
Optimising Expectation with Guarantees for Window Mean
Payoff in Markov Decision Processes

Pranshu Gaba

Tata Institute of Fundamental Research

Mumbai, India

pranshu.gaba@tifr.res.in

Shibashis Guha

Tata Institute of Fundamental Research

Mumbai, India

shibashis.guha@tifr.res.in

ABSTRACT
The window mean-payoff objective strengthens the classical mean-

payoff objective by computing themean-payoff over a finite window

that slides along an infinite path. Two variants have been consid-

ered: in one variant, the maximumwindow length is fixed and given,

while in the other, it is not fixed but is required to be bounded. In

this paper, we look at the problem of synthesising strategies in

Markov decision processes that maximise the window mean-payoff

value in expectation, while also simultaneously guaranteeing that

the value is above a certain threshold. We solve the synthesis prob-

lem for three different kinds of guarantees: sure (that needs to be

satisfied in the worst-case, that is, for an adversarial environment),

almost-sure (that needs to be satisfied with probability one), and

probabilistic (that needs to be satisfied with at least some given

probability 𝑝).

We show that for the fixed window mean-payoff objective, when

the window length is given in unary, all the three problems are

in PTIME, while for the bounded window mean-payoff objective,

they are in NP ∩ coNP, and thus have the same complexity as

for maximising the expected performance without any guarantee.

Moreover, we show that pure finite-memory strategies suffice for

maximising the expectation with sure and almost-sure guarantees,

whereas, for maximising expectation with a probabilistic guarantee,

randomised strategies are necessary in general.

KEYWORDS
Beyond worst-case synthesis; reactive synthesis; finitary objectives;

mean payoff; Markov decision processes; two-player games

ACM Reference Format:
Pranshu Gaba and Shibashis Guha. 2025. Optimising Expectation with

Guarantees for Window Mean Payoff in Markov Decision Processes. In Proc.
of the 24th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS,

9 pages.

1 INTRODUCTION
Beyond worst-case synthesis. Classical two-player quantitative
zero-sum games [2, 23] involve decision making against a purely

antagonistic environment, where a minimum performance needs to

be guaranteed even in the worst case. On the other hand, Markov

decision processes (MDPs) [25] model uncertainty, and decision

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

making involves ensuring a higher expected performance against a

stochastic environment which usually does not provide any guar-

antee on the worst-case performance. Both these models have their

own weaknesses. A strategy against an adversarial environment

may provide worst-case guarantee but may be suboptimal in its

expected behaviour. On the other hand, a strategy that maximises

the expected performance may fail miserably in the worst case.

However, in practice, both might be desired simultaneously: A

system needs to provide guarantee in the worst-case, and perform

well in an expected sense against a stochastic environment. In [10],

the beyondworst-case (BWC) frameworkwas introduced to provide

strict worst-case guarantee as well as good expected performance.

In particular, the study was made for two quantitative objectives:

mean payoff and shortest path. While this work focussed on the

restricted class of finite memory strategies, it was also shown that

infinite memory strategies are strictly more powerful than finite-

memory strategies in the BWC setting [10]. The synthesis of infinite

memory strategies was subsequently studied in [18].

Window mean payoff. For Boolean and quantitative prefix-

independent objectives specified as the limit of a reward function

in the long run [20, 27], a play may satisfy such an objective and

yet also exhibit undesired behaviours for arbitrarily long inter-

vals [11, 14]. Finitary or window objectives strengthen such prefix-

independent objectives by restricting the undesired behaviour to

intervals of bounded length (windows) of the play. As a particular

case, we consider the window mean-payoff objectives, which are

finitary versions of the classical mean-payoff objective. Window

mean-payoff objectives [11] are quantitative finitary objectives that

strengthen the classical mean-payoff objective: the satisfaction of a

window mean-payoff objective implies the satisfaction of the classi-

cal mean-payoff objective. Given a length ℓ ≥ 1, the fixed window

mean-payoff objective (FWMP(ℓ, 𝜆)) is satisfied if except for a finite
prefix, from every point in the play, there exists a window of length

at most ℓ starting from that point such that the mean payoff of

the window is at least a given threshold 𝜆. In the bounded window

mean-payoff objective (BWMP(𝜆)), it is sufficient that there exists

some length ℓ for which the FWMP(ℓ, 𝜆) objective is satisfied. The
value of an outcome run is the largest (supremum) 𝛾 such that from

some point on, the run can be decomposed into windows of size

smaller than the fixed or existentially quantified bound ℓ , all having

a mean-payoff value at least 𝛾 .

Contributions. In this paper, we study three different problems

to maximise expectation while simultaneously providing guaran-

tees for the fixed and the bounded window mean-payoff objectives.

Given an MDP and thresholds 𝛼, 𝛽 ∈ Q, synthesise a strategy that:

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

820

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

1. (Beyond worst case (BWC) synthesis) (i) ensures a window
mean-payoff at least 𝛼 surely, i.e. against all strategies of an adver-

sarial environment, and (ii) an expectation that is at least 𝛽 against

a stochastic model of the environment.

2. (Beyond probability threshold (BPT) synthesis) (i) ensures a
window mean-payoff at least 𝛼 with at least some given probability

𝑝 , and (ii) an expectation that is at least 𝛽 against a stochastic model

of the environment.

3. (Beyond almost sure (BAS) synthesis) (i) ensures a window
mean-payoff at least 𝛼 almost surely, i.e. with probability one, and

(ii) an expectation that is at least 𝛽 against a stochastic model of

the environment.

Motivating examples. We consider some motivating examples in

the context of window mean payoff for maximising expectation

while providing guarantees at the same time. 1. Consistent output
of power plant. A power plant may be required to output 10 MW

of power on average. A plant that outputs 240 MW of power for

an hour and 0 MW for the rest of the day satisfies the requirement

but is not desirable if there is no means to store the energy. Using

windows, we can ask for an output of 10 MW every hour. Moreover,

a power plant may have multiple ways to generate power (solar,

wind, hydro) with different rates and reliability, e.g. solar output

is high during the day and low during the night, while hydro is

consistently low-moderate. It is may be desired to devise a strategy

that maximises the output in expectation while producing sufficient

power at all times for critical applications such as hospitals and

trains. 2. Investment in stock market.While investing in the stock

market, an investor not only wants a higher expected return, but

may as well prefer to be risk-averse, that is, the stocks do not crash

or such events happen rarely. Further, the investor may consistently

want to receive returns over a certain period or a window of time.

3. Gambling [12]. In gambling, while the goal is to maximise the

expected profit, a desirable policy may want to avoid risk and try

to ensure that the chance of losing is less than a certain probability.

Further, a gambler would like to receive a profit amount from time

to time and the payment should not be deferred indefinitely.

We show that, for the case of fixed window mean-payoff, if the

window length is given in unary, then all of the above problems are

in PTIME (Theorems 4.3, 4.6, and 4.7) and are thus no more complex

than solving two-player games [11] or maximising expectation

for the same objective in an MDP [7]. For classical mean-payoff

objective, we note that the first problem above is in NP ∩ coNP [6]

while the second and the third problems are in PTIME [18]. For

the case of bounded window mean-payoff objective, all the above

problems are in NP ∩ coNP (Theorem 5.1), thus showing that the

results are no more complex than solving two-player games or

maximising expectation for the same objective in an MDP [7, 11].

Our techniques are different from the BWC synthesis for classical

mean-payoff objective. While both our work as well as [10] reason

on the so-called end-components (ECs), the approach for the BWC
synthesis problem for classical mean payoff in [10] relies on a

special kind of end-component called winning end-components

(WECs). These are ECs where all vertices are winning for the sure

mean-payoff objective while staying inside the end-component. In

the current work, for window mean-payoff objective, for the BWC
synthesis problem, we do not need to find the WECs but instead it

suffices to compute the maximum sure window mean-payoff value

from each vertex. Further, unlike mean-payoff objective [10], for

window mean-payoff objective infinite memory strategies are no

more powerful than finite memory strategies and we need to switch

from a strategy corresponding to the expectation maximisation to

the sure satisfaction strategy only once.

Related Work. The beyond worst-case framework was intro-

duced in [10] for quantitative objectives. The problem was studied

for finite-memory strategies and it was shown to be in NP ∩ coNP
for mean-payoff objective. The case of infinite memory strategy

for the BWC synthesis problem was left open in [10] and was

solved in [18]. Further, in [18], a natural relaxation of the BWC
problem, the beyond almost-sure synthesis problem (BAS) was in-
troduced and was shown to be in PTIME for mean-payoff objective.

