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ABSTRACT
Problems of consensus in multi-agent systems are often viewed as a

series of independent, simultaneous local decisions made between

a limited set of options, all aimed at reaching a global agreement.

Key challenges in these protocols include estimating the likelihood

of various outcomes and finding bounds for how long it may take

to achieve consensus, if it occurs at all.

To date, little attention has been given to the case where some

agents have no initial opinion. In this paper, we introduce a variant

of the consensus problem which includes what we call ‘agnostic’

nodes and frame it as a combination of two known and well-studied

processes: voter model and rumour spreading. We show (1) a mar-

tingale that describes the probability of consensus for a given colour,

(2) bounds on the number of steps for the process to end using re-

sults from rumour spreading and voter models, (3) closed formulas

for the probability of consensus in a few special cases, and (4) that

the computational complexity of estimating the probability with a

Markov chain Monte Carlo process is𝑂(𝑛2
log𝑛) for general graphs

and 𝑂(𝑛 log𝑛) for Erdős-Rényi graphs, which makes it an efficient

method for estimating probabilities of consensus. Furthermore, we

present experimental results suggesting that the number of runs

needed for a given standard error decreases when the number of

nodes increases.
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1 INTRODUCTION
In multi-agent consensus problems, agents make a sequence of in-

dependent and autonomous choices from a finite set based on their

local information. Agents have a shared goal of reaching a consen-

sus state, in which they all represent the same choice. The process

is often abstracted as a graph in which nodes represent agents,

their colour represent their current choice (or opinion, or state),

and edges of the graph represent visibility or influence between

agents.

Multi-agent processes on graphs have been shown to have sev-

eral applications, including autonomous robots or drones [25, 44],

electrical flow estimation [5, 15], mutation fixation in biology [29,

34], among others. In the simplest of such processes, the voter model,
at each point in time (called ‘round’) nodes may change their colour

based on the opinion of their neighbours until consensus is reached

(e.g. the case where all nodes share the same colour). More formally,

this process can be either synchronous or asynchronous. In the

asynchronous case, a node is chosen uniformly at random and se-

lects a neighbour proportional to the weight of the edge between

then. It then adopts the colour (or opinion) of the chosen neighbour.

In the synchronous case, all nodes act simultaneously and indepen-

dently (i.e., the choice of one does not affect the choice of the other

in the same round). Consensus processes in multi-agent systems

have been extensively studied (e.g. [8, 27, 30, 31, 36]).

Given an initial colour configuration, the probability of con-

sensus and time-bounds for the number of rounds before such

consensus is achieved for a given colour are some of the core prob-

lems studied in this domain. Extensive results have been found for

both synchronous [24] and asynchronous [14] process, as well as

for processes with undecided states ([2, 3, 11, 40]). In these, nodes

do not change directly from one colour to another but transition

via an ‘undecided’ state in between them.
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One of the features of the classical voter model is that it assumes

all nodes start off with a colour/opinion. In some scenarios, we

may want to model a process in which, at the start, some nodes

do not have an opinion at all, which may be different from being

‘undecided’ after been given a set of option, as they have not been

in contact with any of the opinions in this process. One can think

of examples related to election scenarios in which voters do not yet

know the candidates and may be therefore influenced by the first

contact with a candidate. Or in a process on a blockchain, in which

new blocks are mined and the information of new mined blocks

traverse the network, possibly competing with other new blocks

mined at a similar time.

In this paper, we introduce and study a variant of the voter model

in which nodes can have an extra state, which we call ‘agnostic’

(represented by the colour, say, white). We call it voter model with
agnostic nodes. Agnostic nodes become gnostic if they choose a

gnostic neighbour to copy its colour. Once gnostic, they can never

become agnostic again, i.e., if a gnostic node chooses an agnostic

one, the gnostic node keeps its current colour and nothing hap-

pens. For a precise definition of the problem, see Section 2.3. The

main challenge posed when studying this variant is that there is

an asymmetry between states, in that agnostic states can become

gnostic but not vice versa. We provide an efficient Monte Carlo

algorithm for estimating the probability of consensus in this voter

model with agnostic states for any graph and any initial configu-

ration. Furthermore, we provide time-bounds for consensus to be

achieved.

