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ABSTRACT
This study examines the global behavior of dynamics in learning in

games between two players, X and Y. We consider the simplest sit-

uation for memory asymmetry between two players: X memorizes

the other Y’s previous action and uses reactive strategies, while Y

has no memory. Although this memory complicates their learning

dynamics, we characterize the global behavior of such complex

dynamics by discovering and analyzing two novel quantities. One

is an extended Kullback-Leibler divergence from the Nash equilib-

rium, a well-known conserved quantity from previous studies. The

other is a family of Lyapunov functions of X’s reactive strategy. One

of the global behaviors we capture is that if X exploits Y, then their

strategies converge to the Nash equilibrium. Another is that if Y’s

strategy is out of equilibrium, then X becomes more exploitative

with time. Consequently, we suggest global convergence to the

Nash equilibrium from both aspects of theory and experiment. This

study provides a novel characterization of the global behavior in

learning in games through a couple of indicators.
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1 INTRODUCTION
Learning in games targets how multiple agents learn their optimal

strategies in the repetition of games [11]. The set of such play-

ers’ best strategies is defined as Nash equilibrium [24], where ev-

ery player has no motivation to change his/her strategy. However,

this equilibrium is hard to compute in general because one’s best

strategy depends on the others’ strategies. Indeed, the behavior

of multi-agent learning is complicated in zero-sum games, where

players conflict in their payoffs. Even when players try to learn

their optimal strategies there, their strategies often cycle around

the Nash equilibrium and fail to converge to the equilibrium.
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In order to understand such strange behaviors, which are unique

in multi-agent learning, the dynamics of how multiple agents learn

their strategies, say, learning dynamics, are frequently studied [5,

9, 33, 34]. The representative dynamics of interest are the repli-

cator dynamics, which is based on the evolutionary dynamics

in biology [6, 10, 17, 26, 32]. These dynamics are also known as

the multiplicative weight updates (MWU) in its discrete-time ver-

sion [1, 3]. Furthermore, their connection to other representative

learning dynamics, such as gradient ascent [7, 8, 31, 38] and Q-

learning [18, 19, 37], should be noted. Such replicator dynamics are

known to be characterized by Kullbuck-Leibler (KL) divergence,

which is the distance from the Nash equilibrium to the players’

present strategies. This KL divergence is conserved during the

learning dynamics, and the distance from the Nash equilibrium is

invariant [28, 29]. Follow the Regularized Leader (FTRL) is a class

of learning algorithms including the replicator dynamics and also

has its conserved quantity, which is the summation of divergences

for all the players [21, 22]. To summarize, such complex learning

dynamics have been discussed based on their conserved quantity.

In this study, we define memory as an agent’s ability to change

its action choice depending on the outcome of past games. By defi-

nition, this memory allows the agent to make more complex and

intelligent decisions. When memory is introduced into a normal-

form game, the players can achieve a wider range of strategies as

the Nash equilibria (known as Folk theorem [12]). Furthermore,

memory is also introduced into learning algorithms, such as repli-

cator dynamics [13–16] and Q-learning [4, 20, 23, 35, 36]. Here,

since this memory causes feedback from the past, the global dy-

namics of such learning algorithms become more complex. Indeed,

replicator dynamics diverge from the Nash equilibrium under sym-

metric memory lengths between players [13], while converging

under asymmetric memory lengths [14]. Here, KL divergence is no

longer useful to capture the global dynamics because it increases or

decreases over time. The analysis of the dynamics in with-memory

games is limited to the local, linearized stability analysis in the

vicinity of Nash equilibrium [14]. To summarize, since memory

crucially complicates learning dynamics, the global behavior of the

dynamics is still unexplored.

This study provides the first theoretical analysis of the global

behavior of learning in with-memory games. We assume games

where their memory structure is simplest and asymmetric; One side

adopts a reactive strategy that can memorize the other’s previous

action [2, 15, 16, 25, 27, 30], while the other has no memory. In order

to characterize the global behavior of such with-memory games,

we extend KL divergence and prove that such extended divergence

increases or decreases with time depending on whether the reactive

strategy is exploitative or not (see Fig. 1A). We further propose a
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Figure 1: (A) Illustration of the global behavior of the conditional divergence, 𝐷 (𝑿 ,𝒚). Three trajectories (red, black, and blue)
are plotted with the Nash equilibrium (the black star marker). The horizontal and vertical axes show X’s strategy (𝑥st