The beyond probability threshold synthesis problem was studied

for mean-payoff objective in [15]. In [6], the BWC, BAS, and BPT
synthesis problems were studied for qualitative omega-regular ob-

jectives encoded as parity objectives. The problems were shown

to be in NP ∩ coNP. In [17], the above problem was studied in the

context of stochastic games which are a generalisation of MDPs

where the environment is both stochastic and adversarial. A com-

bination of optimising expected mean payoff and surely satisfying

omega-regular [1], safety [22], and energy objectives [8] were also

considered. In [4], Boolean combinations of objectives that are

omega-regular properties that need to be enforced either surely, al-

most surely, existentially, or with non-zero probability were studied.

It was shown that both randomisation and infinite memory may

be required by an optimal strategy. In [5], a combination of parity

objective and multiple reachability objectives along with threshold

probabilities were considered where the parity objective needs to

be satisfied surely and each reachability objective is satisfied with

the corresponding threshold probability. The BWC and the BPT
problems were also studied for the discounted-sum objective in

partially observed MDPs (POMDPs) [12, 16].

Mean-payoff objectiveswere studied initially in two-player games,

without stochasticity [20, 27], and finitary versions were introduced

as window mean-payoff objectives [11]. For finitary mean-payoff

objectives, the satisfaction problem [9] and the expectation prob-

lem [7] were studied in MDPs. Both the expectation problem [7]

and the satisfaction problem [9] for the FWMP(ℓ) objective are in
PTIME, while they are in UP ∩ coUP for the BWMP objective. The

satisfaction problem for window mean-payoff objectives has been

studied recently in [19] for stochastic games.

In the current work too, we analyse ECs, but in a way that is dif-

ferent from the above works. While pure finite-memory strategies

suffice for the BWC and the BAS synthesis problems for the win-

dow mean-payoff objectives, we need finite-memory randomised

strategies for the BPT synthesis problem.

A full version of the paper with complete proofs appear in [21].

2 TECHNICAL PRELIMINARIES
Probability distributions. For a finite set 𝐴, a probability distribu-
tion over 𝐴 is a function Pr : 𝐴 → [0, 1] such that

∑
𝑎∈𝐴 Pr(𝑎) = 1.

We denote by D(𝐴) the set of all probability distributions over 𝐴.

The support of the probability distribution Pr on 𝐴 is Supp(Pr) =
{𝑎 ∈ 𝐴 | Pr(𝑎) > 0}. For algorithm and complexity reasons, we

assume that the probability distributions take rational values.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

821

Markov decision processes. A Markov decision process (MDP)

is a tuple M = ((𝑉 , 𝐸), (𝑉◦,𝑉^), P,𝑤) where:
• (𝑉 , 𝐸) is called the arena of M. It is a directed graph with a

set𝑉 of vertices and a set 𝐸 ⊆ (𝑉◦×𝑉^) ∪ (𝑉^ ×𝑉◦) of edges
such that for each vertex 𝑣 ∈ 𝑉 , there is an out-edge from 𝑣

in the game (i.e., no deadlocks). We denote by 𝐸 (𝑣) the set
of vertices 𝑢 such that (𝑣,𝑢) ∈ 𝐸. We say that the MDPM is

finite if the set 𝑉 is finite. Unless mentioned otherwise, we

consider MDPs to be finite in this work.

• (𝑉◦,𝑉^) is a partition of the set 𝑉 of vertices, where 𝑉◦
denotes the set of vertices belonging to the player and 𝑉^
denotes probabilistic vertices.

• P : 𝑉^ → D(𝑉◦) is the probability function that returns the

probability distribution over the out-neighbours of proba-

bilistic vertices.We require for every 𝑣 ∈ 𝑉^ that Supp(P(𝑣)) =
𝐸 (𝑣), that is, for all vertices 𝑣 ′ ∈ 𝑉 , we have that P(𝑣) (𝑣 ′) > 0

if and only if 𝑣 ′ is an out-neighbour of 𝑣 .

• 𝑤 : 𝐸 → Z is the payoff function that defines an integer

payoff for every edge in the arena. Let𝑊M be the maximum

weight appearing on the edges in M. We drop the subscript

when it is clear from the context.

With a little abuse of nomenclature, we mean by self-loop from a
vertex 𝑣 a sequence of two edges starting from and ending at 𝑣 so

that player vertices and probabilistic vertices alternate. A payoff 𝜆

on the self-loop here denotes that both the edges that are part of

the self-loop have the same payoff 𝜆.

A run of the MDP begins by placing a token on an initial vertex

which is a player vertex and proceeds in steps. In each step, if the

token is on a player vertex 𝑣 , then the player chooses an out-edge

of 𝑣 and moves the token along that edge. Otherwise, if the token

is on a probabilistic vertex 𝑣 , then the out-edge is chosen by the

probability distribution Pr(𝑣). This continues ad infinitum, resulting

in a run 𝜋 that is an infinite path in the arena.

For a run 𝜋 = 𝑣0𝑣1𝑣2 · · ·, we denote by 𝜋 (𝑖) the vertex 𝑣𝑖 , by

𝜋 (𝑖, 𝑗) the infix 𝑣𝑖 · · · 𝑣 𝑗 , by 𝜋 (0, 𝑗) the finite prefix 𝑣0𝑣1 · · · 𝑣 𝑗 , and
by 𝜋 (𝑖,∞) the infinite suffix 𝑣𝑖𝑣𝑖+1 · · ·. The length of an infix 𝜋 (𝑖, 𝑗)
is the number of edges, that is 𝑗 − 𝑖 . We denote by RunsM and

PrefsM◦ the set of all runs in M and the set of all finite prefixes in

M ending in a vertex in 𝑉◦ respectively. We drop the superscript

M when they are clear from the context. For a prefix 𝜌 ∈ Prefs◦,
we denote by Last(𝜌) the last vertex of 𝜌 . We denote by inf (𝜋) the
set of vertices in 𝑉 that occur infinitely often in 𝜋 .

An MDP where every vertex in𝑉◦ has exactly one out-neighbour
is called a Markov chain. Figure 1 shows an example of an MDP. In

figures, in MDPs, we denote player vertices by circles and proba-

bilistic vertices by diamonds.

Boolean objectives.Depending on the specifications, some runs

are desirable for the player, and some are not. A Boolean objective
𝜑 is a set of runs that are desirable for the player. We say a run

𝜋 ∈ Runs satisfies an objective 𝜑 if 𝜋 ∈ 𝜑 . Given a set 𝑇 ⊆ 𝑉

of target vertices, a common Boolean objective is the reachability
objective, defined as Reach(𝑇) = {𝜋 ∈ Runs | ∃𝑖 ≥ 0, 𝜋 (𝑖) ∈ 𝑇 }, i.e.,
the set of runs that visit 𝑇 .

Quantitative objectives. A quantitative objective is a function
𝜑 : Runs → Q ∪ {±∞} that assigns to each run in the MDP a nu-

merical value that denotes how good the run is for the player. Some

common examples of quantitative objectives include mean-payoff,

discounted-sum payoff, energy payoff, total payoff and liminf pay-

off. For a run 𝜋 = 𝑣0𝑣1𝑣2 · · ·, the liminf mean-payoff objective is

defined as follows: 𝜑MP (𝜋) ≔ lim inf𝑛→∞ 1

𝑛

∑𝑛
𝑖=0𝑤 (𝑣𝑖 , 𝑣𝑖+1). The

objectives studied in this paper, the window mean-payoff objec-

tives (defined later in this section), are also quantitative objectives.

Corresponding to a quantitative objective 𝜑 , we define threshold
Boolean objectives {𝜋 ∈ Runs | 𝜑 (𝜋) ≥ 𝜆}, for thresholds 𝜆 ∈ R.
We denote these objectives succinctly as {𝜑 ≥ 𝜆}.

A quantitative objective 𝜑 is closed under suffixes if for all runs
𝜋 , and for all suffixes 𝜋 (𝑗,∞) of 𝜋 , we have 𝜑 (𝜋) = 𝜑 (𝜋 (𝑗,∞)). An
objective 𝜑 is closed under prefixes if for all runs 𝜋 and all prefixes 𝜌

such that 𝜌 · 𝜋 ∈ RunsM , we have 𝜑 (𝜋) = 𝜑 (𝜌 · 𝜋). An objective 𝜑

is prefix-independent if it is closed under both prefixes and suffixes.

Mean-payoff is an example of a prefix-independent objective. Prefix

independence can be defined analogously for Boolean objectives.