The variant we study can also be seen as a generalisation of the

rumour spreading model [1, 19, 20, 39]. In it, there are nodes that

are ‘informed’ and nodes that are ‘uninformed’ and the process

studies the time bounds until all nodes become informed. Like in our

variant, an ’informed’ node cannot become ’uninformed’. Our voter

model with agnostic nodes is analogous to two or more rumours

that compete not only to gather more agnostic nodes but also to

flip the opinion of other gnostic nodes. Alternatively, one can also

see the voter model with agnostic nodes as a combination of two

models happening simultaneously: the classical voter model with a

rumour spreading process.

The following motivates the problem with a toy example.

Example 1.1. Consider the graph and initial configuration de-

picted in Figure 1. In this example, each node chooses a neighbour

with uniform probability. For example, 𝑣2 has 50% chance of choos-

ing 𝑣1 and thus becoming blue at round 𝑆1 and 50% chance of

choosing 𝑣3 and thus becoming red at round 𝑆1. If a node chooses

an agnostic node, their colour does not change. For example, if 𝑣1

chooses 𝑣2, 𝑣1 will stay blue.

With that in mind, what is the probability that there will be, say,

a red consensus? What can we say about the expected number of

rounds until that happens?

We will return to Example 1.1 later in this paper. Our main

contributions of this paper are as follows:

(1) We obtain a martingale for the voter model with agnostic

states for the case in which the underlying (weighted) graph

represents a reversible Markov chain (Theorem 3.1).

(2) Although the martingale obtained may not be efficiently

computed in the general case, we prove a closed formula for

the consensus probability in the case of a complete graph

with an asynchronous process (Corollary 3.3).

(3) We show that the existence of agnostic nodes does not af-

fect the complexity bounds for the expected time of achiev-

ing consensus, as the agnostic nodes typically disappear

faster than consensus is achieved (Lemma 4.1 and Proposi-

tions 4.2, 4.3). This comes from standard known results for

rumour spreading processes.

(4) We present a Markov chain Monte Carlo (MCMC) algorithm

(Section 3.2) to efficiently compute the consensus probabil-

ity based on the fact that agnostic nodes disappear quickly

(Section 4). This is an efficient algorithm that provides an

unbiased estimate.

(5) We present an experimental analysis to support results using

our MCMC algorithm, showing that few runs are necessary

to obtain good probability estimates (Section 5). It also sug-

gests estimates get better as graph sizes increase.

2 BACKGROUND AND MAIN DEFINITIONS
In this section, we present concepts and results from the literature

that will be used in subsequent sections. We first introduce the

classical version of consensus protocol used in this paper, also

known as voter model [14, 18, 24, 26, 35, 37], in which all vertices

have an initial opinion. We then propose a variant of the voter

model in which some vertices do not have an initial opinion, which

we label agnostic vertices. The voter model has been widely studied

in the context of multi-agent systems. The winning probabilities

of each colour and bounds on the convergence time were obtained

for undirected graphs by Hassin & Peleg [24]. Cooper & Rivera

extended this work to the linear voting model, which captures

digraphs as well as several similar consensus processes [14].

