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ABSTRACT
We introduce a new criterion, order symmetry, for assignment

mechanisms that match 𝑛 objects to 𝑛 agents having ordinal prefer-

ences over the objects. An assignmentmechanism is order-symmetric

with respect to a given probability measure over preference profiles

if every agent has equal probability of receiving their favorite ob-

ject, equal probability of receiving their second favorite, and so on.

Crucially, and unlike other fairness notions such as anonymity or

envy-freeness, order symmetry can be satisfied by discrete assign-

ment mechanisms when associated with a sufficiently symmetric

probability measure. It can also be interpreted as a criterion of

procedural fairness or fairness under uncertainty. Furthermore,

it can be achieved without sacrificing other desirable axiomatic

properties satisfied by existing mechanisms. In particular, we show

that it can be achieved in conjunction with strategyproofness and

efficiency by the Top Trading Cycles mechanism, but not by Serial

Dictatorship. We also use the lens of order symmetry to improve

the fairness of existing mechanisms with no loss in social welfare,

focusing on the widely used family of Boston mechanisms. In addi-

tion to theoretical results, we present simulations using data from

the Mallows distribution over its full range of parameters, which

show an improvement in fairness even on probability measures for

which full order symmetry is impossible.
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1 INTRODUCTION
Suppose that two agents Alice and Bobmust each receive a fruit, and

a banana and apple are available. Each agent has a strict preference

order for the fruits. If the agents have different top choices, then

each can get their top choice. However if their top choices coincide,

only one agent can get it, while the other must get their second

choice. If we do not know in advance the agents’ preferences over

the fruits, we need a mechanism to allocate the fruits.

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.
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Two common allocation mechanisms are Top Trading Cycles

(TTC) and Serial Dictatorship (SD). In the two-agent case as above,

SD selects one agent to choose first, leaving the other with the

remaining item. If Alice chooses first, she gets her top choice in

all four possible preference profiles, while Bob does so only in the

two profiles where their preferences differ. Under TTC, items are

initially assigned arbitrarily, and agents swap if both prefer the

other’s item. A simple calculation shows that each agent receives

their first choice in three profiles—for example, Bob only fails when

preferences are identical (we call this a unanimous profile) and
Alice is initially assigned the common top choice. Table 1 details

these outcomes. Intuitively, TTC produces a fairer collection of

allocations than SD.
1

This toy example encapsulates the key aspects of the general

case we analyze in this paper. First, the allocation mechanism must

be chosen without knowing the agents’ preferences. Second, in

the absence of such knowledge, all possible preference profiles are

considered. Third, the goal is to equalize each agent’s chances of

achieving good outcomes, avoiding any a priori advantage.
The Alice and Bob scenario above is an instance of the house

allocation problem (also known as the assignment problem or the

one-sided matching problem). In that problem, 𝑛 indivisible objects

must be matched to 𝑛 agents, each with an ordinal preference over

the objects, and monetary transfers are not allowed. It models a

number of real-world resource allocation settings such as assigning

rooms to college students and assigning schools to students in a

school district, and has been studied extensively in economics [10,

20, 44], operations research [6, 17, 41], and computer science [2, 22,

29, 40]. The model was introduced by Hylland and Zeckhauser [25],

who also mention assigning legislators to committees.

In the discrete deterministic model of house allocation described

above, some outcome asymmetry is inevitable. With unanimous

preferences, one agent gets the best object while another gets the

worst. This inherently violates several fairness notions, including

anonymity (i.e., symmetric treatment of agents), equal-treatment-

of-equals (i.e., agents with identical preferences receive the same

allocation), and envy-freeness (i.e., no agent should prefer another’s

allocation to her own) [22]. However, the Alice and Bob example

suggests a new fairness criterion based on average-case analysis.

Given a probability measure 𝑃 on profiles, a mechanism is fair

(with respect to 𝑃 ) if all agents do equally well in expectation with
respect to 𝑃 . Note that this property makes sense for deterministic

mechanisms, and we are discussing something conceptually quite

distinct from the randomization in a randomized mechanism.

1
While this argument implicitly assumes all profiles are equally likely, the conclusion

holds for any full-support distribution over the four profiles.
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Alice prefs Bob prefs SD outcome SD ranks TTC outcome TTC ranks

𝑎 ≻ 𝑏 𝑎 ≻ 𝑏 𝐴 : 𝑎, 𝐵 : 𝑏 𝐴 : 1, 𝐵 : 2 𝐴 : 𝑎, 𝐵 : 𝑏 𝐴 : 1, 𝐵 : 2

𝑎 ≻ 𝑏 𝑏 ≻ 𝑎 𝐴 : 𝑎, 𝐵 : 𝑏 𝐴 : 1, 𝐵 : 1 𝐴 : 𝑎, 𝐵 : 𝑏 𝐴 : 1, 𝐵 : 1

𝑏 ≻ 𝑎 𝑎 ≻ 𝑏 𝐴 : 𝑏, 𝐵 : 𝑎 𝐴 : 1, 𝐵 : 1 𝐴 : 𝑏, 𝐵 : 𝑎 𝐴 : 1, 𝐵 : 1

𝑏 ≻ 𝑎 𝑏 ≻ 𝑎 𝐴 : 𝑏, 𝐵 : 𝑎 𝐴 : 1, 𝐵 : 2 𝐴 : 𝑎, 𝐵 : 𝑏 𝐴 : 2, 𝐵 : 1

Table 1: Alice, Bob and their fruits. We assume the initial endowment for TTC is 𝐴 : 𝑎, 𝐵 : 𝑏.

This idea clarifies why serial dictatorship and similar mecha-

nisms that rely on a fixed choosing or tiebreak order are unfair—

some agents consistently fare better across all profiles. Since agents

provide only ordinal preferences, we evaluate fairness based on the

rank of their assigned object. A mechanism is order-symmetric with

respect to 𝑃 if all agents have equal probabilities of receiving their

top object, their second object, and so on, reflecting the intuition

that agents are not systematically ordered by the mechanism. If

these probabilities differ, the discrepancy serves as a measure of

unfairness, which we call the order bias of the mechanism.

In independent and simultaneous work, Long and Velez [32]

(based on the results of Long [31]) also consider average-case fair-

ness for house allocation and obtain complementary results to ours.