Strategies. A strategy for the player in an MDPM is a function

𝜎 : Prefs◦ → D(𝑉) that maps prefixes ending in a vertex 𝑣 ∈ 𝑉◦
to a distribution over the successors of 𝑣 . The set of all strategies

of the player in the MDPM is denoted by ΛM . Strategies can be

realised as the output of a (possibly infinite-state) Mealy machine. A

Mealy machine is a deterministic transition system with transitions

labelled by input/output pairs. Intuitively, in each step, if the token

is on a vertex 𝑣 that belongs to the player, then 𝑣 is given as input to

the Mealy machine, and the Mealy machine outputs a distribution

over the successor probabilistic vertices of 𝑣 that the player must

choose. Otherwise, the token is on a vertex 𝑣 that is a probabilistic

vertex, in which case, the Mealy machine outputs the distribution

P(𝑣) that is part of the MDP M.

A strategy is deterministic if for every prefix 𝜌 ∈ Prefs◦, we have
that |Supp(𝜎 (𝜌)) | = 1, otherwise it is randomised. The memory size
of a strategy 𝜎 is the smallest number of states a Mealy machine

defining 𝜎 can have. A strategy 𝜎 is memoryless if for all prefixes
𝜌, 𝜌′ ∈ Prefs◦, if Last(𝜌) = Last(𝜌′), then 𝜎 (𝜌) = 𝜎 (𝜌′). Memory-

less strategies can be defined by Mealy machines with only one

state. Fixing a strategy 𝜎 of the player in an MDP yields a (possibly

infinite-state) Markov chain, and we represent this by M𝜎
.

A run 𝜋 = 𝑣0𝑣1 · · · is consistent with a strategy 𝜎 ∈ ΛM if for

all 𝑗 ≥ 0 with 𝑣 𝑗 ∈ 𝑉 , we have 𝑣 𝑗+1 ∈ Supp(𝜎 (𝜋 (0, 𝑗))). A run 𝜋 is

an outcome of a strategy 𝜎 if 𝜋 is consistent with 𝜎 . We denote by

OutM𝑣 (𝜎) the set of runs of M that start from 𝑣 and are consistent

with strategy 𝜎 .

Satisfaction probability of Boolean objectives. For a Boolean
objective𝜑 , we denote by Pr𝜎M,𝑣

(𝜑) the probability that an outcome

of the strategy 𝜎 inM with initial vertex 𝑣 satisfies 𝜑 . This probabil-

ity is defined for cones defined by finite prefixes, and it extends to

infinite runs uniquely by Carathéodory’s extension theorem [26].

Given an MDP M with a Boolean objective 𝜑 , starting from a

vertex 𝑣 inM, we are interested in finding themaximum probability

with which the player can ensure that the objective 𝜑 is satisfied.

In the decision problem, we ask if given 𝑝 ∈ [0, 1] ∩ Q, does there
exist a strategy 𝜎 ∈ ΛM of the player such that Pr𝜎M,𝑣

(𝜑) ≥ 𝑝 .

Expected value of quantitative objectives. For a quantita-
tive objective 𝜑 , we are interested in determining the maximum

value of 𝜑 that the player can ensure in expectation. Formally,

given a strategy 𝜎 and an initial vertex 𝑣 , we denote by E𝜎M,𝑣
(𝜑)

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

822

the expected 𝜑-value of an outcome of 𝜎 from 𝑣 , that is, the ex-

pectation of 𝜑 over all plays with initial vertex 𝑣 under the prob-

ability measure Pr𝜎M,𝑣
(𝜑). The expected 𝜑-value of a vertex 𝑣 is

EM,𝑣 (𝜑) = sup𝜎∈ΛM E𝜎M,𝑣
(𝜑). For 𝜀 > 0, a strategy 𝜎 is 𝜀-optimal

for objective 𝜑 if E𝜎M,𝑣
(𝜑) ≥ EM,𝑣 (𝜑) − 𝜀. A strategy 𝜎 is optimal

for objective 𝜑 if it achieves the 𝜑-value of the vertex, that is, if

E𝜎M,𝑣
(𝜑) = EM,𝑣 (𝜑).

Two-player games. An MDPM = ((𝑉 , 𝐸), (𝑉◦,𝑉^), P,𝑤) can
be seen as a two-player game, denoted GM = ((𝑉 , 𝐸), (𝑉◦,𝑉^),𝑤)
where the probability vertices in 𝑉^ are interpreted as vertices

belonging to an adversarial environment, the probability function

P is forgotten, and the adversary chooses a strategy of its choice.

Using both interpretations, which are that of a stochastic model as

well as the adversarial environment, is crucial to our work.

Maximal end components. An end component (EC) in an MDP

is a subset 𝑇 ⊆ 𝑉 of vertices such that for every probabilistic

vertex 𝑣 in 𝑇 , every out-neighbour of 𝑣 belongs to the subset 𝑇 ,

and 𝑇 is strongly connected. Thus, for every pair of vertices 𝑣, 𝑣 ′

in the subset 𝑇 , the player has a strategy to reach 𝑣 ′ from 𝑣 with

probability 1 and the player can ensure with probability 1 that

the token never leaves 𝑇 . A maximal end component (MEC) is an

EC that is not contained in any other EC. The MECs in an MDP

are disjoint. Each vertex in an MDP belongs to either no MEC or

exactly one MEC. Thus, the number of MECs is bounded above

by the number of vertices in the MDP. We denote by 𝔐 the set of

MECs ofM. The MEC decomposition can computed in polynomial

time [13]. We now recall some classical results on MDPs.

Lemma 2.1 (Optimal reachability [3]). Given an MDP M and
a set 𝑇 ⊆ 𝑉 of target states, we can compute in polynomial time
for each vertex 𝑣 ∈ 𝑉 , the probability 𝑝∗𝑣 = sup𝜎 Pr𝜎M,𝑣

(Reach(𝑇))
with which the player can ensure visiting 𝑇 . There is an optimal pure
memoryless strategy 𝜎∗ that enforces reaching 𝑇 with probability 𝑝∗𝑣
from every vertex 𝑣 ∈ 𝑉 . Further, for all 𝑣 ∈ 𝑉 , 𝑐 < 𝑝∗𝑣 , there exists
𝑁 ∈ N such that by playing 𝜎∗ for 𝑁 steps, we reach 𝑇 from 𝑣 with
probability greater than 𝑐 .

For an arbitrary strategy 𝜎 of the player, it is almost-surely the

case that an outcome ends up in an MEC of M.

Lemma 2.2 (Long-run appearance inMECs [3]). Given an MDP
M with a set 𝑉 of vertices, for every strategy 𝜎 of the player and for
every vertex 𝑣 ∈ 𝑉 , we have that

∑
𝑀∈𝔐 Pr𝜎M,𝑣

(inf (𝜋) ⊆ 𝑀) = 1.

Window mean-payoff objectives. In this work, we look at

the BWC framework in the context of the window mean-payoff

objectives. We first define Boolean versions of the objective.

For a run 𝜋 = 𝑣0𝑣1𝑣2 · · · in an MDP M, the mean payoff of an

infix 𝜋 (𝑖, 𝑖 +𝑛) is the average of the payoffs of the edges in the infix

and is defined as MP(𝜋 (𝑖, 𝑖 + 𝑛)) = ∑𝑖+𝑛−1
𝑘=𝑖

1

𝑛𝑤 (𝑣𝑘 , 𝑣𝑘+1). Given a

window length ℓ ≥ 1 and a threshold 𝜆 ∈ Q, a run 𝜋 = 𝑣0𝑣1 · · · in
M satisfies the fixed window mean-payoff objective FWMPM (ℓ, 𝜆)
if from every position after some point, it is possible to start an

infix of length at most ℓ with mean payoff at least 𝜆.

FWMPM (ℓ, 𝜆) = {𝜋 ∈ RunsM | ∃𝑘 ≥ 0 · ∀𝑖 ≥ 𝑘 · ∃ 𝑗 ∈ {1, . . . , ℓ} :
MP(𝜋 (𝑖, 𝑖 + 𝑗)) ≥ 𝜆}

Corresponding to the Boolean objective FWMPM (ℓ, 𝜆), we define
a quantitative version of the objective as follows: Given a run 𝜋 in

an MDP M, the 𝜑FWMP(ℓ) -value of 𝜋 is equal to sup{𝜆 ∈ R | 𝜋 ∈
FWMP(ℓ, 𝜆)}, the supremum threshold 𝜆 such that the run satisfies

FWMPM (ℓ, 𝜆). For a run 𝜋 in an MDP, the 𝜑FWMP(ℓ) -value of 𝜋
can be of the form

𝑎
𝑏
where 𝑎 ∈ {−𝑊 · ℓ, . . . , 0, . . . ,𝑊 · ℓ} and

𝑏 ∈ {1, . . . , ℓ}. Hence the 𝜑FWMP(ℓ) -value can be one of finitely

many values leading to the following.