2.1 Classical Voter Model
The (pull) voter model defines a round-based consensus process

on a strongly connected directed graph 𝐺 = (𝑉 , 𝐸).
1
In such pro-

cesses agents are represented by nodes in this graph. At each round,

each node has a colour associated to it, representing the respective

agent’s current state (or opinion). Their goal is to reach consen-

sus, i.e., a situation where every agent is in the same state. To that

end, at each round, all agents update their state synchronously

1
Henceforth, we assume all graphs are strongly connected unless stated otherwise.

𝑣1

𝑣2

𝑣3 𝑣4

Figure 1: A motivational example of an undirected graph
with an initial configuration 𝑆0 = 𝑠0 consisting of one blue
node (𝑣1), one red node (𝑣3), and two agnostic nodes (𝑣2 and
𝑣4). Transition probabilities are uniform, i.e., 𝑣3 has 1

3
chance

of choosing a given neighbour, whereas 𝑣4 chooses 𝑣3 and
becomes red with probability 1. What are the probabilities
of consensus in this case?
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based on the colour of their out-neighbours.
2
The probability that

𝑣 copies colour of node 𝑢 in a given round is represented by the

weight of edge (𝑣,𝑢). The weights of edges starting at a given node

are assumed to be positive and to sum to 1. We collate all these

probabilities in an out-matrix 𝐻 , which can be also seen as the

adjacency matrix of𝐺 where entry 𝐻 (𝑣,𝑢) represents the weight of

edge (𝑣,𝑢). We adopt the notation 𝐻 (𝑣,𝑢) = 0 if (𝑣,𝑢) /∈ 𝐸, and note

that self loops are allowed and thus 𝑣 may adopt its own colour.

Once reached, a consensus is stable.

Let𝑋 = {𝑐1, . . . , 𝑐𝑘 } be the set of all possible colours on a consen-

sus process. A configuration on a graph 𝐺 = (𝑉 , 𝐸) is a function

𝑠 ∈ 𝑋𝑉
that associates each node 𝑣 ∈ 𝑉 with a colour 𝑐 ∈ 𝑋 , i.e., 𝑠(𝑣)

represents 𝑣 ’s colour in configuration 𝑠 . More formally, a process

is a sequence of random variables {𝑆𝑡 }𝑡≥0, with 𝑆𝑡+1 ∈ 𝑋𝑉
being

a configuration generated based on 𝑆𝑡 . We say colour 𝑖 wins the
process if a configuration 𝑆𝑡 = 𝑠 , such that 𝑠(𝑣) = 𝑖 for all 𝑣 , is

reached. Here, we assume processes converge with probability 1.

For discussion of fringe cases and work related to graphs in which

processes may not converge, see, e.g., [32].

Observe that the out-matrix 𝐻 of the graph𝐺 can be seen as the

transition matrix of a time homogeneous Markov chain (e.g., see

Chapter 6, Grimmett et al. (2001)) representing the probabilities of

one round in the consensus process [14]. If𝐺 is strongly connected,

this Markov chain is irreducible and finite, so there exists a unique

stationary distribution 𝜇 of 𝐻 , that is, there is a row vector 𝜇 such

that 𝜇𝐻 = 𝜇. We call the values 𝜇(𝑣) the influence of the vertex 𝑣 in

the consensus protocol. In this context, previous work [14], show

that the winning probabilities of each colour can be determined

by the initial configuration only and are given by the following

proposition.

Proposition 2.1 (Cooper and Rivera 2016). Consider a consen-
sus process on a strongly connected graph 𝐺 (further, we assume 𝐺 is
such that consensus is always achieved for all initial configurations),
with associated adjacency matrix𝐻 and 𝜇 its unique stationary distri-
bution. Assume the initial configuration is given by 𝑠 ∈ {𝑐1, . . . , 𝑐𝑘 }𝑉 .
Then, we have that the winning probability of colour 𝑐𝑖 is:

P(colour 𝑐𝑖 wins | 𝑆0 = 𝑠) =

∑︁
𝑣∈𝑉 ,𝑆(𝑣)=𝑐𝑖

𝜇(𝑣)

We can see as a corollary, that for (non-bipartite, connected)

undirected graphs, the probability of a given colour winning is

simply the number of incident edges in nodes of that colour divided

by the 2𝐸, where 𝐸 is the number of edges in the graph [24, Corollary

2.2 and Section 2.3]. Example 2.2 discusses the idea applied to our

motivating example.