1
) and Y’s

strategy (𝑦1) in the matching pennies game (formulated in Fig. 2). This divergence decreases (red: ¤𝐷 < 0), cycles (black: ¤𝐷 = 0),
or increases (blue: ¤𝐷 > 0) with time. These three lines are plotted for the different initial strategies, i.e., 𝑿 and 𝒚. (B) Illustration
of the global behavior of the family of Lyapunov functions, 𝐻 (𝑿 ;𝜹). The colored line shows a trajectory (from purple to red) of
Lyapunov functions 𝐻1, 𝐻2, and 𝐻3, each of which is 𝐻 (𝑿 ;𝜹) for some specific 𝜹 . The gray broken lines are the projections of
the black solid line to 𝐻1-𝐻2, 𝐻2-𝐻3, and 𝐻3-𝐻1 planes. All of 𝐻1, 𝐻2, and 𝐻3 monotonically increase with time.

family of Lyapunov functions that characterize the dynamics of

the reactive strategy (see Fig. 1B). These Lyapunov functions show

that the with-memory side monotonically learns to exploit the no-

memory side. As an application of these functions, we suggest the

convergence from arbitrary initial strategies to the equilibrium, i.e.,

global convergence. We prove global convergence in the matching

pennies game. We also experimentally confirm that such global

convergence is observed in other games equipped with various

types of equilibrium.

2 PRELIMINARY
2.1 Settings
First, we formulate two-player normal-form games. We consider

two players, denoted as X and Y. X’s actions are denoted as {𝑎𝑖 }1≤𝑖≤𝑚X ,

while Y’s are {𝑏 𝑗 }1≤ 𝑗≤𝑚Y . When X and Y choose 𝑎𝑖 and 𝑏 𝑗 , they

obtain the payoffs of 𝑢𝑖 𝑗 ∈ R and 𝑣𝑖 𝑗 ∈ R, respectively. Thus, all
their possible payoffs are given by the matrices, 𝑼 := (𝑢𝑖 𝑗 )𝑖 𝑗 and
𝑽 := (𝑣𝑖 𝑗 )𝑖 𝑗 . Here, when 𝑽 = −𝑼 holds, the games are called zero-

sum. Although our formulation of learning algorithms can be used

for general games, this study focuses on zero-sum games.

We assume that X use reactive strategies, i.e., can change its ac-

tion choice depending on the other’s previous action. This reactive

strategy is denoted as𝑿 := (𝑥𝑖 | 𝑗 )1≤𝑖≤𝑚X,1≤ 𝑗≤𝑚Y ∈ ∏
1≤ 𝑗≤𝑚Y Δ

𝑚X−1
,

a matrix composed of𝑚Y vectors each of which are an element of a

𝑚X − 1-dimensional simplex. Here, 𝑥𝑖 | 𝑗 means the probability that

X chooses 𝑎𝑖 in the condition when Y’s previous action is 𝑏 𝑗 . Thus,

Σ𝑖𝑥𝑖 | 𝑗 = 1 should be satisfied for all 𝑗 . On the other hand, Y only can

use classical mixed strategies and choose its own action without

reference to the previous actions. This mixed strategy is denoted

as 𝒚 = (𝑦 𝑗 )1≤ 𝑗≤𝑚Y ∈ Δ𝑚Y−1
, a vector which is an element of a

(𝑚Y − 1)-dimensional simplex. Thus, Σ 𝑗𝑦 𝑗 = 1 should be satisfied.

2.2 Stationary State and Expected Payoff
We now discuss the stationary state and expected payoff of re-

peated games. Since Y determines its action independent of the

outcomes of previous rounds, X’s stationary strategy, defined as

𝒙st := (𝑥st
𝑖
)1≤𝑖≤𝑚X , is given by 𝑥st

𝑖
(𝒙𝑖 ,𝒚) = Σ 𝑗𝑥𝑖 | 𝑗𝑦 𝑗 . Here, 𝑥

st

𝑖
means the probability that X chooses 𝑎𝑖 in the stationary state.

Furthermore, the stationary state is described as 𝑷 st := 𝒙st ⊗𝒚 with

use of 𝒙st and 𝒚. Last, X’s expected payoff is given by 𝑢st (𝒙st,𝒚) :=
Σ𝑖Σ 𝑗𝑢𝑖 𝑗𝑝

st

𝑖 𝑗
= Σ𝑖Σ 𝑗𝑢𝑖 𝑗𝑥

st

𝑖
𝑦 𝑗 .

2.3 Nash Equilibrium
Wenow define the Nash equilibrium in the normal-form game. Here,

note that this equilibrium is based on games without memories,

where X’s strategy does not refer to the past games, i.e., 𝒙 := (𝑥𝑖 )𝑖 .
By using the expected payoff𝑢st (𝒙,𝒚) for games without memories,

the Nash equilibrium (𝒙∗,𝒚∗) is formulated as{
𝒙∗ = argmax𝒙𝑢

st (𝒙,𝒚∗)
𝒚∗ = argmin𝒚𝑢

st (𝒙∗,𝒚)
. (1)

From the definition, 𝑢st (𝒙,𝒚) is the linear function for 𝒙 and 𝒚, and
the Nash equilibrium condition is characterized by the gradient of

such expected payoffs as{
𝜕𝑢st/𝜕𝑥𝑖 = Σ 𝑗𝑢𝑖 𝑗𝑦

∗
𝑗
= 𝐶 (𝑥∗

𝑖
> 0)