Proposition 2.3. For all ℓ ≥ 1 and all 𝜆 ∈ R, we have 𝜋 ∈
{𝜑FWMP(ℓ) ≥ 𝜆} if and only if 𝜋 ∈ FWMP(ℓ, 𝜆).

We also consider another window mean-payoff objective called

the bounded window mean-payoff objective BWMPM (𝜆). A run

satisfies the objective BWMPM (𝜆) if there exists a window length

ℓ ≥ 1 such that the run satisfies FWMPM (ℓ, 𝜆).

BWMPM (𝜆) = {𝜋 ∈ RunsM | ∃ℓ ≥ 1 : 𝜋 ∈ FWMPM (ℓ, 𝜆)}

We define the 𝜑BWMP-value of a run 𝜋 analogously to 𝜑FWMP(ℓ) .
Given a run 𝜋 in an MDP M, the 𝜑BWMP-value of 𝜋 is equal to

sup{𝜆 ∈ R | 𝜋 ∈ BWMP(𝜆)}, or equivalently, sup{𝜆 ∈ R | ∃ℓ ≥ 1 :

𝜋 ∈ FWMP(ℓ, 𝜆)}.
An observation similar to Proposition 2.3 does not hold for the

bounded windowmean-payoff objective. This is because since ℓ can

be unbounded, there may be a run 𝜋 such that 𝜋 does not satisfy

FWMP(ℓ, 𝜑BWMP (𝜋)) for any ℓ ≥ 1. However, the following holds.

Proposition 2.4. For all 𝜆 ∈ R, if 𝜋 ∈ BWMP(𝜆), then 𝜋 ∈
{𝜑BWMP ≥ 𝜆}.

Note that both FWMPM (ℓ, 𝜆) and BWMPM (𝜆) are Boolean

prefix-independent objectives. We omit the subscript M when it

is clear from the context. As considered in previous works [7, 9,

11], the window length ℓ is usually small (typically ℓ ≤ |𝑉 |), and
therefore we assume that ℓ is given in unary (while the edge-payoffs

are given in binary).

3 PROBLEM DEFINITION
We formally describe the notion of optimising expected 𝜑-value

with guarantees. Given an MDP M, a vertex 𝑣 , a guarantee thresh-

old 𝛼 , and an expectation threshold 𝛽 , we consider the following

decision problems for optimising expectation with guarantees.

(1) Beyond worst-case (BWC) synthesis [10] (Expectation
maximisation with sure guarantee): The problem here is to check if

the supremumofE𝜎M,𝑣
(𝜑) over all strategies𝜎 such thatOutM𝑣 (𝜎) ⊆

{𝜑 ≥ 𝛼} (that is, all outcomes in M starting from 𝑣 that are con-

sistent with 𝜎 have 𝜑-value at least 𝛼) is at least 𝛽 . We write this

decision problem succinctly as 𝑣 |= BWC(𝛼, 𝛽) in MDPM for objec-

tive 𝜑 . Note that for theOutM𝑣 (𝜎) ⊆ {𝜑 ≥ 𝛼} part, the probabilities
are ignored and the environment is considered antagonistic in the

sense that every play consistent with strategy 𝜎 needs to satisfy

the threshold Boolean constraint {𝜑 ≥ 𝛼}.
(2) Beyond probability threshold (BPT) synthesis [15] (Ex-

pectation maximisation with probabilistic guarantee): Here we are

given an additional probabilistic threshold 𝑝 . The problem here is

to check if the supremum of E𝜎M,𝑣
(𝜑) over all strategies 𝜎 such that

Pr𝜎M,𝑣
({𝜑 ≥ 𝛼}) ≥ 𝑝 is at least 𝛽 . We write this decision problem

succinctly as 𝑣 |= BPT((𝑝, 𝛼), 𝛽) in MDP M for objective 𝜑 .

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

823

(3) Beyond almost-sure (BAS) synthesis [18] (Expectation
maximisation with almost-sure guarantee): The problem here is to

check if the supremum of E𝜎M,𝑣
(𝜑) over all strategies 𝜎 such that

Pr𝜎M,𝑣
({𝜑 ≥ 𝛼}) = 1 is at least 𝛽 . We write this decision problem

succinctly as 𝑣 |= BAS(𝛼, 𝛽) in MDP M for objective 𝜑 .

For each of these decision problems, we study the case where

𝜑 is either 𝜑FWMP(ℓ) or 𝜑BWMP. For the BWC synthesis problem,

if the answer is yes, then for every 𝜀 > 0, we construct a strategy

that achieves an expected 𝜑-value of at least 𝛽 − 𝜀. For the BPT and

the BAS synthesis problems, if the answer is yes, then we construct

strategies that achieve the expected 𝜑-value of at least 𝛽 as well as

the specified guarantees.

For all three synthesis problems for the classical mean-payoff

objective and for the window mean-payoff objectives, we can as-

sume without loss of generality that the guarantee threshold 𝛼 is 0.

This is because we have 𝑣 |= BWC(𝛼, 𝛽) in an MDP M if and only

if 𝑣 |= BWC(0, 𝛽 − 𝛼) in a new MDP M−𝛼 (obtained from M by

subtracting 𝛼 from every edge payoff inM). Similarly, we can set

𝛼 = 0 for BPT and BAS without loss of generality.

4 EXPECTED FIXED WINDOW MEAN-PAYOFF
VALUEWITH GUARANTEES

In this section, we show that the BWC, BPT, and the BAS syn-

thesis problems for 𝜑FWMP(ℓ) can be solved with no additional

complexity than that of either of the special cases: maximising the

expectation without any guarantee, or ensuring guarantee surely,

almost-surely, or with a certain probability while disregarding any

expected performance.

4.1 Sure Guarantee
Recall that the expected 𝜑FWMP(ℓ) -value of a vertex 𝑣 is defined as

the supremum of the expected 𝜑FWMP(ℓ) -values E
𝜎
M,𝑣

(𝜑FWMP(ℓ))
over all strategies 𝜎 of the player. We show in Example 4.1 that

in general, an optimal strategy achieving the expected 𝜑FWMP(ℓ) -
value 𝛽 while also ensuring the sure guarantee of 0 may not exist,

but for every 𝜀 > 0, an 𝜀-optimal strategy exists. We thus show how

to construct 𝜀-optimal strategies for BWC(0, 𝛽) satisfaction.

Example 4.1. Consider the MDP shown in Figure 1. We want

to determine if 𝑣2 |= BWC(0, 2) for the 𝜑FWMP(ℓ) objective for

window length ℓ = 3. If the token somehow reaches 𝑣4, then from

there, the player has a strategy to ensure that the 𝜑FWMP(ℓ) -value
of the outcome is surely 2, and thus, the player can ensure that

the expected 𝜑FWMP(ℓ) -value from 𝑣4 is at least 2 as well. Note

that for every successive visit of the token to 𝑣7, the player has

to alternate between 𝑣6 and 𝑣8 to ensure that the outcome is 2.

However, starting from 𝑣2, the player does not have a strategy to

reach 𝑣4 surely. If the token remains in the set {𝑣0, 𝑣1, 𝑣2}, then the

𝜑FWMP(ℓ) -value that can be surely attained is 0. However, if the

player tries to move the token from 𝑣2 to 𝑣3 some fixed (but large)

number 𝑁 of times, then the probability of reaching 𝑣4 can be made

close to 1. If after 𝑁 tries, the token does not reach 𝑣4, then the

player can choose to keep the token in the set {𝑣0, 𝑣1, 𝑣2} and thus

surely get a 𝜑FWMP(ℓ) -value of 0. This gives a strategy that surely

ensures that the 𝜑FWMP(ℓ) -value of the outcome is non-negative

and the expected 𝜑FWMP(ℓ) -value is at least 2 − 𝜀 for all 𝜀 > 0.

𝑣0 𝑣1 𝑣2 𝑣3 𝑣4

𝑣5

𝑣6

𝑣7 𝑣8

−1

+2, .3

+1, .7

0

0

−1, .8

+4, .2 0
0, 1

0+10, 1

+6

−4, 1

Figure 1: An example of an MDP for BWC with ℓ = 3.

We present an algorithm (Algorithm 1) that, given a vertex 𝑣init
in an MDPM0, and a threshold 𝛽 , decides if 𝑣init |= BWC(0, 𝛽). We

show that it runs in time that is polynomial in the size of the input,

and explain how it yields an 𝜀-optimal strategy for the player.