Example 2.2. Consider the modified version of Example 1.1 with

a different initial configuration: agnostic nodes are instead gnostic

and coloured, say, orange. In other words, assume we are under

the assumptions of the classical voter model with 3 colours. We

have 𝜇 =
1

8
(2, 2, 3, 1). Then, from the we have the probability of red

winning being
3

8
, of blue winning being

2

8
and of orange winning

being
3

8
.

2
For precision, we consider that agents change their state at the end of each round,

after all nodes have made their decisions.

2.2 Rumour Spreading Process
A rumour spreading process on a graph represents the process of

information ‘travelling’ across the edges to eventually reach all

nodes on a graph. More formally, and using the notation for the

voter model, we would have two colours, one being ‘red’ and the

other representing a node being ‘uninformed’. Many strategies of

information transmission were designed, such as push, pull and

push-and-pull. In this work, we will concentrate, as mentioned

in Section 2.1, on the pull protocol. In it, if node 𝑣 selects 𝑢, then

𝑣 becomes informed if 𝑢 is informed, otherwise 𝑣 is unchanged

(informed or uninformed). The process can be synchronous or

asynchronous.

For the push protocol, node 𝑣 selects 𝑢 and pushes its state to-

wards 𝑢. If 𝑣 is agnostic, 𝑢 retains its state, otherwise 𝑢 adopts

the state of 𝑣 . Observe that the push protocol cannot be done syn-

chronously for consensus problems as it is not clear how to resolve

the possible ambiguity (nodes 𝑣1 and 𝑣2 with different gnostic states,

both select the same node 𝑢). Asynchronous push-and-pull would

be defined as is standard in rumour spreading theory. A random

agnostic node is chosen and performs a pull, and a random gnos-

tic node is chosen and performs a push. Observe that the asyn-

chronous push-and-pull would eventually become equivalent to

asynchronous push as agnostic vertices disappear. Lastly, observe

that, just like the push protocol, push-and-pull cannot be done

synchronously.

We will use standard techniques and proof ideas of the rumour

spreading literature to show that the rumour spreading process

is fast in general for the pull version. These are done in Propo-

sitions 4.2 and 4.3 where we use the results from the literature

to obtain an 𝑂(𝑛 log(𝑛)) bound for general graphs and a 𝑂(log(𝑛))

bound for random graphs (in the synchronous case, the asynchro-

nous case adds an extra factor 𝑛 multiplying both). For other known

bounds from the literature, see Sections 6 and 8.

2.3 Voter Model with agnostic Nodes
We now introduce the main concept to be explored in this work.

The main difference of the process with agnostic nodes is that there

is an asymmetry between gnostic and agnostic nodes: an agnostic

node can become gnostic but gnostic nodes cannot become agnostic.

A more precise definition is given as follows.

Definition 2.3 (Voter Model with agnostic Nodes). A (pull) voter

model with agnostic nodes generalises the notion of (pull) voter

model by changing the rule with which nodes update their colour.

As before, at each round 𝑡 , each node 𝑣 chooses a one of its out-

neighbours 𝑢 proportionally to the weight of the edge in 𝐺 . How-

ever,

(1) If 𝑢 is agnostic, 𝑣 does not change its colour.

(2) If 𝑢 is gnostic, 𝑣 copies colour of 𝑢.

At the same time that Definition 2.3 can be seen as a generalisa-

tion of the voter model, it can also be seen as a generalisation of

the rumour spreading process. A node that is ‘uninformed’ behaves

equivalently to an ‘agnostic’ node. The difference being, of course,

that we consider more than one rumour spreading in the network,

and competing with each other at the same time it influences ag-

nostic (or uninformed) nodes.
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We now go back to Example 1.1 and solve it by simply accounting

for all possible states and their probabilities.