𝜕𝑢st/𝜕𝑥𝑖 = Σ 𝑗𝑢𝑖 𝑗𝑦
∗
𝑗
≤ 𝐶 (𝑥∗

𝑖
= 0)

, (2){
𝜕𝑢st/𝜕𝑦 𝑗 = Σ𝑖𝑢𝑖 𝑗𝑥

∗
𝑖
= 𝐶 (𝑦∗

𝑗
> 0)

𝜕𝑢st/𝜕𝑦 𝑗 = Σ𝑖𝑢𝑖 𝑗𝑥
∗
𝑖
≥ 𝐶 (𝑦∗

𝑗
= 0)

. (3)

From these conditions, for all 𝑖 and 𝑗 such that 𝑥∗
𝑖
> 0 and 𝑦∗

𝑗
> 0

hold, respectively, we obtain

Σ𝑖𝑢𝑖 𝑗𝑥
∗
𝑖 = Σ 𝑗𝑢𝑖 𝑗𝑦

∗
𝑗 =: 𝑢

∗ . (4)
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Figure 2: Illustration of games between reactive and zero-memory strategies. The area surrounded by the magenta dotted line
shows the normal-form game. In each round, X chooses action 𝑖 = 1 or 2 in the row, following its strategy, i.e., the probability
distribution of 𝒙 = (𝑥1, 𝑥2). On the other hand, Y chooses action 𝑗 = 1 or 2 in the column, following its strategy, i.e., the
probability distribution of 𝒚 = (𝑦1, 𝑦2). Depending on their choices 𝑖 and 𝑗 , X receives a payoff 𝑢𝑖 𝑗 , given by a matrix form of
𝑼 = (𝑢𝑖 𝑗 )𝑖, 𝑗 = ((𝑢11, 𝑢12), (𝑢21, 𝑢22)). Furthermore, in zero-sum games, Y receives −𝑢𝑖 𝑗 . Especially in the matching pennies game,
their actions of 1 (2) correspond to the choice of “head” (“tail”) of a coin. When their choices match 𝑖 = 𝑗 , X wins, i.e.,𝑢11 = 𝑢22 = 1

(the orange blocks). Else when their choices mismatch 𝑖 ≠ 𝑗 , Y wins, i.e., 𝑢12 = 𝑢21 = −1 (the blue blocks). The area outside of
the magenta dotted line shows the difference due to an effect of memory. The gray box shows that X memorizes Y’s previous
action, represented as 𝑗 = 1 or 2. Thus, X uses a reactive strategy and can choose its action with the conditional probability of
𝑥
1 | 𝑗 and 𝑥

2 | 𝑗 for Y’s previous action.

Let us interpret this equation. First, Σ𝑖𝑢𝑖 𝑗𝑥
∗
𝑖
= 𝑢∗ means that when

X takes its Nash equilibrium strategy, its own payoff is fixed to

𝑢∗, independent of Y’s strategy. On the other hand, Σ 𝑗𝑢𝑖 𝑗𝑦
∗
𝑗
= 𝑢∗

similarly means that Y’s Nash equilibrium strategy fixes X’s payoff

to 𝑢∗. In other words, either X or Y takes its Nash equilibrium

strategy, their payoffs are fixed. This is the special property in

zero-sum games.

2.4 Learning Algorithm: Replicator Dynamics
Let us define the replicator dynamics as a representative learning

algorithm. X’s and Y’s replicator dynamics are formulated as

¤𝑥𝑖 | 𝑗 = +𝑥𝑖 | 𝑗
(
d𝑢st

d𝑥𝑖 | 𝑗
− Σ𝑖𝑥𝑖 | 𝑗

d𝑢st

d𝑥𝑖 | 𝑗

)
, (5)

¤𝑦 𝑗 = −𝑦 𝑗
(
d𝑢st

d𝑦 𝑗
− Σ 𝑗𝑦 𝑗

d𝑢st

d𝑦 𝑗

)
. (6)

Here, following the theorems in [13], X’s and Y’s replicator dy-

namics include the gradient for the expected payoff 𝑢st. Thus, the

update of X’s strategy increases its payoff𝑢st, while that of Y’s strat-

egy decreases the other’s payoff 𝑢st. We discuss learning based on

the replicator dynamics throughout this study, but we can extend

all the following results to another typical learning algorithm, the

gradient descent-ascent (see Appendix D for detailed discussion).

3 THEORY ON LEARNING DYNAMICS
This section analyzes the dynamics of Eqs. (5) and (6). First, we

compute in detail the gradient terms, which appear to be complex.

Next, as a preliminary, we define positive definite matrices for some

special vectors. Based on this definition, we introduce two quantities

characterizing the dynamics of Eqs. (5) and (6): An extended KL

divergence and a family of Lyapunov functions.

