 ∪𝑋 ∪ {𝑖} is weakly connected, 𝑖 will be put in
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the coalition 𝑃2, and this is so, regardless of the declaration of 𝑖 . This

scenario is the worst possible for 𝑖 among the possible outcomes

ofM2: in fact, we have shown that 𝑖 cannot have strictly fewer

friends and in this coalition the number of enemies is maximum.

In conclusion, there is no way for 𝑖 to increase the worst outcome

by misreporting her preferences. This shows that Condition 2 is

satisfied and concludes our proof. □

To determine the approximation ratio ofM2, we need to estab-

lish a lower bound for 𝑓𝜋M2
, the number of friendships within the

coalitions of 𝜋M2
, w.r.t. the overall friendship relationships 𝑓 .

Lemma 7. For an FA instance with 𝑓 friendships, 𝑓𝜋M2
≥ 𝑛−2

2𝑛−1 𝑓 .

Proof. Let 𝑓𝑆1,𝑆2 be the number of edges between 𝑆1 and 𝑆2 and

𝑓𝑆 be the number of edges within 𝑆 , for 𝑆1, 𝑆2, 𝑆 ⊆ N .

Let {𝑃1, 𝑃2} be the output of ImproveSW during the execution

ofM2. When splitting {𝑃1, 𝑃2} into weakly connected components

the number of friendship relationships within coalitions remains the

same. Therefore, 𝑓𝜋M2
equals 𝑓𝑃1 + 𝑓𝑃2 . Moreover, when ImproveSW

terminates, a swap of two agents of 𝑃1 and 𝑃2 does not increase the

SW. Thus, for every 𝑖 ∈ 𝑃1 and 𝑗 ∈ 𝑃2,
𝑓{𝑖 },𝑃2\{ 𝑗 } − 𝑓{𝑖 },𝑃1\{𝑖 } + 𝑓{ 𝑗 },𝑃1\{𝑖 } − 𝑓{ 𝑗 },𝑃2\{ 𝑗 } ≤ 0 ,

as, from Observation 1, a swap is performed as long as it strictly

increases the number of friendships within 𝑃1 and 𝑃2.

Summing up these inequalities for all 𝑖 ∈ 𝑃1 and 𝑗 ∈ 𝑃2:
( |𝑃2 | − 1) · 𝑓𝑃1,𝑃2 − 2|𝑃2 | · 𝑓𝑃1 + (|𝑃1 | − 1) · 𝑓𝑃2,𝑃1 − 2|𝑃1 | · 𝑓𝑃2 ≤ 0 .

Since 𝑓𝑃1,𝑃2 = 𝑓 − 𝑓𝜋M2
, |𝑃1 | =

⌈
𝑛
2

⌉
, and |𝑃2 | =

⌊
𝑛
2

⌋
,

(
⌈𝑛
2

⌉
+

⌊𝑛
2

⌋
− 2) · (𝑓 − 𝑓𝜋M2

) − 2
⌊𝑛
2

⌋
· 𝑓𝑃1 − 2

⌈𝑛
2

⌉
· 𝑓𝑃2 ≤ 0

and, using

⌊
𝑛
2

⌋
≤

⌈
𝑛
2

⌉
≤ 𝑛+1

2
and

⌊
𝑛
2

⌋
+

⌈
𝑛
2

⌉
= 𝑛, we finally derive

(𝑛 − 2) (𝑓 − 𝑓𝜋M2
) ≤ 2

⌈𝑛
2

⌉ (
𝑓𝑃1 + 𝑓𝑃2

)
≤ (𝑛 + 1) · 𝑓𝜋M2

.

In conclusion,
2𝑛−1
𝑛−2 𝑓𝜋M2

≥ 𝑓 . □

This lemma constitutes the bulk of the proof of the approxima-

tion guarantee. We defer the details to the full paper. In a nutshell,

we use essentially the same analysis as was made for RandMech,

which has an expected approximation ratio of at most 4. Rand-

Mech, however, guarantees that in expectation exactly 𝑓 /2 positive
edges are within coalitions of the outcome, while, by the above

lemma, we only have that at least 𝑓 ·
(
1

2
− 𝑜 (1)

)
positive relations

are within coalitions, which leads to the approximation factor of

4+𝑜 (1). In the full paper, we also show that there exists an instance

where the approximation factor ofM2 is 4 − 𝑜 (1).

6 ENEMIES AVERSION PREFERENCES

Enemies Aversion (EA) preferences are the counterpart of FAwhere

agents give priority to coalitions with fewer enemies, and when the

number of enemies is the same, they prefer coalitions with a higher

number of friends. This can be encoded in the class of ASHG with

values 𝑣𝑖 ( 𝑗) = 1

𝑛 , if 𝑗 ∈ 𝐹𝑖 , and 𝑣𝑖 ( 𝑗) = −1, otherwise. For this class,
in [19], it has been shown that the optimum is hard to approximate

within a factor 𝑂 (𝑛1−𝜖 ), for any positive 𝜖 . Moreover, a poly-time

and 𝑂 (𝑛)-approximating SP mechanism exists but, even if the time

complexity is not a concern, strategyproofness and optimality are

not compatible. It is therefore natural to wonder if optimality is

compatible with NOM. Unfortunately, this is not the case.

Theorem 4. For EA preferences, no optimum mechanism is NOM

Proof. Let us consider an instance where agent 𝑖 has exactly

one enemy in 𝐸𝑖 , the truthful set of enemies. If all other agents

declare everyone else as friends, the grand coalition is the social

optimum and 𝑖 gets utility of
𝑛−2
𝑛 − 1. We do not know if this is the

worst case, but this means that at least one outcome where when

reporting truthfully 𝑖 ends up with strictly negative utility exists.

Assume now agent 𝑖 declares everyone is her enemy. Then, in

any social optimum, 𝑖 is put in the singleton coalition and obtains

utility 0. So, this manipulation improves the worst case and violates

Condition 2 in the definition of NOM, which makes the mechanism

outputting the social optimum obviously manipulable. □

It has also been proven that an SP and (1 +
√
2)-approximating

mechanism exists [19]. It would be interesting to further investigate

what are the boundaries of approximating SP or NOM mechanisms

when time complexity is out of discussion.

7 CONCLUSIONS

In this paper, we investigated NOM in HGs with FA preferences,

aiming at designing mechanisms optimizing the social welfare

while preventing manipulation. Despite proving that computing a

welfare-maximizing partition is NP-hard, we showed that a NOM

mechanism computing the optimum always exits. In turn, for EA
preferences, such a mechanism cannot exist. To address the compu-

tational challenges of optimal outcomes under FA, we presented a

(4+𝑜 (1))-approximation mechanism that is NOM and runs in poly-

nomial time. This mechanism not only improves on the best-known

strategyproof mechanism, which provides a linear approximation

in the number of agents, but also represents the first deterministic

constant-factor approximation algorithm for FA preferences; this

is an interesting contrast to EA preferences for which it is hard to

approximate the optimum within a factor of 𝑂 (𝑛1−𝜖 ).
Interesting future research directions include the study of NOM

for more general classes of HGs: for example, in ASHGs no bounded

approximation is possible when requiring SP, so, it would be natural

to consider a weaker notion of manipulability. Conversely, future

work may focus on desirable properties like stability, welfare maxi-

mization (even beyond the utilitarianwelfare), efficiency, or fairness,

determining which kind of manipulations they are sensitive to.
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