Example 2.4 (Example 1.1 continued). Recall Example 1.1. Here

we solve it ‘by hand’ to motivate the introduction of a martingale

property for this model. Figure 2 shows all possible configurations

for 𝑆1, the probabilities of reaching them (𝑎𝑖 ) and the probability that

red wins from each of them (𝑏𝑖 ) calculated by applying Proposition

2.1. Note that 𝜇 =
1

8
(2, 2, 3, 1). We have that P(red wins | 𝑆0 = 𝑠) =

5

8
.

Remark. Example 2.4 highlights the following: if we know the
probabilities that agnostic nodes become, say, red, once they become
gnostic, can we amend formula in Proposition 2.1 so that it is valid for
the voter model with agnostic nodes? In Figure 1, such probabilities for
nodes 𝑣2 and 𝑣4 are, respectively, 1

2
and 1. Multiplying these values

with the importance of each node and summing them up gives us,
0𝜇(𝑣1) +

1

2
𝜇(𝑣2) + 1𝜇(𝑣3) + 1𝜇(𝑣4) =

5

8
, which coincides with the

probability of red winning. We will show that this is not a coincidence
in Theorem 3.1.

3 PROBABILITY OF CONSENSUS
In this section, we will provide a general study on the probability

of consensus for the (pull) voter model with agnostic nodes. Our

theorems deal with the case with only two colours (red and blue)

for gnostic nodes. It is easy to see that the generalisation for more

colours is immediate.

3.1 Martingale Property
The following theorem provides a martingale (see, e.g., [23, Chapter

12]) associated with the voter model with agnostic nodes, which

will then immediately give a formula such as in Proposition 2.1.

Theorem 3.1 (Martingale Property). Let 𝐺 be a graph with
vertex set 𝑉 . Suppose we have a (pull) voter model with agnostic
states (either synchronous or asynchronous) with associated matrix
𝐻 on 𝐺 , and 𝜇 such that 𝜇𝐻 = 𝜇. Suppose, furthermore, that the
voter model is a reversible Markov chain, or in other words that,
𝐻 (𝑣,𝑤 )𝜇(𝑣) = 𝐻 (𝑤, 𝑣)𝜇(𝑤 ). Let 𝑆𝑡 be the state of each vertex at time
𝑡 . Moreover, define 𝑅(𝑣) as the event where 𝑣 is coloured red once it is
gnostic. Then the following sequence is a Martingale with respect to

𝑣
1

𝑣
2

𝑣
3

𝑣
4

𝑎1 =
1

6
, 𝑏2 = 1

𝑣
1

𝑣
2

𝑣
3

𝑣
4

𝑎2 =
1

6
, 𝑏2 =

3

4

𝑣
1

𝑣
2

𝑣
3

𝑣
4

𝑎3 =
1

6
, 𝑏3 =

3

4

𝑣
1

𝑣
2

𝑣
3

𝑣
4

𝑎4 =
1

6
, 𝑏4 =

1

2

𝑣
1

𝑣
2

𝑣
3

𝑣
4

𝑎5 =
1

12
, 𝑏5 =

5

8

𝑣
1

𝑣
2

𝑣
3

𝑣
4

𝑎6 =
1

12
, 𝑏6 =

3

8

𝑣
1

𝑣
2

𝑣
3

𝑣
4

𝑎7 =
1

12
, 𝑏7 =

3

8

𝑣
1

𝑣
2

𝑣
3

𝑣
4

𝑎8 =
1

12
, 𝑏8 =

1

8

Figure 2: Every configuration 𝑠1𝑖 which can be reached from
𝑆0 in Example 1.1 after one round, i.e. 𝑎𝑖 := P(𝑆1 = 𝑠1𝑖 |𝑆0) > 0.
The probability of a red consensus in each case is denoted
by 𝑏𝑖 and can be calculated by applying Proposition 2.1.
Therefore, the probability of red to win in Example 1.1 is∑

8

𝑖=1
𝑎𝑖𝑏𝑖 =

5

8
.