3.1 Polynomial Expressions of Learning
First, the gradient terms in Eqs. (5) and (6) are computed as

d𝑢st (𝒙st (𝑿 ,𝒚),𝒚)
d𝑥𝑖 | 𝑗

=
𝜕𝑥st

𝑖
(𝒙𝑖 ,𝒚)

𝜕𝑥𝑖 | 𝑗

𝜕𝑢st (𝒙st,𝒚)
𝜕𝑥st

𝑖

(7)

= 𝑦 𝑗Σ 𝑗 ′𝑢𝑖 𝑗 ′𝑦 𝑗 ′ , (8)

d𝑢st (𝒙st (𝑿 ,𝒚),𝒚)
d𝑦 𝑗

=
𝜕𝑢st (𝒙st,𝒚)

𝜕𝑦 𝑗
+ Σ𝑖

𝜕𝑥st
𝑖
(𝒙𝑖 ,𝒚)
𝜕𝑦 𝑗

𝜕𝑢st (𝒙st,𝒚)
𝜕𝑥st

𝑖

(9)

= Σ𝑖𝑢𝑖 𝑗𝑥
st

𝑖 + Σ𝑖𝑥𝑖 | 𝑗Σ 𝑗 ′𝑢𝑖 𝑗 ′𝑦 𝑗 ′ . (10)

Here, we remark that Eqs. (5) and (6) are nonlinear functions of

𝑿 and 𝒚, which is a feature of learning in with-memory games.

Notably, however, these equations are polynomial expressions with

𝑿 and 𝒚. Such polynomial expressions cannot be seen in the games

of other memory lengths [13, 14] but are special in the games

between reactive and no memory strategies.

3.2 Positive Definiteness for Zero-Sum Vectors
Next, let us introduce a definiteness of matrices. Here, however,

this definite matrix is for vectors whose elements are summed

to 0, named “zero-sum vectors”. In mathematics, zero-sum vector

𝜹 := (𝛿𝑘 )𝑘 satisfies Σ𝑘𝛿𝑘 = 0 but 𝜹 ≠ 0.

Definition 1 (Positive definiteness for zero-sum vectors).

A square matrix 𝑴 is “positive definite for zero-sum vectors” when
for all vectors 𝜹 ≠ 0 such that Σ𝑘𝛿𝑘 = 0, 𝜹 · (𝑴𝜹) < 0 holds.

The positive definiteness for zero-sum vectors connects with

an ordinary positive definiteness by a simple transformation of a

matrix (see Appendix B for details).
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3.3 Extended Kullback-Leibler Divergence
The first quantity is an extended version of divergence. Before

considering the extension, we introduce the classical version of

divergence 𝐷c, which is the function of X’s mixed strategies (𝒙 :=

(𝑥𝑖 )1≤𝑖≤𝑚X ∈ Δ𝑚X−1
) and Y’s mixed strategies (𝒚) as

𝐷c (𝒙,𝒚) := 𝐷KL (𝒙∗∥𝒙) + 𝐷KL (𝒚∗∥𝒚), (11)

𝐷KL (𝒑∗∥𝒑) := 𝒑∗ · log𝒑∗ − 𝒑∗ · log𝒑. (12)

We now give an intuitive interpretation of this quantity. First,

𝐷KL (𝒑∗∥𝒑) is the KL divergence, meaning the distance from the

reference point 𝒑∗
to the target point 𝒑. Thus, 𝐷c (𝒙,𝒚) means the

total distance from the Nash equilibrium (𝒙∗,𝒚∗) to the current

state (𝒙,𝒚).
Let us extend the classical divergence to the case of this study,

where X refers to the previous action of the other and can use

reactive strategies 𝑿 . This extended divergence, i.e., 𝐷 (𝑿 ,𝒚), is
named the “conditional-sum” divergence, formulated as

𝐷 (𝑿 ,𝒚) := Σ 𝑗𝐷KL (𝒙∗∥𝒙 𝑗 ) + 𝐷KL (𝒚∗∥𝒚). (13)

We now remark the difference between𝐷 (𝑿 ,𝒚) and𝐷c (𝒙,𝒚). Recall
that X’s reactive strategy is defined as (𝒙 𝑗 )1≤ 𝑗≤𝑚Y , which shows

how to choose its action with the condition that Y chose 𝑏 𝑗 in the

previous round. Hence, 𝐷 (𝑿 ,𝒚) represents the summation of KL

divergence from 𝒙∗ to 𝒙 𝑗 for all the conditions of 𝑗 . Here, we also
remark that when the reactive strategy does not use memory, i.e.,

𝒙 𝑗 = 𝒙 for all 𝑗 , this conditional-sum divergence also captures the

behavior of the classical divergence (see Appendix C for details).

This conditional-sum divergence satisfies the following theorem

(see Appendix A.1 for its full proof).