They define balancedness, which is equivalent to order symmetry

with respect to the uniform measure on profiles, and show that

TTC is (with an exception for three agents) the only mechanism

that is balanced, efficient, and group strategyproof. However, they

do not consider non-uniform measures on profiles or suggest any

new mechanisms. Some other work also uses average-case analysis.

Pycia and Ünver [39] show that their brokered trading cycles mech-

anisms can be more equitable (on average over profiles) to agents

than TTC in an asymmetric house allocation problem in which

the mechanism designer has preferences over allocations; we do

not consider such preferences in our work. Harless and Manjunath

[24] consider a model where agents have the same expected utility

function over items but each is able to discover their exact utility

for only one object. While the model is quite different from ours

the conclusion is similar: TTC distributes expected utility (with

expectation taken over uncertainty in the utility functions) more

evenly than SD. Other work examining average-case analysis in

the one-sided matching setting [18, 21, 23] has focused on social

welfare approximation rather than symmetry in agent outcomes.

Beyond house allocation, Ozkes and Sanver [36] study the general

social choice setting in which voters submit complete preferences

over a set of alternatives, and define consequential neutrality, a re-
laxation of neutrality (i.e., symmetric treatment of alternatives) that

requires each alternative to win under the same number of profiles.

Consequential neutrality is reminiscent of order symmetry. How-

ever, we are more interested in relaxing anonymity because we care

about fairness to agents and because, unlike anonymity, neutrality

can be satisfeid exactly in house allocation (e.g., by running serial

dictatorship). The work of Manshadi et al. [34] is conceptually sim-

ilar to ours but addresses a different problem, where agents arrive

dynamically and request quantities of a divisible good.

1.1 Why should we care about order symmetry?
Fairness is a rather nebulous concept, and is often thought of in

terms of outcomes after preferences are known (outcome fairness

or equity). We cannot achieve complete outcome fairness with a

deterministic discrete mechanism in the worst case (as shown by a

unanimous profile). Instead, order symmetry guarantees average-

case fairness. Order symmetry can also be thought of as outcome

fairness where the uncertainty of the mechanism designer about

agent preferences is encoded by the probability measure 𝑃 , and

fairness in expectation over 𝑃 is the desired result.

We now give two more related justifications for order symmetry.

A competing idea of fairness is procedural fairness or equal-
ity of opportunity, which requires a priori symmetry between

agents, with outcomes determined solely by their preferences. In

social choice theory, this is typically formalized as anonymity, but

anonymity is unattainable for discrete assignment mechanisms. A

natural relaxation is order symmetry, which ensures that, absent

preference information, no agent has a systematic advantage. Order

symmetry also relates to accountability and transparency on

the part of the mechanism designer. If all agents receive the same

expected outcome quality and the mechanism is chosen before pref-

erences are known, the designer is insulated from manipulation

claims, as no agent can be placed in a systematically stronger or

weaker position.

As anecdotal evidence that order symmetry aligns with human

values, we conducted a short poll of researchers attending the 2023

COMSOC workshop on computational social choice. We simply

defined for them the standard and reversing forms of the Boston

mechanism (see Section 5) and asked which of the two they per-

ceived to be more fair. Out of 42 respondents, 24 (57%) said that

the reversing variant was more fair, 17 (41%) said that both were

equally fair, and only 1 (2%) said that the standard variant was more

fair. Furthermore several participants provided justifications that

alluded to equalizing outcomes for agents having different posi-

tions. As we will see in Section 5, the two versions achieve the same

welfare but the reversing variant is less biased than the standard

variant (this was not told to the participants in the poll).

1.2 Our contribution, and outline of the paper
Our main conceptual contribution is to define the concept of order
symmetry (Section 3), a natural and novel fairness guarantee for

assignment mechanisms, defined with respect to a probability mea-

sure on profiles. We additionally define order bias, a quantitative
measure of the failure of order symmetry, which allows us to com-

pare mechanisms even in settings where perfect order symmetry

cannot or ought not be satisfied. A common thread throughout the

paper is the use of order symmetry/bias as a lens for mechanism

design—we see on several occasions that variants of common mech-

anisms can be defined to improve fairness without sacrificing other

guarantees. Our claims are substantiated through a combination of

axiomatic, probabilistic, and numerical analysis.
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In Section 4, we compare and contrast SD and TTC from the

perspective of order symmetry. Although both mechanisms are

strategyproof and efficient, we show that TTC is order-symmetric

with respect to any fully symmetric probability measure while SD

has the maximum order bias among a natural class of mechanisms

with respect to the uniform measure. Using the perspective of order

symmetry, we consider two variants of SD, including one which

preserves strategyproofness and efficiency, and outperforms TTC

in terms of order bias in numerical simulations for a wide range of

Mallows distributions.

In Section 5, we examine the common-tiebreak Boston mecha-

nism, which is efficient but not strategyproof. Though not generally

order-symmetric, except for very specific probability measures, it

exhibits low order bias in simulations. To further reduce bias, we

propose two independent improvements. The first introduces cyclic,

object-specific priorities over the agents, making the mechanism

order-symmetric under fully symmetric probability measures and

yielding strong benefits in simulation. (Technically this mechanism

is a member of the class of Boston mechanisms, with the standard

variant having all objects use the same priority ordering over the

agents.) The second modifies object priorities via reversal during

the algorithm, creating novel mechanisms outside the Boston class

and achieving a moderate but meaningful reduction in order bias.

2 PRELIMINARIES
Let 𝑛 be a positive integer and let 𝑂 = {𝑜1, . . . , 𝑜𝑛} be an ordered

set of objects having cardinality 𝑛 and 𝐴 = {𝑎1, . . . , 𝑎𝑛} an ordered

set of agents. Each agent 𝑎𝑘 has a strict linear order ≻𝑘 over the

objects, called its preference order . This yields a preference profile
which we write 𝜋 = (≻1, . . . , ≻𝑛) = (𝜋 (1), . . . , 𝜋 (𝑛)). We write the

preference order of agent 𝑘 as (𝜋 (𝑘)1, . . . , 𝜋 (𝑘)𝑛). We let Π(𝐴,𝑂)
denote the set of all preference profiles.