Algorithm 1 BWC synthesis for 𝜑FWMP(ℓ) objective

Input: MDPM0, vertex 𝑣init ∈ 𝑉 , window length ℓ , and expecta-

tion threshold 𝛽

Output: Yes if and only if 𝑣init |= BWC(0, 𝛽)
1: Compute𝑊

FWMP(ℓ)
S,0 , the sure winning region inM0 for objec-

tive {𝜑FWMP(ℓ) ≥ 0}.
2: if 𝑣init ∉𝑊

FWMP(ℓ)
S,0 then return No

3: if 𝛽 ≤ 0 then return Yes

4: Construct M1 ≔ M0 ↾ 𝑊
FWMP(ℓ)
S,0 , the MDP obtained by

restricting M0 to𝑊
FWMP(ℓ)
S,0 .

5: for 𝑣 ∈ 𝑉◦ in M1 do
6: Compute the maximum 𝜆𝑣 such that 𝑣 belongs to the sure

winning region in M1 for objective {𝜑FWMP(ℓ) ≥ 𝜆𝑣}.
7: Construct M2 from M1 as follows:

Change payoffs of all edges to −1.
For each player vertex 𝑣 , add a self-loop with payoff 𝜆𝑣 .

8: return Yes if and only if EM2,𝑣init (𝜑MP) ≥ 𝛽 .

Description of Algorithm 1.We first compute the sure win-

ning region,𝑊
FWMP(ℓ)
S,0 , of the player for the threshold objective

{𝜑FWMP(ℓ) ≥ 0} (Line 1). The sure winning region of the player

in MDP M0 is the same as the winning region of the player in

the adversarial two-player game GM0
obtained by viewing prob-

abilistic vertices of M0 as vertices of an adversary. We compute

the winning region of player in GM0
using [11, Algorithm 1]. If the

vertex 𝑣init does not belong to𝑊
FWMP(ℓ)
S,0 , then the sure guarantee

cannot be satisfied from 𝑣init, and we have that 𝑣init ̸ |= BWC(0, 𝛽)
for all 𝛽 ∈ Q, and the algorithm returns No.

Otherwise, we have that 𝑣init ∈𝑊 FWMP(ℓ)
S,0 , and thus, there exists

a strategy that ensures the sure satisfaction of {𝜑FWMP(ℓ) ≥ 0} from
𝑣init. We now check if 𝛽 ≤ 0. This is because the sure satisfaction

of {𝜑FWMP(ℓ) ≥ 0} from 𝑣init implies that the expected 𝜑FWMP(ℓ) -
value of 𝑣init is at least 0, and in particular, if 𝛽 ≤ 0, then it follows

that 𝑣init |= BWC(0, 𝛽), and the algorithm returns Yes.
Finally, we arrive at the interesting case that is 𝛽 > 0. From every

vertex 𝑣 in 𝑊
FWMP(ℓ)
S,0 , there exists a sure winning strategy for

objective {𝜑FWMP(ℓ) ≥ 0}, and every such sure winning strategy

never moves the token out of𝑊
FWMP(ℓ)
S,0 . Thus, we can prune all

vertices from M0 that are not in𝑊
FWMP(ℓ)
S,0 to obtain M1, and we

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

824

have that the sets of sure winning strategies for {𝜑FWMP(ℓ) ≥ 0} in
M0 andM1 are the same. Next, in Line 6, for each player vertex 𝑣 in

M1, we compute 𝜆𝑣 , that is the maximum 𝜑FWMP(ℓ) -value that the
player can surely ensure inM1 starting from 𝑣 . The sure 𝜑FWMP(ℓ) -
value of each vertex can be computed in polynomial time using

binary search (details appear later). We construct a new MDP M2

which has the same set of vertices as M1. Each edge in M1 is also

present inM2 but with payoff−1. In addition, for each player vertex
𝑣 in M2, we add a self-loop with payoff 𝜆𝑣 to 𝑣 . We compute the

expected 𝜑MP-value of 𝑣init inM2 using linear programming [25].

The correctness of Line 8 follows from Lemma 4.2.

Lemma 4.2. For all 𝛾 ≥ 0, we have that 𝑣init |= BWC(0, 𝛾) in M0

if and only if EM2,𝑣init (𝜑MP) ≥ 𝛾 .

Proof sketch. Let 𝜎MP be a deterministic memoryless optimal

strategy from 𝑣init in M2 for the expectation of 𝜑MP (the existence

of such a strategy follows from [25]). We prove that for every

𝜀 > 0, we can construct a strategy 𝜎∗𝜀 such that outcomes of this

strategy from 𝑣init surely satisfy {𝜑FWMP(ℓ) ≥ 0} and we also have
E𝜎

∗
𝜀

M,𝑣init
(𝜑FWMP(ℓ)) ≥ 𝛾 − 𝜀.

Each run 𝜋 from 𝑣init that is an outcome of 𝜎MP almost-surely

eventually reaches a vertex 𝑢 from which it always takes the self-

loop on 𝑢 with edge payoff 𝜆𝑢 . This is because 𝜎MP is memory-

less and the payoff 𝜆𝑢 of the self-loop for every vertex 𝑢 is non-

negative, while all other edges in M2 have a negative payoff of −1.
Let 𝑢1, . . . , 𝑢𝑘 be the vertices to which an outcome of 𝜎MP reaches

with positive probabilities 𝑝1, . . . , 𝑝𝑘 respectively upon reaching

which the token starts looping. From Lemma 2.1, for every 𝜀 > 0,

we can choose a large enough 𝑁 such that the token reaches each

𝑢𝑖 with probability at least 𝑝𝑖 − 𝜀/(|𝑉 | ·𝑊), where𝑊 is the maxi-

mum edge payoff appearing in M0. The strategy 𝜎∗𝜀 mimics 𝜎MP
until 𝜎MP starts looping or until 𝑁 steps have passed, whichever

comes first. Then, if the token is on some vertex 𝑣 , then 𝜎∗𝜀 switches

to mimicking the sure-winning strategy 𝜎
FWMP(ℓ)
S from 𝑣 for the

rest of the run. It follows that the strategy 𝜎∗𝜀 will reach one of

the 𝑢𝑖 vertices with probability

∑𝑘
𝑖=1 (𝑝𝑖 − 𝜀/(|𝑉 | ·𝑊)) and that

expected 𝜑FWMP(ℓ) -value of an outcome of 𝜎∗𝜀 is at least 𝛾 − 𝜀.

Moreover, the 𝜑FWMP(ℓ) -value of an outcome of 𝜎∗𝜀 is surely non-

negative since 𝜆𝑣 ≥ 0 for all vertices 𝑣 inM1. Thus, we have that

𝑣init |= BWC(0, 𝛾).
For the converse, suppose that from vertex 𝑣init, the player has an

𝜀-optimal strategy 𝜎∗𝜀 for BWC(0, 𝛾) inM0. Using 𝜎
∗
𝜀 , we construct

a strategy 𝜎MP from 𝑣init in M2 that achieves expected 𝜑MP-value

at least𝛾 , that is, E𝜎MP
M2,𝑣init

(𝜑MP) ≥ 𝛾 . From Lemma 2.2, we have that

an outcome of 𝜎∗𝜀 almost-surely eventually reaches and stays in an

MEC from which it never exits. Suppose that starting from 𝑣init, an

outcome of the strategy 𝜎∗𝜀 ends up in MECs𝑀1, 𝑀2, . . . , 𝑀𝑘 with

probability 𝑝1, 𝑝2, . . . , 𝑝𝑘 respectively. If in an outcome 𝜋 of 𝜎∗𝜀 , the
token reaches the MEC 𝑀𝑖 and never leaves, then the 𝜑FWMP(ℓ) -
value of 𝜋 is at most max{𝜆𝑣 | 𝑣 ∈ 𝑀𝑖 }, and we denote this by 𝜆𝑀𝑖

.

The strategy 𝜎MP mimics 𝜎∗𝜀 to almost-surely reach the same MECs

in M2 with the same probabilities. In each MEC 𝑀 in M2, the

strategy 𝜎MP can ensure expected 𝜑MP-value max{𝜆𝑣 | 𝑣 ∈ 𝑀} by
almost-surely reaching the vertex 𝑣 in𝑀 with the maximum 𝜆𝑣 , and

then looping on 𝑣 forever. Thus, we have thatEM2,𝑣init (𝜑MP) ≥ 𝛾−𝜀.
Since this holds for every 𝜀, we have that EM2,𝑣init (𝜑MP) ≥ 𝛾 . □

Memory requirement for 𝜀-optimal strategies. In the proof

sketch above, the strategy𝜎
FWMP(ℓ)
S requires atmost ℓ memory [11].