𝑆𝑡 :
𝑋𝑡 =

∑︁
𝑣∈𝑉

𝜇(𝑣)P(𝑅(𝑣) | 𝑆𝑡 ) (1)

As a result, if 𝐺 is such that the process always converges 3 on 𝐺 ,
then

P(red wins) = 𝑋0 . (2)

Proof. First note that if 𝑣 is already red in 𝑆𝑡 , then P(𝑅(𝑣) | 𝑆𝑡 ) =

1 and if already blue, P(𝑅(𝑣) | 𝑆𝑡 ) = 0. Let 𝑆𝑡 (𝑣) = {0, 1, 2} denote
the state of each vertex 𝑣 at time 𝑡 , with 0 representing color white,

1 representing red, and 2 representing blue. We want to show that

E(𝑋𝑡+1 |𝑆𝑡 ) = 𝑋𝑡 . (3)

Observe that 𝑋𝑡+1 =

∑
𝑣∈𝑉 𝜇(𝑣)P(𝑅(𝑣)|𝑆𝑡+1), and we have, by linear-

ity of expectation:

E(𝑋𝑡+1 | 𝑆𝑡 ) =

∑︁
𝑣∈𝑉

𝜇(𝑣)E(P(𝑅(𝑣) | 𝑆𝑡+1) | 𝑆𝑡 ).

We distinguish two cases: 1) 𝑆𝑡 (𝑣) gnostic (that is equal 1 or 2)

and 2) 𝑆𝑡 (𝑣) agnostic (equal 0). For the second case observe that

P(𝑅(𝑣) | 𝑆𝑡 ) =

∑︁
𝑆𝑡+1

P(𝑅(𝑣) | 𝑆𝑡+1)P(𝑆𝑡+1 | 𝑆𝑡 )

by law of total probability. The second expression is the definition

of the conditional expectation so we have

P(𝑅(𝑣) | 𝑆𝑡 ) = E(P(𝑅(𝑣) | 𝑆𝑡+1) | 𝑆𝑡 )

for the case where we assume 𝑆𝑡 (𝑣) = 0. We have

E(𝑋𝑡+1 | 𝑆𝑡 ) =

∑︁
𝑣∈𝑉

𝜇(𝑣)E(P(𝑅(𝑣) | 𝑆𝑡+1) | 𝑆𝑡 ).

Since 𝑋𝑡 =

∑
𝑣∈𝑉 𝜇(𝑣)P(𝑅(𝑣) | 𝑆𝑡 ), the goal is then to show that:∑︁

𝑣∈𝑉
𝜇(𝑣)P(𝑅(𝑣) | 𝑆𝑡 ) =

∑︁
𝑣∈𝑉

𝜇(𝑣)E(P(𝑅(𝑣) | 𝑆𝑡+1) | 𝑆𝑡 )

For that we split both left and right side in two sums:∑︁
𝑆𝑡 (𝑣)=0

𝜇(𝑣)P(𝑅(𝑣) | 𝑆𝑡 ) =

∑︁
𝑆𝑡 (𝑣)=0

𝜇(𝑣)E(P(𝑅(𝑣) | 𝑆𝑡+1) | 𝑆𝑡 )

and:∑︁
𝑆𝑡 (𝑣)∈{1,2}

𝜇(𝑣)P(𝑅(𝑣) | 𝑆𝑡 ) =

∑︁
𝑆𝑡 (𝑣)∈{1,2}

𝜇(𝑣)E(P(𝑅(𝑣) | 𝑆𝑡+1) | 𝑆𝑡 )

that is, we look at the graph at time 𝑡 and split the vertices

between agnostic and gnostic and we will show that the sum is

equal in each part. The first case of only agnostic vertices follows

from P(𝑅(𝑣) | 𝑆𝑡 ) = E(P(𝑅(𝑣) | 𝑆𝑡+1) | 𝑆𝑡 ) which is why have shown

this equality. The second case is done in the rest of the text and

requires reversibility.