An assignment is a bijective mapping taking 𝐴 to 𝑂 . Note that

each assignment can be represented by a permutation matrix with

rows indexed by agents and columns by objects. For an assignment

𝛼 we write 𝛼 (𝑖) to denote the object assigned to agent 𝑖 . An as-
signment mechanism A is a function associating an assignment

A(𝜋) with each profile 𝜋 .

As is common, we assume agents care only about their assigned

object, allowing us to infer their preferences over assignments. This

may include indifferences, as an agent might receive the same object

in multiple assignments. In order to simplify notation, we can write

𝛼 ⪰𝑖 𝛽 to mean that agent 𝑖 weakly prefers assignment 𝛼 to 𝛽 ,

and 𝛼 ≻𝑖 𝛽 to mean a strict preference. In terms of our previous

notation, 𝛼 ≻𝑖 𝛽 if and only if 𝛼 (𝑖) ≻𝑖 𝛽 (𝑖).
It will be helpful to introduce two common assignment mecha-

nisms. The Serial Dictatorship (SD) mechanism works as follows:

fix an exogenous order 𝜌 on the agents, and let them choose in turn

according to 𝜌 their highest ranked object from those remaining. Let

us also define the Top Trading Cycles (TTC) algorithm, originally

presented by Shapley and Scarf [42] and attributed to David Gale.

Fix an initial assignment (or endowment) of objects to agents. Each

agent 𝑖 points to the agent currently assigned their most preferred

object. It is clear that there must be at least one cycle (including

possible self-cycles if an agent already holds their top choice). For

each cycle, execute the indicated trade by reassigning each object to

the agent pointing to it, then remove all involved agents and objects.

Repeat this process—having agents point to their most preferred

remaining object and clearing cycles—until no cycles remain. After

all cycles have been cleared, have the agents once again point to

their most-preferred remaining object and continue clearing cycles;

terminate when there are no cycles left.

Example 2.1. Consider the profile where agents 𝑎1, 𝑎2, 𝑎3 have
respective preferences over objects 𝑜1, 𝑜2, 𝑜3 as follows.

𝑎1 : 𝑜1 ≻ 𝑜2 ≻ 𝑜3, 𝑎2 : 𝑜1 ≻ 𝑜3 ≻ 𝑜2, 𝑎3 : 𝑜2 ≻ 𝑜1 ≻ 𝑜3 .

SD with picking order 𝑎1, 𝑎2, 𝑎3 assigns 𝑜1 to 𝑎1, 𝑜3 to 𝑎2, and

𝑜2 to 𝑎3. It is easy to check that the same assignment is output

by running TTC with initial endowment that assigns object 𝑜𝑖 to

agent 𝑎𝑖 for each 𝑖 . On the other hand, if the initial endowment had

assigned 𝑎1 ← 𝑜2, 𝑎2 ← 𝑜1, 𝑎3 ← 𝑜3 then the resulting assignment

gives 𝑜2 to 𝑎1, 𝑜1 to 𝑎2, and 𝑜3 to 𝑎3.

We conclude this section with some important properties of

assignment mechanisms. Efficiency requires that an assignment

mechanism never outputs an assignment for which some agent can

be made better off without hurting any other agent.

Definition 2.2 (efficiency). Let 𝛼 be an assignment. We say that

𝛼 is efficient if there does not exist an assignment 𝛼 ′ such that

𝛼 ′ (𝑘) ⪰𝑖 𝛼 (𝑘) for all agents 𝑘 ∈ 𝐴 and 𝛼 ′ (𝑖) ≻𝑖 𝛼 (𝑖) for some agent

𝑖 ∈ 𝐴. An assignment mechanism A is called efficient if A(𝜋) is
efficient for all 𝜋 ∈ Π(𝐴,𝑂).

Next, we would like assignment mechanisms for which an agent

can never improve its assignment by misreporting its preference

to the mechanism. For a profile 𝜋 , let 𝜋−𝑖 denote the reports of all
agents other than 𝑎𝑖 .

Definition 2.3 (strategyproofness). Assignment mechanism A is

strategyproof if, for all profiles 𝜋 ∈ Π(𝐴,𝑂) and all reports ≻′
𝑖
, it

holds that A(𝜋) ⪰𝑖 A(≻′𝑖 , 𝜋−𝑖 ).
SD and TTC are both known to be efficient and strategyproof.

Finally, we define anonymity, a common fairness criterion which

says that assignments should depend only on the preferences of the

agents, and not on their identities. We define it in terms of group

actions, which will be a helpful framework for the remainder of

the paper. Let 𝐺 denote the group Sym(𝐴) of all permutations of

the set of agents. Since we have ordered the set 𝐴 = {𝑎1, . . . , 𝑎𝑛}
we may identify 𝐺 with the symmetric group 𝑆𝑛 . The group 𝐺

acts on Π(𝐴,𝑂) via (𝑔 · 𝜋) (𝑎) = 𝜋 (𝑔−1 (𝑎)), and on assignments by

(𝑔 · 𝛼) (𝑎) = 𝛼 (𝑔−1 (𝑎)). As argued earlier, no discrete assignment

mechanism is anonymous.

Definition 2.4 (anonymity). Assignment mechanismA is anony-
mous if and only ifA(𝑔 ·𝜋) = 𝑔 ·A(𝜋) for each𝑔 ∈ 𝐺 , 𝜋 ∈ Π(𝐴,𝑂).

3 ORDER SYMMETRY
We now formalize the definition of order symmetry.

3.1 Order symmetry definition
Definition 3.1. Let A be an assignment mechanism and 𝜋 a pro-

file. The rank distribution under mechanismA at profile 𝜋 is the

mapping 𝐷𝜋,A on {1, . . . , 𝑛} × {1, . . . , 𝑛} whose value at (𝑟, 𝑗) is 1
if A assigns agent 𝑟 the object it ranks as 𝑗th best and 0 otherwise.
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As an illustration, consider the instance from Example 2.1. The

matrix representing the rank distribution arising from using SD

with picking order 𝑎1, 𝑎2, 𝑎3 and TTC with initial endowment 𝑜𝑖 to

agent 𝑎𝑖 is

[
1 0 0

0 1 0

1 0 0

]
since agents 𝑎1 and 𝑎3 receive their top object,

and agent 𝑎2 receives its second-top object.