From Lemma 2.1, for all 𝜀 > 0, there exists an integer 𝑁 that the

Mealy machine stores in its state space. Thus, deterministic finite-

memory strategies suffice for BWC. It suffices to consider 𝑁 loga-

rithmic in 1/𝜀. This bound is obtained by solving a linear recurrence
relation involving the transition probabilities in the arena [21].

Running time analysis. Given a vertex 𝑣 in an MDPM0 and a

threshold 𝛼 , the problem of determining if the player has a strategy

to surely satisfy the objective {𝜑FWMP(ℓ) ≥ 𝛼} from 𝑣 is in polyno-

mial time [11]. Thus, the set𝑊
FWMP(ℓ)
S,0 of all such vertices can be

computed in polynomial time.

Computing the sure value 𝜆𝑣 for the 𝜑FWMP(ℓ) for each vertex

can be done in polynomial time by using binary search. Since 𝜆𝑣 is

non-negative, recall that we can write 𝜆𝑣 as a fraction 𝑎/𝑏, where
𝑏 ∈ {1, . . . , ℓ} and 𝑎 ∈ {0, 1, . . . ,𝑊 · ℓ}. Thus, there are at most

𝑊 · ℓ2 different values that 𝜆𝑣 can take. For each possible value 𝛼 ,

we check if 𝑣 belongs to the sure winning region in M1 for the

threshold objective {𝜑FWMP(ℓ) ≥ 𝛼}. Since 𝜆𝑣 takes at most𝑊 · ℓ2
different values, it takes at most log(𝑊 · ℓ2) checks to arrive at 𝜆𝑣
and thus 𝜆𝑣 can be computed in time that is polynomial in the size

of the input.

Expectation of 𝜑MP objective can also be solved in polynomial

time using linear programming [25]. Thus, Algorithm 1 runs in

polynomial time. The following theorem summarises our results.

Theorem 4.3. BWC synthesis for𝜑FWMP(ℓ) with ℓ given in unary
is in PTIME, and if 𝑣 |= BWC(𝛼, 𝛽), then for every 𝜀 > 0, there exists
an 𝜀-optimal finite-memory deterministic strategy from 𝑣 .

4.2 Probabilistic Guarantee
Next, we look at the BPT((𝑝, 𝛼), 𝛽) synthesis problem. As before,

we assume without loss of generality that 𝛼 is equal to zero. In

contrast to BWC, in the case of BPT, the problem is interesting

even when 𝛽 ≤ 0. This is because satisfying the threshold objective

{𝜑FWMP(ℓ) ≥ 0} with probability at least 𝑝 does not necessarily

imply that the expectation is at least 𝛽 , even when 𝛽 ≤ 0. Further,

unlike in the case of BWC, we cannot prune away the set of vertices
from which the player cannot satisfy {𝜑FWMP(ℓ) ≥ 0} with proba-

bility at least 𝑝 . This is because, in trying to satisfy the expectation

threshold, the token may end up visiting a vertex from which the

probability of satisfying {𝜑FWMP(ℓ) ≥ 0} is less than 𝑝 .

Example 4.4. In Figure 2, we see an MDP M in which we want

to determine if 𝑣3 |= BPT((0.5, 0), 2) for 𝜑FWMP(ℓ) for window

length ℓ = 2. If the player keeps the token in the MEC consisting

of {𝑣0, 𝑣1, 𝑣2, 𝑣3} forever with probability 1, then a 𝜑FWMP(ℓ) -value
of +1 (which is non-negative) is ensured with probability 1, which

satisfies the guarantee threshold. However, this is not sufficient to

satisfy the expectation threshold 2. On the other hand, if the player

moves the token from 𝑣3 to 𝑣4 with probability 1, then the token

reaches the MEC {𝑣5, 𝑣7} with probability 0.6 and achieves a value

of −1, whereas the token reaches the MEC {𝑣6, 𝑣8} with probability

0.4 which has a value of 9. Thus, from 𝑣4, the expected value is

0.6 · (−1) + 0.4 · 9 = 3 and the expectation threshold is satisfied.

However, the token achieves non-negative value with probability

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

825

𝑣0

𝑣1

𝑣2

𝑣3 𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

+1

+1, .3

+1

+1, .1

+1, .7
+1

+1, 0.9

+1
+3

0, 0.6

0, 0.4

−2

0, 1

+10

+8, 1

+20, 1

Figure 2: An example of anMDP for BPT((0.5, 0), 2) with ℓ = 2.

only 0.4, and the guarantee threshold is not satisfied with suffi-

cient probability. Thus, a strategy satisfying both expectation and

probabilistic guarantee requires randomisation, and in fact, we can

show that if the randomised strategy is to stay in {𝑣0, 𝑣1, 𝑣2, 𝑣3}
with probability 𝑞 and to eventually go to 𝑣4 with probability 1 − 𝑞,

then this strategy satisfies BPT for
1

6
≤ 𝑞 ≤ 1

3
. This shows that

deterministic strategies are not sufficient for BPT synthesis and

that randomised strategies are strictly more powerful. Moreover, in

order to always stay in the MEC {𝑣0, 𝑣1, 𝑣2, 𝑣3} with probability
1

4

(which is strictly between 0 and 1), the strategy needs memory.

Algorithm 2 BPT synthesis for 𝜑FWMP(ℓ) objective

Input: MDPM0, vertex 𝑣init ∈ 𝑉 , window length ℓ , probabilistic-

guarantee threshold (𝑝, 0), and expectation threshold 𝛽

Output: Yes if and only if 𝑣 |= BPT((𝑝, 0), 𝛽)
1: Compute MEC decomposition 𝔐 of M0.

2: for𝑀 ∈ 𝔐 in M0 do
3: Compute the maximum 𝜇𝑀 such that the player almost-

surely satisfies the threshold objective {𝜑FWMP(ℓ) ≥ 𝜇𝑀 } from
every vertex 𝑣 in the MDP M0 restricted to the MEC𝑀 .

4: Construct M1 from M0 as follows:

Collapse each MEC𝑀 into a player vertex 𝑣𝑀 , and add to it a

self-loop with payoff 𝜇𝑀 .

5: return Yes if and only if 𝑣init |= BPT((𝑝, 0), 𝛽) in M1 for the

𝜑MP objective.

Description of Algorithm 2. We begin by finding the MEC

decomposition𝔐 ofM0. Then, for everyMEC𝑀 ∈ 𝔐, we compute

the maximum 𝜑FWMP(ℓ) -value 𝜇𝑀 that can be achieved almost-

surely from a vertex in the MEC 𝑀 . This is well-defined as all

vertices in a MEC have the same value since 𝜑FWMP(ℓ) is a prefix-
independent objective and every vertex in a MEC is almost-surely

reachable from every other vertex in the MEC. We then construct

a new MDPM1 by collapsing each MEC𝑀 inM0 to a vertex 𝑣𝑀 .

Finally, for each collapsed MEC𝑀 inM1, we add a self-loop with

payoff 𝜇𝑀 . In this collapsed MDPM1, we solve the BPT problem

for the 𝜑MP objective, that is, classical mean-payoff objective, by

solving a linear program as in [15]. The LP 𝐿 we construct is simpler

than in [15] since each MEC in the collapsed MEC has only one

player vertex and a probabilistic vertex. If the vertex 𝑣init does not

belong to any MEC in M0, then it appears in the collapsed MDP

M1 as well. Otherwise, if 𝑣init belongs to some MEC𝑀init inM0,

then for ease of notation, we continue to use 𝑣init to represent the

player vertex in M1 obtained after collapsing𝑀init.

Lemma 4.5. We have 𝑣init |= BPT((𝑝, 0), 𝛽) inM0 for 𝜑FWMP(ℓ)
if and only if 𝑣init |= BPT((𝑝, 0), 𝛽) in M1 for 𝜑MP.