Theorem 1 (Monotonic decrease of 𝐷 for positive definite

𝑿T𝑼 ). If 𝑿T𝑼 is positive definite for zero-sum vector, 𝐷† (𝑿 ; d𝒚) :=
¤𝐷 (𝑿 ,𝒚) < 0 for all d𝒚 := 𝒚 −𝒚∗ ≠ 0.

Proof Sketch. We calculation ¤𝐷 (𝑿 ,𝒚) in practice. In the cal-

culation, the contribution of X’s gradient (Eq. (8)) cancels out the

contribution of the first term of the gradient of Y (Eq. (10)). (Here,

we remark that the same canceling out also occurs in the calculation

for the conservation of the classical divergence 𝐷c (𝒙,𝒚) in games

without memory.) However, the contribution of the second term

of Eq. (10) is special in games of a reactive strategy. By using the

constant payoff condition in the Nash equilibrium (Eqs. (4)), we

obtain

¤𝐷 (𝑿 ,𝒚) = −d𝒚T𝑿T𝑼d𝒚 (=: 𝐷† (𝑿 ; d𝒚)), (14)

which means the difference from Y’s equilibrium strategy and is a

zero-sum vector. Thus, when 𝑿T𝑼 is positive definite for zero-sum

vectors, d𝒚T𝑿T𝑼d𝒚 is always positive, leading to 𝐷† (𝑿 ; d𝒚) < 0

for all d𝒚 ≠ 0. □

3.4 Family of Lyapunov Functions
Furthermore, we introduce a Lyapunov function, which character-

izes the learning dynamics of X’s reactive strategy. Based on an

arbitrary zero-sum vector 𝜹 := (𝛿𝑖 )1≤𝑖≤𝑚X , this function is defined

as

𝐻 (𝑿 ;𝜹) := 𝜹T𝑼 log𝑿T𝜹 . (15)

The following theorem holds for this Lyapunov function (see Ap-

pendix A.2 for its full proof).

Theorem 2 (Monotonic increase of 𝐻 ). For all 𝜹 such that
Σ𝑖𝛿𝑖 = 0, 𝐻† (𝒚;𝜹) := ¤𝐻 (𝑿 ;𝜹) ≥ 0. The equality holds if and only if
𝑑𝒚(= 𝒚 −𝒚∗) = 0.

Proof Sketch. By using Eq. (4), we calculate

¤𝐻 (𝑿 ;𝜹) = |𝜹T𝑼d𝒚 |2 (=: 𝐻† (𝒚;𝜹)) . (16)

This means that 𝐻† (𝒚;𝜹) ≥ 0 for all 𝜹 . If we substitute 𝜹 = 𝒙 − 𝒙∗

for some 𝒙 ∈ Δ𝑚X−1
, we obtain

𝐻† (𝒚; 𝒙 − 𝒙∗) = |𝑢st (𝒙,𝒚) − 𝑢∗ |2 . (17)

For any 𝒚 ≠ 𝒚∗ ⇔ d𝒚 ≠ 0, there is 𝒙 such that 𝑢st (𝒙,𝒚) − 𝑢∗ ≠ 0.

Thus, d𝒚 = 0 is equivalent to 𝐻† (𝒚;𝜹) = 0 for all 𝜹 . □

Let us interpret the function of 𝐻 (𝑿 ;𝜹). First, 𝐻 (𝑿 ;𝜹) is the
quadratic form of matrix 𝑼 log𝑿T

for 𝜹 . We now focus on the

meaning of 𝑼 log𝑿T
. The 𝑖′, 𝑖 element of 𝑼 log𝑿T

is given by

𝒖𝑖′ · log 𝒙𝑖 , in which we denoted vector 𝒙𝑖 := (𝑥𝑖 | 𝑗 ) 𝑗 . This is the
inner product of the payoff under X taking 𝑖′-th action (𝒖𝑖′ ) and
the logarithmic strategy under X taking 𝑖-th action (log 𝒙𝑖 ). Thus,
𝑼 log𝑿T

shows a correspondence matrix between X’s strategy

and its payoff matrix. Since 𝐻 (𝑿 ;𝜹) is the quadratic form of the

correspondence matrix, it tends to be large when the diagonal

elements of the correspondence matrix are large. The diagonal

elements, i.e., 𝒖𝑖 · log 𝒙𝑖 , indicate how X exploits Y for each 𝑖-th

action. Thus, 𝐻 (𝑿 ;𝜹) means the degree of exploitation of Y by X.

3.5 Global Behavior by Two Quantities
So far, the two theorems (Thms. 1 and 2) explain how the two

quantities vary with time. Let us understand the global behavior of

the learning dynamics by interpreting the two quantities.