Definition 3.2. Let 𝑃 be a probability measure on the set of all

profiles for a given 𝑛. The assignment mechanism A is order-
symmetric with respect to 𝑃 if for all 𝑗 , the following quantity is

independent of 𝑟 :

𝐸𝑃 [𝐷𝜋,A (𝑟, 𝑗)] :=
∑︁

𝜋∈Π (𝐴,𝑂 )
𝑃 (𝜋)𝐷𝜋,A (𝑟, 𝑗).

Thus a mechanism is order-symmetric if and only if all rows of

the rank distribution matrix are equal in expectation. The following

example illustrates the idea. Impartial Culture (IC) is the uniform
probability measure on the set of all profiles.

Example 3.3. Consider the case of agents 𝑎1, 𝑎2, 𝑎3 and objects

𝑜1, 𝑜2, 𝑜3, and assignmentmechanism SDwith picking order𝑎1, 𝑎2, 𝑎3.

By symmetry we may assume that the preference order of 𝑎1 is

𝑜1 ≻ 𝑜2 ≻ 𝑜3. This leaves 36 possibilities for the other two pref-

erence orders. Then 𝑎1 always chooses 𝑜1, 𝑎2 takes whichever of

𝑜2 and 𝑜3 is preferred and 𝑎3 is left with the last object, which

is equally likely to take any rank in its preference order. Unless

the first choice of 𝑎2 is 𝑜1, he gets his first object. The expected

rank distribution matrix under IC is therefore

[
1 0 0

2/3 1/3 0

1/3 1/3 1/3

]
. For TTC

with initial endowment that assigns 𝑜𝑖 to 𝑎𝑖 for 𝑖 ∈ {1, 2, 3}, the
expected rank distribution matrix under IC follows from computing

the outcome on each profile and is

[
2/3 2/9 1/9
2/3 2/9 1/9
2/3 2/9 1/9

]
.

From Examples 2.1 and 3.3, we see that TTC is order-symmetric

with respect to IC for 𝑛 = 3, but not with respect to the point mass

concentrated at the profile from Example 2.1. Also, SD with picking

order 𝑎1, 𝑎2, 𝑎3 is not order-symmetric with respect to either mea-

sure. Given these observations, it is natural to ask which probability

measures allow for the existence of order-symmetric mechanisms.

As the following example shows, there exist measures for which

no mechanism is order-symmetric, and measures for which order

symmetry is an easy condition to satisfy.

Example 3.4. Consider a unanimous profile, and let 𝑃 put all its

weight on this profile. Then every discrete assignment mechanism

allocates exactly one agent its most-preferred object, so that the

mechanism cannot be order-symmetric with respect to 𝑃 . On the

other hand, consider a measure with all its weight on contention-
free profiles, i.e., those where all agents have a different first prefer-
ence [43]. Any efficient discrete assignment mechanism will assign

each agent their top choice, thereby satisfying order symmetry.

3.2 Order bias
Example 3.4 shows that not all probability measures permit exis-

tence of an order-symmetric mechanism. Even for more permissive

measures, not all interesting assignment mechanisms are order-

symmetric. It is therefore useful to measure the deviation of a

mechanism from order symmetry. To define a quantitative measure

of bias with access to only ordinal information, we force a common

utility function on agents via a scoring rule.

Definition 3.5. A positional scoring rule is given by a sequence

𝑠 of real numbers 𝑠1 ≥ 𝑠2 ≥ · · · ≥ 𝑠𝑛 with 𝑠1 > 𝑠𝑛 .

Commonly used scoring rules include plurality defined by

(1, 0, 0, . . . , 0), antiplurality defined by (1, 1, 1, . . . , 0) and Borda
defined by 𝑠𝑖 = (𝑛 − 𝑖)/(𝑛 − 1). By equating the entries in a scoring

rule with utilities, we can define the expected utility of an agent

for some measure on profiles.

Definition 3.6. The expected utility of agent 𝑟 with respect to a

scoring rule 𝑠 , mechanism A and measure 𝑃 on profiles is

𝑈 (𝑟 ) := 𝑈A,𝑠,𝑃 (𝑟 ) =
∑︁
𝑗

𝑠 𝑗𝐸𝑃 [𝐷𝜋,A (𝑟, 𝑗)] .

We now require a measure of bias. An obvious choice is to con-

sider the maximum difference between two agents’ expected utili-

ties, normalized by the difference in utility for receiving the most-

and least-preferred objects:

𝛽𝑛 (A, 𝑠, 𝑃) =
max1≤𝑝,𝑞≤𝑛 |𝑈 (𝑝) −𝑈 (𝑞) |

𝑠1 − 𝑠𝑛
.

With the given normalization, 0 ≤ 𝛽𝑛 (A, 𝑠, 𝑃) ≤ 1. If A is order-

symmetric then 𝛽𝑛 (A, 𝑠, 𝑃) = 0, while the equality 𝛽𝑛 (A, 𝑠, 𝑃) = 1

is attained only if there are fixed agents 𝐴, 𝐵 such that with prob-

ability 1, 𝐴 attains its first choice and 𝐵 attains its worst choice.

While the latter situation will not happen often in practice, it can

happen, for example when 𝑃 has all its weight on profiles in which

all agents have the same preference order, and SD is used.

Example 3.7. Let 1 ≤ 𝑘 ≤ 𝑛 and let 𝑃𝑘 be any probability measure

whose support consists entirely of profiles for which agents 1, . . . , 𝑘

have the same preference, but the last 𝑛 − 𝑘 agents have different

first choices taken from the 𝑛 − 𝑘 bottom choices of the first 𝑘

agents. On each profile in the support of 𝑃𝑘 , SD with choosing

order 1, 2, . . . , 𝑛 assigns agent 𝑖 its 𝑖th choice for 1 ≤ 𝑖 ≤ 𝑘 and

the other agents their first choice. The same is true of TTC with

initial endowment where agent 𝑖 has object 𝑖 . Thus the order bias

of each of these algorithms with respect to 𝑃𝑘 and scoring rule 𝑠 is

(𝑠1 − 𝑠𝑘 )/(𝑠1 − 𝑠𝑛).
In the following sections, we use order symmetry and order bias

to discriminate between mechanisms on fairness grounds.