Proof sketch. An optimal strategy 𝜎MP for BPT((𝑝, 0), 𝛽) for
𝜑MP is one that tries to reach MECs with different probabilities,

and then at some point, starts looping on those MECs. Using 𝜎MP,

we construct a strategy 𝜎FWMP(ℓ) that is optimal for BPT((𝑝, 0), 𝛽)
for 𝜑FWMP(ℓ) inM0. The strategy 𝜎FWMP(ℓ) mimics the strategy

𝜎MP inM0 until 𝜎MP switches to looping. When 𝜎MP reaches an

MEC and switches to looping there, the strategy 𝜎FWMP(ℓ) switches
to 𝜎ASFWMP(ℓ) , an almost-sure winning strategy for {𝜑FWMP(ℓ) ≥
𝜇𝑀 }. If the switch happens at a vertex in an MEC𝑀 inM0, then

subsequently, the value of the run is 𝜇𝑀 almost-surely. Thus, if

threshold 0 is achieved with probability 𝑝 in M1, then the same

threshold is achieved with the same probability in original MDP

M0, and if an expectation value 𝛽 is attained inM1, then the same

expectation value 𝛽 is also achieved in M0.

For the converse, given an optimal strategy 𝜎FWMP(ℓ) for the
BPT((𝑝, 0), 𝛽) synthesis problem for 𝜑FWMP(ℓ) in M0, we con-

struct an optimal strategy 𝜎MP for BPT((𝑝, 0), 𝛽) for 𝜑MP in M1.

By Lemma 2.2, we have that playing according to the strategy

𝜎FWMP(ℓ) , the token eventually moves into an MEC𝑀 from which

it never exits. The strategy 𝜎MP mimics 𝜎FWMP(ℓ) up to this point,

after which 𝜎MP switches to looping on 𝑣𝑀 . One can see that if

the expectation and probability threshold are satisfied in M0 for

𝜑FWMP(ℓ) , then they are also satisfied in M1 for 𝜑MP. □

Running time analysis. TheMEC decomposition ofM0 can be

done in polynomial time [13]. For each MEC𝑀 in M0, computing

the value of 𝜇𝑀 can also be done in polynomial time using binary

search [7]. Finally, to check if 𝑣 |= BPT((𝑝, 0), 𝛽) inM1 for the 𝜑MP,

the algorithm solves the linear program 𝐿, which can be done in

polynomial time since the number of variables and constraints in 𝐿

is polynomial in the size of the input [24].

Memory requirements of optimal strategies. Figure 2 shows
that, in general, optimal strategies of the player requires memory

and randomisation, and thus, deterministic strategies do not suffice.

However, finite memory suffices. In particular, before reaching the

MECs in M0, the strategy 𝜎FWMP(ℓ) may need memory as well

as randomisation as illustrated in Example 4.4, and the strategy

𝜎ASFWMP(ℓ) can be a deterministic strategy with memory size ℓ [19].

Theorem 4.6. BPT synthesis for 𝜑FWMP(ℓ) objective with ℓ given
in unary is in PTIME, and if 𝑣 |= BPT((𝑝, 𝛼), 𝛽), then there exists an
optimal finite-memory randomised strategy from 𝑣 .

4.3 Almost-sure Guarantee
In this section, we solve the BAS synthesis problem, that is, we de-

cide, given an MDPM0, a vertex 𝑣init, and an expectation threshold

𝛽 , if 𝑣init satisfies BAS(0, 𝛽) inM0. Similar to the BWC synthesis

problem, we are interested in the case when 𝛽 > 0.

TheBAS(0, 𝛽) synthesis problem is a special case ofBPT((𝑝, 0), 𝛽)
when 𝑝 = 1.We get better bounds for thememory size of the optimal

strategies for BAS as compared to BPT in general, and moreover, de-

terministic strategies suffice for BAS. Note that Algorithm 2 works

for BAS(0, 𝛽) as well if we let 𝑝 = 1. In Line 5 in Algorithm 2, we

need to check if 𝑣init |= BPT((1, 0), 𝛽) in the collapsed MDPM1 for

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

826

the 𝜑MP objective. That is, we need to check if 𝑣init |= BAS(0, 𝛽) in
M1 for 𝜑MP. Instead of using the linear program as described in

Section 4.2 to do the check, we use a reduction of the BAS problem

for 𝜑MP to the problem of standard expected 𝜑MP-value that is de-

scribed in [15]. The reduction is as follows: We prune from M1 all

vertices from which the player cannot almost-surely achieve non-

negative 𝜑MP-value to get an MDP M2. By analysing the MECs,

we can check in PTIME if the player can almost-surely achieve

non-negative 𝜑MP-value from a vertex. If 𝑣init is pruned away, then

it does not satisfy BAS(0, 𝛽) for 𝜑MP in M1. Otherwise, 𝑣init sat-

isfies BAS(0, 𝛽) in M1 if and only if in the pruned MDP M2, the

expected 𝜑MP-value of 𝑣init inM2 is at least 𝛽 . The correctness of

the algorithm follows from Lemma 4.5 by setting 𝑝 = 1.

Memory requirements of optimal strategies. Let 𝜎MP be

a memoryless deterministic optimal strategy for expected classi-

cal mean-payoff objective 𝜑MP in M2. An optimal strategy 𝜎∗ for
BAS(0, 𝛽) for 𝜑FWMP(ℓ) in M0 can be constructed by first mimick-

ing 𝜎MP until 𝜎MP switches to looping. If the token is on a vertex 𝑣

when this switch happens in M2, then 𝜎∗ should switch to mim-

icking an optimal strategy for the almost-sure satisfaction of the

threshold objective {𝜑FWMP(ℓ) ≥ 𝜇𝑀 } in M0.

Since there exist deterministic memoryless optimal strategies

for expectation of 𝜑MP [25], and there exist deterministic optimal

strategies with memory size at most ℓ for the almost-sure satisfac-

tion of {𝜑FWMP(ℓ) ≥ 𝜇𝑀 } [19], we get that there exist deterministic

optimal strategies with memory size at most ℓ for BAS(0, 𝛽).

Theorem 4.7. BAS synthesis for 𝜑FWMP(ℓ) objective with ℓ given
in unary is in PTIME, and if 𝑣 |= BAS(𝛼, 𝛽), then there exists an
optimal deterministic strategy of memory size at most ℓ from 𝑣 .

5 EXPECTED BOUNDEDWINDOW
MEAN-PAYOFF VALUE WITH GUARANTEES

In this section, we study the expectation maximisation problem

with sure, almost-sure, and probabilistic guarantees for the bounded

window mean-payoff objective. The algorithms are similar to those

for the fixed window mean-payoff objective described in the previ-

ous section. We only highlight the main differences here. Note that

all our algorithms require solving two-player games with either

{𝜑BWMP ≥ 0} or {𝜑MP ≥ 0} objective. While two-player games

with {𝜑FWMP(ℓ) ≥ 0} objective can be solved in PTIME, solving
two-player games with {𝜑BWMP ≥ 0} objective or {𝜑MP ≥ 0}
objective is in NP ∩ coNP [7].

Sure guarantee. The algorithm here is similar to Algorithm 1.

As stated above, computing𝑊 BWMP
S,0 is in NP ∩ coNP. The MDP

M1 ≔ M0 ↾𝑊 BWMP
S,0 is the MDP obtained by restricting M0 to

𝑊 BWMP
S,0 . For every 𝑣 ∈ 𝑉◦, we compute the maximum 𝜆𝑣 such that

𝑣 belongs to the sure winning region inM1 for the {𝜑BWMP ≥ 𝜆𝑣}
objective. Recall that for a run 𝜋 , we have 𝜑BWMP (𝜋) = sup{𝜆 ∈
R | ∃ℓ ≥ 0 : 𝜋 ∈ FWMP(ℓ, 𝜆)}. The maximum 𝜆𝑣 can be computed

by solving the two-player game GM with the classical mean-payoff

objective from 𝑣 [7]1. This value thus equals the mean payoff of a

cycle in GM and is of the form
𝑎
𝑏
where 𝑎 ∈ {0, . . . ,𝑊 · |𝑉 |} and

1
Two-player games with the BWMP(𝜆) objective are solved by reducing it to two-

player games with total payoff [11].

𝑏 ∈ {1, . . . , |𝑉 |}. Thus, a binary search is done over𝑊 · |𝑉 |2 many

values, and the two-player game is solved polynomially many times.

The strategy 𝜎∗𝜀 for BWC synthesis for the BWMP objective is

similar to FWMP(ℓ) objective with the difference that the strategy

for achieving {𝜑BWMP ≥ 𝜆𝑣} from 𝑣 is memoryless [7].

Probabilistic guarantee. The algorithm for BPT((𝑝, 0), 𝛽) syn-
thesis for the 𝜑BWMP objective is almost the same as Algorithm 2

with the difference that in Line 3 to compute the maximum 𝜇𝑀 , we

use {𝜑BWMP ≥ 𝜇𝑀 } instead of {𝜑FWMP(ℓ) ≥ 𝜇𝑀 }. The problem
of determining if the player almost-surely satisfies the threshold

objective {𝜑BWMP ≥ 𝜇𝑀 } from every vertex 𝑣 in the MDP M0

restricted to the MEC𝑀 is in NP∩ coNP by reducing it to a polyno-

mial number of calls to two-player classical mean-payoff games [7].