𝐷 explains increasing/decreasing of distance: First, recall that
𝐷 (𝑿 ,𝒚) means the distance from the Nash equilibrium. Thm. 1

shows that the distance becomes smaller when 𝑿T𝑼 is positive

definite, whereas larger when 𝑿T𝑼 is negative definite. Here, we

focus on 𝑿T𝑼 which determines whether the distance becomes

smaller or larger. The 𝑗 , 𝑗 ′ element of 𝑿T𝑼 is given by 𝒙 𝑗 · 𝒖 𝑗 ′ , in
words, the correspondence between X’s strategy for 𝑗-th action (𝒙 𝑗 )
and its payoff for 𝑗 ′-th action (𝒖 𝑗 ′ ). The eigenvalues of a matrix are

roughly determined by the diagonal elements 𝒙 𝑗 · 𝒖 𝑗 . This diago-
nal element is larger when 𝑥𝑖 | 𝑗 takes a larger value for larger 𝑢𝑖 𝑗 ,
meaning that X exploits Y’s payoff more. As the simplest example,

𝑿T𝑼 is positive definite when X takes 𝑥𝑖 | 𝑗 = 1 for 𝑖 = 𝑖 such that

𝑖 = argmax𝑖 𝑢𝑖 𝑗 , while 𝑥𝑖 | 𝑗 = 0 for 𝑖 ≠ 𝑖 . To summarize, Thm. 1

captures the global behavior where if X exploits Y, their strategies

converge to the Nash equilibrium; otherwise, they diverge.

𝐻 explains the monotonic increase of exploitability: Next, recall
that 𝑼 log𝑿T

in 𝐻 (𝑿 ;𝜹) indicates a correspondence matrix be-

tween X’s strategy and its payoff matrix. Thus, Thm. 2 explains that

unless Y takes the equilibrium strategy, this correspondence con-

tinues to increase with time. We also pay attention to the change

in the degree of correspondence, i.e., 𝐻† (𝒚;𝜹). By substituting

𝜹 = 𝒙 − 𝒙∗ for some 𝒙 ∈ Δ𝑚X−1
, we rewrite it as 𝐻† (𝒚; 𝒙 − 𝒙∗) =
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Figure 3: (A) Trajectories of 𝑞1 and 𝑞2. The rainbow contour plot indicates the value of 𝑞1 −𝑞2. All the trajectories monotonically
increase 𝑞1 − 𝑞2 with time and converge in the area of 𝑞1 > 𝑞2 in their final states. (B) Trajectories of the learning dynamics.
The black broken line corresponds to the region of Nash equilibria, 𝒙st = 𝒚 = (1/2, 1/2). Each colored line shows a trajectory of
the learning dynamics. First, the circle markers show the initial states. Following the blue lines, the trajectories diverge from
the Nash equilibria (𝐷 (𝑿 ,𝒚) increases with time). However, the trajectories stop to diverge and switch to converge to the Nash
equilibria (𝐷 (𝑿 ,𝒚) decreases), following the red lines. The star markers are the final states and correspond to one of the Nash
equilibria.

|𝑢st (𝒙,𝒚) − 𝑢∗ |2. Here, |𝑢st (𝒙,𝒚) − 𝑢∗ | indicates the difference in
payoff from the equilibrium, i.e., the exploitation by X to Y. There-

fore, the correspondence between X’s strategy and its payoff matrix

becomes larger according to the exploitability.

Remark: We have interpreted both 𝑿T𝑼 and 𝑼 log𝑿T
as the de-

gree of correspondence between X’s strategy and its payoff matrix.

The interpretation is qualitatively true, but we remark that there

are several quantitative differences between 𝑿T𝑼 and 𝑼 log𝑿T
,

such as the order of multiplication and the existence of logarithm.

4 APPLICATION: GLOBAL CONVERGENCE
By combining the global behaviors obtained from Thms. 1 and 2,

we expect that the global convergence to the Nash equilibrium

occurs regardless of X’s and Y’s initial strategies. Thm. 2 shows that

as long as Y’s strategy is out of equilibrium, the correspondence

between X’s strategy and its payoff matrix continues to be stronger.

Afterward, Thm. 1 shows that if the correspondence is sufficiently

strong, Y’s strategy is induced to the Nash equilibrium. In the

following, our theory and experiment support that such global

convergence occurs.

4.1 Example: Matching Pennies
Let us define the matching pennies game (see Fig. 2 for the illustra-

tion of its payoffmatrix). This game considers the action numbers of

𝑚X =𝑚Y = 2 and the payoff matrix of 𝑼 = ((𝑢11, 𝑢12), (𝑢21, 𝑢22)) =
((+1,−1), (−1, +1)). The Nash equilibrium of this game is only

𝒙∗ = 𝒚∗ = (1/2, 1/2). This game is the simplest example of a

game equipped with a full-support Nash equilibrium. In addition,

it has been known that the replicator dynamics in games without

memories cycle around the Nash equilibrium and cannot reach

the equilibrium. Nevertheless, by considering the memory asym-

metry (Eqs. (5) and (6)), Y’s strategy succeeds in the convergence

to the equilibrium, as shown in the following corollary (see Ap-

pendix A.3 for its full proof). For convenience, we use a special

notation available in two-action games; (𝑥
1 | 𝑗 , 𝑥2 | 𝑗 ) =: (𝑥 𝑗 , 1 − 𝑥 𝑗 ),

𝑞 𝑗 := log𝑥 𝑗 − log(1 − 𝑥 𝑗 ), and (𝑦1, 𝑦2) =: (𝑦, 1 − 𝑦).