4 TOP TRADING CYCLES AND SERIAL
DICTATORSHIP

In this section we focus on TTC and SD, two of the most common

mechanisms in practical use. Both are efficient and strategyproof.

However, as we have alluded to in our illustrative example with

Alice and Bob (Section 1), SD is defined in a way that gives an

advantage to agents early in the picking order, whereas TTC does

not incorporate an inherent advantage for any agents, in the absence

of knowledge about the preferences. We make this intuition precise

in this section using our notion of order symmetry.

4.1 Fully symmetric measures and TTC
Considering Example 3.4, we would like to find a class of mea-

sures general enough to capture real-world settings, but not so
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general as to preclude the existence of order-symmetric mecha-

nisms. We introduce such a class in this subsection. Recall from

our definition of anonymity that 𝐺 denotes the group Sym(A)
of all permutations of the set of agents. Similarly, let 𝐻 denote

the group Sym(O) of all permutations of the set of objects. The

group 𝐺 acts on Π(A,O) via (𝑔 · 𝜋) (𝑎) = 𝜋 (𝑔−1 (𝑎)), and on as-

signments by (𝑔 · 𝛼) (𝑎) = 𝛼 (𝑔−1 (𝑎)), while 𝐻 acts on Π(A,O)
by (ℎ ★ 𝜋) (𝑎) = (ℎ(𝜋 (𝑎)1), · · · , ℎ(𝜋 (𝑎)𝑛) and on assignments by

(ℎ ★𝛼) (𝑎) = ℎ(𝛼 (𝑎)). The actions of 𝐺 and 𝐻 commute with each

other (reordering agents, then objects, gives the same result as re-

ordering objects, then agents), so that 𝑔 · (ℎ ★ 𝜋) = ℎ ★ (𝑔 · 𝜋) for
all 𝑔 ∈ 𝐺 , ℎ ∈ 𝐻 .

Definition 4.1. An anonymous probability measure on Π is

one for which 𝑃 (𝑔 · 𝜋) = 𝑃 (𝜋) for all 𝑔 ∈ 𝐺 and all 𝜋 ∈ Π. A
neutral probability measure on Π(𝐴,𝑂) is one for which 𝑃 (ℎ ★
𝜋) = 𝑃 (𝜋) for all ℎ ∈ 𝐻 and all 𝜋 ∈ Π. A probability measure is

fully symmetric if it is anonymous and neutral. In other words,

𝑃 (𝑔 · (ℎ ★ 𝜋)) = 𝑃 (𝜋) for all 𝑔 ∈ 𝐺,ℎ ∈ 𝐻 .

Note that 𝑃 is fully symmetric if and only if 𝑃 takes a constant

value on each orbit of 𝐺 × 𝐻 .

Example 4.2. Examples of fully symmetric measures include

Impartial Culture (each profile has the same weight), Impartial

Anonymous Culture (any two profiles in the same orbit under 𝐺

have the same weight and every orbit has the same total weight),

Impartial Anonymous Neutral Culture [19], and indeed the uniform

measure on any set of profiles defined without reference to an

order of agents or objects. For example, the set of all single-peaked

profiles is a common model for preferences where there is a single

dimension on which to evaluate objects.

A measure concentrated on a single unanimous profile is anony-

mous but not neutral. The uniform measure on profiles where all

even-indexed agents have the same preference and all odd-indexed

agents have the same preference is neutral but not anonymous.

We are now able to show our first main result, that TTC is

order-symmetric with respect to any fully symmetric measure. The

result generalizes Example 3.3, which showed that TTC is order-

symmetric with respect to IC for 𝑛 = 3. Intuitively, the result is

true because, under the assumption of symmetry between agents

and objects, no agent is systematically advantaged by their initial

endowment. The proof of Theorem 4.3, along with all other proofs,

can be found in the full version of the paper.

Theorem 4.3 (TTC is order-symmetric). TTC with any fixed
endowment is order-symmetric with respect to every fully symmetric
probability measure.

One may wonder whether Theorem 4.3 characterizes fully sym-

metric profiles, but it does not. Consider a measure 𝑃 that puts all

its weight on a single contention-free profile. Then TTC is order-

symmetric according to 𝑃 even though 𝑃 is not fully symmetric.

4.2 SD is far from order-symmetric
We have seen already in Example 3.3 that SD is not order-symmetric

with respect to IC. It is easy to guess that under SD, every row

of the expected rank distribution matrix stochastically dominates

each one below it, so that the last agent is the worst off. We can

give much more precise results, and compute the rank distribution

matrix under IC exactly for each 𝑛.

Theorem 4.4. LetA be SDwith picking order equal to {𝑎1, . . . , 𝑎𝑛},
and let 𝑃 be IC. Then

𝐸𝑃 [𝐷𝜋,A (𝑟, 𝑗)] =

(𝑛− 𝑗𝑟− 𝑗 )
( 𝑛
𝑟−1)

if 𝑗 ≤ 𝑟

0 if 𝑗 > 𝑟 .

In particular if 𝑟 = 𝑛, then agent 𝑟 is equally likely to get each

possible object. Combined with the fact that the first agent always

attains its first choice under SD, we have the following corollary.

Corollary 4.5. We have 𝛽𝑛 (𝑆𝐷, 𝑠, 𝐼𝐶) = 𝑠1−𝑠
𝑠1−𝑠𝑛 , where 𝑠 is the

mean of 𝑠 .

For example, for the Borda rule 𝛽𝑛 (𝑆𝐷, 𝑠, 𝐼𝐶) = 1/2, for plurality
𝛽𝑛 (𝑆𝐷, 𝑠, 𝐼𝐶) = 1 − 1/𝑛, and for antiplurality 𝛽𝑛 (𝑆𝐷, 𝑠, 𝐼𝐶) = 1/𝑛.

Proposition 4.6 says that SD is in fact the most order-biased of a

wide class of mechanisms. For each measure 𝑃 , we define C(𝑃) to
be the class of mechanisms for which the expected rank distribution

of each agent stochastically dominates the uniform distribution.

This is a weak welfare requirement that rules out, for example, the

mechanism that reverses the input profile before running SD.