Here also an optimal strategy for BPT((𝑝, 0), 𝛽) synthesis for the
𝜑BWMP objective may need both memory and randomisation.

Almost-sure guarantee. Again, the algorithm is similar to BAS
synthesis for the 𝜑FWMP(ℓ) objective. The BAS synthesis problem

for the 𝜑BWMP objective is in NP ∩ coNP since computing 𝜇𝑀 for

each vertex is in NP∩ coNP. In contrast to almost-sure satisfaction

of {𝜑FWMP(ℓ) ≥ 𝜇𝑀 }, optimal deterministic memoryless strategies

exist for almost-sure satisfaction of {𝜑BWMP ≥ 𝜇𝑀 } [7]. It follows
that optimal deterministic memoryless strategies exist for the BAS
synthesis problem for the 𝜑BWMP objective.

We thus have the following.

Theorem 5.1. The BWC, BPT, and BAS synthesis problems for
the 𝜑BWMP objective are all in NP ∩ coNP, and

(1) if 𝑣 |= BWC(𝛼, 𝛽), then for every 𝜀 > 0, there exists an 𝜀-
optimal finite-memory deterministic strategy from 𝑣 .

(2) if 𝑣 |= BPT((𝑝, 𝛼), 𝛽), then there exists an optimal finite-
memory randomised strategy from 𝑣 .

(3) if 𝑣 |= BAS(𝛼, 𝛽), then there exists an optimal deterministic
memoryless strategy from 𝑣 .

Thus, the complexities achieved are no more than that for sure

satisfaction of {𝜑BWMP ≥ 0} in a two-player game or expectation

maximisation for the 𝜑BWMP objective in an MDP.

6 CONCLUSION
Expectation maximisation with guarantees is a natural problem

of importance and interest and appears in various real-world con-

texts. Further, window mean-payoff objective strengthens classical

mean-payoff objective and prevents some undesired behaviours of

classical mean payoff. We have shown that the BWC, BAS, and the

BPT synthesis of fixed window mean-payoff objectives for MDPs

are in PTIMEwhile the problems are in NP∩ coNP for the bounded

window mean-payoff objective. We note that the BWC synthesis

problem for classical mean payoff is already in NP ∩ coNP [10, 18].

Our results establish that these problems can be solved at no addi-

tional cost than solving the expectation problem for the window

mean-payoff objectives while not providing any guarantee, or solv-

ing the window mean-payoff objectives with the guarantees while

disregarding any requirement on the expected behaviour.

As part of future work, we would like to extend the notion

of beyond worst-case and beyond almost-sure to other finitary

objectives. It would also be interesting to study these problems in

the context of stochastic games.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

827

REFERENCES
[1] S. Almagor, O. Kupferman, and Y. Velner. 2016. Minimizing Expected Cost

Under Hard Boolean Constraints, with Applications to Quantitative Synthesis.

In CONCUR (LIPIcs, Vol. 59). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

9:1–9:15.

[2] K.R. Apt and E. Grädel. 2011. Lectures in Game Theory for Computer Scientists.
Cambridge University Press.

[3] C. Baier and J-P. Katoen. 2008. Principles of model checking. MIT Press.

[4] R. Berthon, S. Guha, and J.-F. Raskin. 2020. Mixing Probabilistic and non-

Probabilistic Objectives in Markov Decision Processes. In LICS. ACM, 195–208.

[5] R. Berthon, J-P. Katoen, and T. Winkler. 2024. Markov Decision Processes with

Sure Parity andMultiple Reachability Objectives. In RP (Lecture Notes in Computer
Science, Vol. 15050). Springer, 203–220.

[6] R. Berthon, M. Randour, and J.-F. Raskin. 2017. Threshold Constraints with

Guarantees for Parity Objectives in Markov Decision Processes. In ICALP (LIPIcs,
Vol. 80). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 121:1–121:15.

[7] B. Bordais, S. Guha, and J.-F. Raskin. 2019. Expected Window Mean-Payoff. In

FSTTCS (LIPIcs, Vol. 150). 32:1–32:15.
[8] T. Brázdil, A. Kučera, and P. Novotnỳ. 2016. Optimizing the expected mean payoff

in energy Markov decision processes. In ATVA. Springer, 32–49.
[9] T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour. 2020. Life is Random, Time

is Not: Markov Decision Processes with Window Objectives. Logical Methods in
Computer Science Volume 16, Issue 4 (12 2020).

[10] V. Bruyère, E. Filiot, M. Randour, and J.-F. Raskin. 2017. Meet your expectations

with guarantees: Beyond worst-case synthesis in quantitative games. Information
and Computation 254 (2017), 259–295.

[11] K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. 2015. Looking at mean-

payoff and total-payoff through windows. Information and Computation 242

(2015), 25–52.

[12] K. Chatterjee, A. Elgyütt, P. Novotný, and O. Rouillé. 2018. Expectation Optimiza-

tion with Probabilistic Guarantees in POMDPs with Discounted-Sum Objectives.

In IJCAI. ijcai.org, 4692–4699.

[13] K. Chatterjee and M. Henzinger. 2014. Efficient and Dynamic Algorithms for

Alternating Büchi Games and Maximal End-Component Decomposition. J. ACM
61, 3 (2014), 15:1–15:40. https://doi.org/10.1145/2597631

[14] K. Chatterjee, T. A. Henzinger, and F. Horn. 2009. Stochastic Games with Finitary

Objectives. In MFCS. Springer Berlin Heidelberg, 34–54.

[15] K. Chatterjee, Z. Křetínská, and J. Křetínský. 2017. Unifying Two Views on

Multiple Mean-Payoff Objectives in Markov Decision Processes. Logical Methods
in Computer Science Volume 13, Issue 2 (July 2017).

[16] K. Chatterjee, P. Novotný, G. A. Pérez, J.-F. Raskin, and D. Zikelic. 2017. Optimiz-

ing Expectation with Guarantees in POMDPs. In AAAI. AAAI Press, 3725–3732.
[17] K. Chatterjee and N. Piterman. 2019. Combinations of Qualitative Winning

for Stochastic Parity Games. In CONCUR (LIPIcs, Vol. 140). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 6:1–6:17.

[18] L. Clemente and J.-F. Raskin. 2015. Multidimensional beyond worst-case and

almost-sure problems for mean-payoff objectives. In LICS. IEEE, 257–268.
[19] L. Doyen, P. Gaba, and S. Guha. 2024. Stochastic Window Mean-payoff Games.

In FoSSaCS Part I (LNCS, Vol. 14574). Springer, 34–54.
[20] A. Ehrenfeucht and J. Mycielski. 1979. Positional Strategies for Mean Payoff

Games. Int. Journal of Game Theory 8, 2 (1979), 109–113.

[21] P. Gaba and S. Guha. 2025. Optimising expectation with guarantees for window

mean payoff in Markov decision processes. CoRR abs/2501.05384 (2025).

[22] G. Geeraerts, S. Guha, and J.-F. Raskin. 2018. Safe and Optimal Scheduling for

Hard and Soft Tasks. In FSTTCS. 36:1–36:22.
[23] E. Grädel, W. Thomas, and T. Wilke (Eds.). 2002. Automata, Logics, and Infinite

Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February
2001]. Lecture Notes in Computer Science, Vol. 2500. Springer.

[24] L.G. Khachiyan. 1980. Polynomial algorithms in linear programming. U. S. S. R.
Comput. Math. and Math. Phys. 20, 1 (1980), 53–72.

[25] M.L. Puterman. 1994. Markov decision processes: Discrete stochastic dynamic
programming. John Wiley and Sons.

[26] M. Y. Vardi. 1985. Automatic Verification of Probabilistic Concurrent Finite-State

Programs. In FOCS. IEEE Computer Society, 327–338.

[27] U. Zwick and M. Paterson. 1996. The Complexity of Mean Payoff Games on

Graphs. Theor. Comput. Sci. 158, 1&2 (1996), 343–359.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

828

https://doi.org/10.1145/2597631

	Abstract
	1 Introduction
	2 Technical Preliminaries
	3 Problem Definition
	4 Expected Fixed Window Mean-payoff Value with Guarantees
	4.1 Sure Guarantee
	4.2 Probabilistic Guarantee
	4.3 Almost-sure Guarantee

	5 Expected Bounded Window Mean-payoff Value with Guarantees
	6 Conclusion
	References