Corollary 1 (Global convergence in matching pennies). In
the matching pennies game 𝑼 = ((+1,−1), (−1, +1)), Y’s strategy
𝒚 converges to the equilibrium 𝒚∗, independent of both the players’
initial strategies.

Proof Sketch. First, note that 𝑞1 > 𝑞2 ⇔ 𝑥1 > 𝑥2. By the direct

calculation, we prove 𝐻 (𝑿 ;𝜹) ∝ 𝑞1 − 𝑞2. Thm. 2 shows that as

long as 𝒚 = 𝒚∗, 𝐻 (𝑿 ;𝜹) continues to increase. Thus, after a suffi-

ciently long time, 𝐻 (𝑿 ;𝜹) > 0 ⇔ 𝑞1 > 𝑞2 ⇔ 𝑥1 > 𝑥2 continue

to hold. We can also prove that 𝑥1 > 𝑥2 is equivalent to the posi-

tive definiteness of 𝑿T𝑼 . Thm. 1 shows that under positive definite

𝑿T𝑼 ,𝒚 asymptotically converges to𝒚∗, its equilibrium strategy. □

Our experiments visualize the mechanism of the global conver-

gence based on Thm. 1 and 2. Fig. 3A shows the dynamics of 𝑞1 and

𝑞2. Here, the colors indicate the contour plot for 𝑞1 − 𝑞2, showing

that 𝐻 (𝑿 ;𝜹) ∝ 𝑞1 −𝑞2 monotonically increases with time and thus

Thm. 2 holds. Furthermore, we also see that X’s strategy reaches

the region of 𝑞1 > 𝑞2 ⇔ 𝑥1 > 𝑥2 after a sufficiently long time

passes. In the region, 𝑿T𝑼 is positive definite, and thus Thm. 1 is

applicable after sufficiently long time passes.

Next, Fig. 3B plots the global behavior of the learning dynamics,

which is described by the three parameters of 𝑥1, 𝑥2, and𝑦. The gray

line shows the region that corresponds to the Nash equilibrium,

i.e., 𝒙st (𝑿 ,𝒚) = 𝒚 = (1/2, 1/2). Furthermore, the colored lines

show example trajectories of the learning dynamics. The blue part

of the line shows that 𝐷 (𝑿 ,𝒚) increases at the beginning of the

learning dynamics. This part is in the region of 𝑥1 < 𝑥2, following

Thm. 1. After that, the red part shows that 𝐷 (𝑿 ,𝒚) decreases, and
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Figure 4: Global convergence in the coupled matching pennies games, where the second, third, fourth, and first actions win
the other’s first, second, third, and fourth actions, respectively. The winner receives the payoff of 2 (the orange blocks in the
matrices for the winning of X), while the loser sends the payoff of 2 (the blue blocks). We now introduce three variants for the
other blocks in the payoff matrix. (A) The case of interior equilibrium. We set each of the other blocks by random numbers in
[−1, 1] (the gray blocks). Then, Y’s strategy converges to the unique Nash equilibrium (the red star marker) independent of its
initial state (the blue circle markers). (B) The case of continuous equilibrium. We set each of the other blocks by 0, where the
payoff matrix degenerates. Y’s strategy converges to one of the Nash equilibria (the line consisting of the red star markers)
depending on its initial state. (C) The case of boundary equilibrium. Only the block for the interaction between an action is set
to −1, and the others are 0. If so, X’s strategy converges to the unique Nash equilibrium (the orange star markers) independent
of its initial state (the green circle markers). Instead, Y’s strategies do not converge.

the learning dynamics converge to the equilibrium. This part is in

the region of 𝑥1 > 𝑥2, following Thm. 1.