Proposition 4.6. For every scoring rule, SD attains the maximum
order bias in C(𝐼𝐶).

Theorem 4.3 and Proposition 4.6 are striking in that they max-

imally separate TTC and SD in terms of order bias. These two

mechanisms, the two most prominent both in theory and practical

use, are both efficient and strategyproof, and their randomized ver-

sions are known to be equivalent in a strong sense [1, see Section 6

for additional discussion]. However, as exemplified by the Alice and

Bob example in the introduction, the two mechanisms feel quite

different in terms of fairness properties, and order bias turns out to

be the right definition to capture that difference.

4.3 More symmetric variants of SD
Despite its high order bias, SD does havemany qualities that explain

its widespread use in practice: it is simple to understand and play,

it requires each agent to report a choice of only a single object (as

opposed to a complete ranking), and it is strategyproof and efficient.

One may wonder whether these qualities can be preserved while

also mitigating its poor order bias.

One idea is to fix a bijection between agents and objects. For

simplicity, suppose agent 𝑎𝑖 is mapped to object 𝑜𝑖 for all 𝑖 . Fix an

ordering of the agents, without loss of generality (𝑎1, 𝑎2, . . . , 𝑎𝑛).
Define SD𝑐 as the mechanism in which the first 𝑐 agents choose

an object one at a time according to the fixed ordering as in SD,

but the remaining 𝑛 − 𝑐 agents choose in order determined by the

relative position of their corresponding object in agent 𝑎1’s pref-

erence. Agents who map to more-preferred objects choose earlier

than agents who map to less-preferred objects. Note that SD𝑛 and

SD𝑛−1 are simply SD, while SD0 has the picking order completely

determined by the reported preference of 𝑎1.

Example 4.7. Let 𝑛 = 3 and suppose that agent 𝑎1 reports pref-

erence 𝑜3 ≻ 𝑜1 ≻ 𝑜2. Under SD0, the picking order is (𝑎3, 𝑎1, 𝑎2).
Under SD1, the picking order is (𝑎1, 𝑎3, 𝑎2), since 𝑎1 ranks 𝑜3 above
𝑜2. Finally, SD2 and SD3 result in picking order (𝑎1, 𝑎2, 𝑎3).
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SD𝑐 mechanisms are members of the class of sequential choice
rules [38], a class which also includes sequential dictatorships [e.g.,

37]. Importantly, note that the picking orders for SD𝑐 are allowed to

vary by profile, unlike in SD.We are not aware of a formal treatment

of SD𝑐 mechanisms in the literature, but note that they have been

used to illustrate bossiness [e.g., 45, Footnote 19].
2

In contrast to SD, SD𝑐 requires 𝑎1 to report a complete preference

order, but, as in SD, all other agents can participate in the mech-

anism by simply choosing an object from the available set when

their turn comes. It is easy to see that SD0 is order-symmetric with

respect to IC because the randomness in the preference of agent

𝑎1 is being inherited by the mechanism itself in such a way that

all picking orders are equally likely. However, strategyproofness is

violated by allowing 𝑎1 so much control over the picking order.

Theorem 4.8. SD0 is order-symmetric with respect to any fully
symmetric probability measure but violates strategyproofness.

Importantly, order symmetry of SD0 relies on the assumption

that agent 𝑎1 will truthfully report its preference. We often might

not expect the mechanism to be order-symmetric in practice even

with respect to preferences that are governed by the IC measure,

since agent 𝑎1 can manipulate the outcome in their favor. Instead,

we can consider SD1, which guarantees strategyproofness while

providing order bias intermediate between SD and SD0.

Theorem 4.9. SD1 is strategyproof.

The next theorem gives the order bias of SD1 with respect to

IC for any scoring rule. The proof is a probabilistic analysis that

reveals an interesting fact about the SD1 mechanism: All agents 𝑎 𝑗 ,

𝑗 ≥ 2, get their first-choice object with probability exactly
1

2
.

Theorem 4.10. SD1 has order bias
𝑠1−𝑠∗
𝑠1−𝑠𝑛 with respect to IC, where

𝑠∗ =
1

2

𝑠1 +
𝑛∑︁
𝑗=2

𝑠 𝑗
1

𝑛 − 1

𝑛∑︁
𝑟=𝑗

(𝑛− 𝑗
𝑟− 𝑗

)( 𝑛
𝑟−1

) .
The order bias of SD1 under IC is 1/2 for plurality and 1 − 1

𝑛 (𝑛+1)
for antiplurality. The order bias with respect to Borda is 𝑂 ( log𝑛𝑛 ) as
𝑛 →∞, and hence has limiting value zero.

For Borda, the order bias for SD1 is much smaller than the value

1/2 for SD even for small values of 𝑛. For example, when 𝑛 = 4 it

is approximately 0.26852, while when 𝑛 = 32 it is approximately

0.07277. Under IC, all agents 𝑎2, . . . , 𝑎𝑛 receive the same expected

utility, as the mechanism treats them symmetrically. Only agent 𝑎1
receives a higher expected utility by virtue of its privileged position.

4.4 Numerical simulation results
In the last subsection, we derived analytic results for order bias

under IC, which is a helpful and tractable baseline, but often does

not reflect realistic preference structures. In real-world assignment

problems, some objects are typically more highly sought after than

others, but this is not captured by IC. To explore a more realistic

preference model, we resort to simulation and consider the Mal-

lows model [33]. The Mallows model is parametrized by a reference
2
By definition, a bossymechanism is one inwhich some agent can change the allocation

for other agents without changing their own allocation.

order 𝜎 and a dispersion parameter 𝜙 ∈ (0, 1]. Let ≻ be a strict

linear order. Then the Mallows model specifies that the probability

an agent has preference order ≻ is 𝑃 (≻) = 𝑃 (≻ |𝜎, 𝜙) = 1

𝑍
𝜙𝑑 (≻,𝜎 ) ,

where 𝑍 is a normalization parameter and 𝑑 (≻, 𝜎) is the number

of pairwise disagreements between ≻ and 𝜎 . To generate prefer-

ence profiles, we sample the preference of each agent independently

from the sameMallows distribution. Note that the Mallows model is

unimodal at 𝜎 , with lower 𝜙 implying a more concentrated distribu-

tion of preferences around 𝜎 , and that when 𝜙 = 1 the distribution

is maximally dispersed, yielding Impartial Culture. Unless 𝜙 = 1

the Mallows measure is not neutral, but it is always anonymous.

Figure 1 shows order bias and utilitarian welfare
3
for Borda

utilities
4
as we vary the Mallows parameter across its whole range

for fixed 𝑛. We chose 𝑛 = 32 as a representative value that is

not “too small” and yet is computationally tractable. Note that,

as expected, all algorithms have order bias equal to 1 when the

Mallows parameter is 0, indicating full concentration on a single

unanimous preference profile. For all higher values of 𝜙 , SD(=SD𝑛)

has the highest order bias. In terms of order bias, SD0 performs

best across all Mallows parameters, but recall that this comes at the

price of violating strategyproofness, while TTC outperforms SD

for all parameter values. A tantalizing question that we leave open

is whether this relationship holds in general for all anonymous

measures. Note that SD1 achieves lower order bias than TTC for

all except very high values of 𝜙 , suggesting that it may be a robust

choice when both order bias and strategyproofness concerns are

paramount. Finally, we observe that the utilitarian welfare of all

four algorithms is identical, suggesting that any benefits in terms

of order bias do not come at a cost in terms of welfare.

Figure 1: (left) Borda order bias, 𝑛 = 32, (right) Borda utilitar-
ian welfare, 𝑛 = 32. Mean of 5000 simulations.

5 BOSTON MECHANISMS
For fully symmetric probability measures, we have seen that TTC

is a strong candidate for practical use – it is efficient, strategyproof,

and order-symmetric. However, for Mallows-distributed prefer-

ences with even a medium concentration parameter, TTC has only

3
Utilitarian welfare for mechanism A with respect to measure 𝑃 and scoring rule 𝑠 is

the expectation under 𝑃 of the arithmetic mean score received by an agent. Simply

put, it is the expected average utility.

4
We use Borda utilities throughout the main text as they are a common and natural

choice. In the full version of the paper, we replicate all results for 3-approval utilities.

Note that 𝑘-approval utilities are commonly used to evaluate assignments in practice

(in particular, in school choice settings), as they place emphasis on an agent receiving

one of her top 𝑘 choices, a simple metric to report and understand.
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slightly lower order bias than SD, and wemight expect this behavior

to hold whenever there is a sense in which the initial endowment

favors some agents more than others (e.g., there is a predictable

ranking of the objects). In this section we explore the Boston mech-

anisms, an alternative class of mechanisms that show strong per-

formance on Mallows-distributed preferences, and we apply the

order symmetry lens to design novel modifications of Boston.

5.1 Definition and background
The Boston mechanism (henceforth Boston), named for its use to

match students to schools in Boston until 2005, is commonly used in

school choice settings. For example, variants of Boston are used in

Seattle WA, Charlotte NC, Barcelona [14], and across Germany [8],

among other places. Here we consider the restriction to the housing

allocation model, so that each “school" is a single object.

The mechanism proceeds in rounds. At round 𝑖 , all unmatched

agents are asked to submit their 𝑖th choice, and they are allo-

cated that object unless there is a conflict, in which case an object-

dependent priority ordering 𝜌 𝑗 is used as a tiebreak to allocate

it to one of them.
5
Since each priority profile induces a Boston

mechanism, the definition in fact yields a class of mechanisms,

which were axiomatically characterized by Kojima and Ünver [28].

A natural and common special case is the version where 𝜌 𝑗 is in-

dependent of the object 𝑗 , which corresponds to a single tiebreak

order being applied to all conflicts. We will refer to this version as

the common-tiebreak variant of Boston.

5.2 Boston and Order Symmetry
In this section we analyze the Boston mechanisms from the perspec-

tive of order symmetry and order bias. Our goal is twofold. First,

we want to find a mechanism that is more robust to non-neutral

probability measures than TTC, in terms of order bias. Second, we

aim to provide guidance as to which member of the class of Boston

mechanisms to use in practice.

Rather than using a common tiebreak for all objects, which

induces asymmetry in favor of agents higher in the tiebreak order,

order symmetry considerations point to using a more balanced

priority profile. In particular, we will consider the cyclic priority

profile defined by the priority order 𝜌 𝑗 = 𝑎 𝑗 ≻ 𝑎 𝑗+1 ≻ . . . ≻
𝑎𝑛 ≻ 𝑎1 ≻ . . . ≻ 𝑎 𝑗−1 for object 𝑜 𝑗 . Of course, agent 𝑎 𝑗 has an

advantage over other agents with respect to object 𝑜 𝑗 , so 𝑎 𝑗 is

advantaged to the extent that 𝑜 𝑗 is systematically preferred to other

objects. However, when the preference distribution is neutral and

anonymous, cyclic-tiebreak Boston is order-symmetric. As was the

case for TTC, the intuition is that no agent is systematically favored

by the priority profile provided that we cannot distinguish between

agents and objects a priori.

Theorem 5.1. Cyclic-tiebreak Boston is order-symmetric with re-
spect to any fully symmetric probability measure.

Numerical simulation results. We compare cyclic-tiebreak Boston

(Bcyc) and common-tiebreak Boston (Bcom) on Mallows data in

Figure 2. For both Boston variants, the order bias drops sharply as

the Mallows parameter increases from 0. The drop is particularly

5
Mennle and Seuken [35] discuss a variant of Boston that they call Adaptive Boston,
but in the interest of concise presentation we do not consider it here.

sharp for the cyclic-tiebreak variant, which reaches an order bias

very close to 0.5 for 𝜙 ≈ 0.1. Recall that, in contrast, SD only

achieves order bias of 0.5 on the easy case of IC preferences. The

order bias continues to decrease with 𝜙 , reaching 0 and 0.13 at 𝜙 = 1

for cyclic- and common-tiebreak Boston respectively. Once again,

we see that utilitarian welfare is identical between the two variants,

indicating that the order bias improvement from the cyclic-tiebreak

variant is obtained without any cost in welfare.

In the same figure we show the results for TTC for comparison.