4.2 Example: Coupled Matching Pennies
We also observe the global convergence in other zero-sum games

beyond the matching pennies game. Fig. 4 considers three examples

of “coupled” matching pennies games, where a pair of matching

pennies games are coupled with some interaction. The game con-

siders the action numbers of𝑚X =𝑚Y = 4, and some elements of

the payoff matrix is fixed as 𝑢𝑖 𝑗 = +2 for 𝑗 = 𝜎 (𝑖) and 𝑢𝑖 𝑗 = −2 for
𝑖 = 𝜎 ( 𝑗). Here, we used the permutation function 𝜎 as 𝜎 (1) = 2,

𝜎 (2) = 3, 𝜎 (3) = 4, and 𝜎 (4) = 1. If we consider only X’s odd

actions and Y’s even actions or its reverse, the payoff matrix cor-

responds to the matching pennies game. Interestingly, there are

various types of Nash equilibrium depending on the interaction

between these matching pennies games, i.e., the other elements

of the payoff matrix, 𝑢𝑖 𝑗 for neither 𝑗 = 𝜎 (𝑖) nor 𝑖 = 𝜎 ( 𝑗). Indeed,
Fig. 4 shows three cases where Nash equilibrium exists (A) in the

interior, (B) continuously, and (C) on the boundary.

We remark that the global behavior obtained from Thm. 1 and 2

are available even though the trajectories of the learning dynamics

look complicated (see Fig. 4). Furthermore, Panels A and B show

that Y’s strategy converges to the equilibrium. The only exception

is Panel C, but X’s strategy converges to the equilibrium instead of

Y’s. In the following, we explain in detail this convergence for each

panel.

Interior equilibrium: First, Fig. 4A shows the case where the

other elements of the payoff matrix are random numbers follow-

ing the uniform distribution of [−1, 1]. In this case, the payoff

matrix is linearly independent. In mathematics, there exists no

𝒂 = (𝑎 𝑗 )1≤ 𝑗≤𝑚Y ∈ R𝑚Y
such that Σ 𝑗𝑎 𝑗𝒖 𝑗 = 0 other than 𝒂 = 0.

Thus, there is a single Nash equilibrium in the interior of the strat-

egy space. As in the matching pennies game, we observe that Y’s

strategy always converges to its equilibrium independent of X’s

and Y’s initial strategies.

Continuous equilibrium: Second, Fig. 4B shows the case where

all the other elements take 0. In this case, the payoff matrix is

not linearly independent in two ways. Indeed, Σ 𝑗𝑎 𝑗𝒖 𝑗 = 0 for

𝒂 = (0, 1, 0, 1) and (1, 0, 1, 0). Thus, Nash equilibria exist continu-

ously as 𝒙∗ = 𝑟X (0, 1/2, 0, 1/2) + (1 − 𝑟X) (1/2, 0, 1/2, 0) and 𝒚∗ =

𝑟Y (0, 1/2, 0, 1/2) + (1 − 𝑟Y) (1/2, 0, 1/2, 0) for all 0 ≤ 𝑟X ≤ 1 and

0 ≤ 𝑟Y ≤ 1. Even in such continuous equilibria, we observe that Y’s

strategy converges to one of the equilibria depending on X’s and

Y’s initial strategies.

Boundary equilibrium: Third, Fig. 4C shows the case where the

other elements take 0 in principle except for 𝑢11 = −1. In this case,

the payoff matrix is not linearly independent in one way. Indeed,

Σ 𝑗𝑎 𝑗𝒖 𝑗 = 0 for 𝒂 = (0, 1, 0, 1). The only Nash equilibrium exists

on the boundary of strategy spaces, 𝒙∗ = (0, 1/2, 0, 1/2), and 𝒚∗ =
(1/2, 0, 1/2, 0). As far as we observe our experiments, Y’s strategy

fails to converge the equilibrium when the payoff matrix is not

linearly independent and is equipped with only the boundary Nash

equilibrium. Nevertheless, we observe that X’s strategy converges

to the equilibrium instead of Y’s. We find no case that neither X’s

nor Y’s strategy converges to the equilibrium.

5 CONCLUSION
This study considered the simplest situation of memory asymmetry

between two players; only player X memorizes the other’s previous
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action, while player Y cannot. We formulated their learning dynam-

ics based on the replicator dynamics. Although the existence of

memory complicates the dynamics, we captured the global behavior

of the learning dynamics by introducing two new quantities. One

is the conditional-sum divergence, which is an extension of the

previous divergence to the case of reactive strategies. We proved

that when X exploits Y, this conditional-sum divergence becomes

smaller, meaning that their strategies converge to the Nash equi-

librium. The other is a family of Lyapunov functions, meaning X’s

exploitability to Y. We proved that these Lyapunov functions mono-

tonically increase, meaning that X learns to exploit Y with time. As

a valid application of the combination of these two quantities, we

suggested the global convergence to the Nash equilibrium. Theoret-

ically, we proved the global convergence in the matching pennies

game, the simplest game equipped with an interior Nash equilib-

rium. Our experiments further support that global convergence

occurs in coupled matching pennies games, which can have various

types of Nash equilibrium structures, such as interior equilibrium,

continuous equilibrium, and boundary equilibrium. It is still a con-

jecture whether the learning dynamics with memory asymmetry

converge to the Nash equilibrium in general zero-sum games. This

study provides novel and valid indicators to analyze dynamics in

learning in games with memories.
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