Both Boston variants, but especially cyclic-tiebreak Boston, exhibit

a striking dominance both in terms of order bias and welfare. It is

particularly interesting to note the shape of the lines in the order

bias plot. Cyclic-tiebreak Boston and TTC are both order-symmetric

for 𝜙 = 1, but Boston’s low order bias is fairly robust across a wide

spectrum of parameters, whereas TTC is much more fragile. For

intuition, when some objects are systematically preferred to oth-

ers then TTC is biased in favor of agents who receive favorable

objects in the preliminary assignment. The preliminary assignment

is “sticky” in the sense that no agent is worse off in the TTC as-

signment than in the preliminary assignment. Accordingly, the

TTC allocation is quite constrained. On the other hand, the Boston

mechanisms maximize the number of agents who receive their first

preference, then their second, and so on, without protecting any

specific agent from receiving a lowly-preferred object.

Figure 2: (left) Borda order bias, 𝑛 = 32, (right) Borda utilitar-
ian welfare, 𝑛 = 32. Mean of 5000 simulations.

5.3 Reversing Boston for lower order bias
We have seen that a cyclic priority profile achieves significantly

lower order bias than the common-tiebreak Boston variant, as well

as TTC and SD. Can we do better still? In this section we provide

one technique for doing so. For intuition, consider the common-

tiebreak Boston mechanism. Being last in the tiebreak order is a

substantial disadvantage relative to being first, since conflicts are

never resolved in favor of the last agent. Intuitively, using the same

tiebreak order in every round places a large importance onwhatever

process is used to generate the order, which is antithetical to the

idea of order symmetry. Themodification that we consider here is to

reverse the tiebreak order after every round, so that odd-numbered

rounds use the original tiebreak order while even-numbered rounds

use the reversed order.
6
To generalize this idea to other Boston

mechanisms, we simply reverse the priority order of all objects in

6
One could imagine various other reversing patterns as well as modifications to the

tiebreak order beyond reversals, but we do not consider such variants explicitly.
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even-numbered rounds. We call the resulting algorithms reversing
Boston mechanisms. In the full version of the paper we provide

an example to show that reversing Boston mechanisms cannot be

written as Boston mechanisms in general; to our knowledge, these

mechanisms have not been proposed before.

Numerical simulation results. Figure 3 compares the performance

of the ordinary and reversing forms of common-tiebreak Boston

(Bcom and Rcom respectively), along with the ordinary and revers-

ing forms of cyclic-tiebreak Boston (Bcyc and Rcyc respectively).

Both reversing forms have lower order bias than the ordinary forms,

with the reversing form of common-tiebreak Boston significantly

outperforming the original. The reversing form of cyclic-tiebreak

Boston exhibits a modest but non-trivial decrease in order bias for

Mallows parameter between 0.1 and 0.5.

Figure 3: (left) Borda order bias, 𝑛 = 32, (right) Borda utilitar-
ian welfare, 𝑛 = 32. Mean of 5000 simulations.

6 DISCUSSION
We introduced and analyzed order symmetry, a natural fairness

concept ensuring all agents perform equally well in expectation.

With a sufficiently symmetric probability measure, order symmetry

serves as an average-case analog of anonymity—one that is achiev-

able by deterministic assignment algorithms without sacrificing

other desirable properties. When exact order symmetry is unattain-

able, some order bias is inevitable. Our analysis suggests that when

low order bias is desired alongside strategyproofness, SD should

be replaced by SD1 or TTC. Where strategyproofness is not es-

sential, the common-tiebreak Boston mechanism performs well in

terms of order bias, significantly outperforming the strategyproof

mechanisms on Mallows data for all but very large values of disper-

sion parameter. It can be improved even further by employing the

cyclic tiebreak scheme and/or reversing the tiebreak order after the

first round. We conclude with some additional observations and

directions for future work.

Randomized mechanisms
This paper focuses on order symmetry in deterministic mechanisms,

but many practical house allocation and school choice mechanisms

are randomized. Typically, a deterministic mechanism is randomly

selected and implemented—for example, by randomly choosing

a selection order (for SD) or a priority profile (for Boston) while

respecting fixed priorities like seniority or location. For TTC, ran-

domization involves selecting an initial endowment.

Our results have direct implications for randomized mechanism

design. In a famous result, Abdulkadiroğlu and Sönmez [1] showed

that uniform randomized versions of SD and TTC are exactly equiv-

alent in terms of the lotteries over assignments that they output.

Note that these randomized versions are anonymous (at the stage

before the randomization is realized). However, participants might

also care about fairness after the randomization has produced a de-

terministic mechanism, and randomizing over order-symmetric (or,

more generally, low order bias) deterministic mechanisms provides

a fairness guarantee. While a formal treatment of order symmetry

of randomized mechanisms is beyond the scope of this paper, it is

easy to see that in this sense, the randomized versions of SD and

TTC are very different.

Multi-unit assignment
We have not examined cases where the number of objects exceeds

the number of agents and each agent receives a bundle of ob-

jects, but order bias remains relevant and could be generalized

by extending preferences from individual objects to sets of ob-

jects [7]. Many mechanisms, such as sports league drafts, use a

“picking sequence” that significantly impacts outcomes. Various

methods have been proposed to balance outcomes between agent

positions [9, 11, 12, 26, 27], and order bias could serve as a useful

tool for comparing these sequences.

We note that there is already a substantial stream of work aimed

atmeasuring fairness in this setting. Concepts such as envy-freeness

up to one object [30], envy-freeness up to any object [15], and pro-

portionality up to one object [16] have been widely studied, and

prior work has considered combining fairness guarantees both

before and after randomization in more general multi-object assign-

ment settings [3–5, 13]. None of this work is relevant to the house

allocation setting since the fairness guarantees are too permissive

when each agent receives only a single object.

General probability measures.
A compelling direction for future work is to dive more deeply into

the possibilities and limitations for general probability measures.

For practical application, we imagine order symmetry being incor-

porated into mechanism design in two steps. First, the designer

estimates (say, from historical data) the probability measure from

which the preferences will be drawn. Second, the designer searches

for a mechanism with low order bias with respect to this measure.

Other order bias definitions.
The way we have defined order bias is not the only possibility.

Abstractly, we could use any matrix norm to measure the distance

between the given rank distribution matrix and the space of rank

one matrices. It is unclear whether this is more compelling axiomat-

ically than the approach we have taken, but it is worth further

exploration.
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