The equation E(𝑋𝑡+1 |𝑆𝑡 ) = 𝑋𝑡 then becomes equivalent to show-

ing that: ∑︁
𝑆𝑡 (𝑣)=1

𝜇(𝑣) =

∑︁
𝑆𝑡 (𝑣)∈{1,2}

𝜇(𝑣)E(P(𝑅(𝑣) | 𝑆𝑡+1) | 𝑆𝑡 )

because we have already shown that the terms on the left and

right side where 𝑆𝑡 (𝑣) = 0 are equal.

We now turn to the case where 𝑆𝑡 (𝑣) ̸= 0. Observe that

E(P(𝑅(𝑣) | 𝑆𝑡+1) | 𝑆𝑡 ) = P(𝑆𝑡+1(𝑣) = 1 | 𝑆𝑡 ),

3
For some𝐺 , such as bipartite graphs, the process may never converge. For a general

result on convergence, see [32].
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as if 𝑆𝑡 (𝑣) is gnostic, then 𝑆𝑡+1(𝑣) is also gnostic. Now, in terms of𝐻 ,

we can write P(𝑆𝑡+1(𝑣) = 1|𝑆𝑡 ) equal to the sum

∑
𝑆𝑡 (𝑤)∈{0,1} 𝐻 (𝑣,𝑤 )

if 𝑆𝑡 (𝑣) = 1 and equal to

∑
𝑆𝑡 (𝑤)=1

𝐻 (𝑣,𝑤 ) if 𝑆𝑡 (𝑣) = 2.
4
Thus, we

just need to verify the equality:∑︁
𝑆𝑡 (𝑣)=1

𝜇(𝑣) =

∑︁
𝑆𝑡 (𝑣)=1

𝜇(𝑣)

∑︁
𝑆𝑡 (𝑤)∈{0,1}

𝐻 (𝑣,𝑤 ) +

∑︁
𝑆𝑡 (𝑣)=2

𝜇(𝑣)

∑︁
𝑆𝑡 (𝑤)=1

𝐻 (𝑣,𝑤 ).

Using the fact that

∑
𝑤 𝐻 (𝑣,𝑤 ) = 1 we can rewrite the last equality

as being equivalent to:∑︁
𝑆𝑡 (𝑣)=1

𝜇(𝑣)

∑︁
𝑆𝑡 (𝑤)=2

𝐻 (𝑣,𝑤 ) =

∑︁
𝑆𝑡 (𝑣)=2

𝜇(𝑣)

∑︁
𝑆𝑡 (𝑤)=1

𝐻 (𝑣,𝑤 )

This last equality is equivalent
5
to 𝐻 (𝑣,𝑤 )𝜇(𝑣) = 𝐻 (𝑤, 𝑣)𝜇(𝑤 ) for

every pair of neighbours 𝑤, 𝑣 . This holds for example when the

graphs are undirected and the choice of neighbour is uniform. Thus,

(3) follows.

Now we assume 𝐺 is such that every process converges and

prove Equation 2. It is a known technique to use Doob’s Stopping

Theorem to go from a martingale to the probability of consensus,

and that is what we use to show Equation 2. Doob’s Stopping

Theorem guarantees that E(𝑋𝜏 ) = E(𝑋0) = 𝑋0, where 𝜏 is the time

where consensus is reached. Together with the fact that E(𝑋𝜏 ) =

P(red wins)E(𝑋𝜏 | red wins) + P(blue wins)𝐸(𝑋𝜏 | blue wins) (due
to the process converging to either a complete red or blue state),

and noting that E(𝑋𝜏 | red wins) = 1 and E(𝑋𝜏 | blue wins) = 0, we

have finally that P(red wins) = 𝑋0. □

3.1.1 Counterexample indicating that Reversibility is Required. One
may wonder whether the property 𝐻 (𝑣,𝑤 )𝜇(𝑣) = 𝐻 (𝑤, 𝑣)𝜇(𝑤 ) of

reversibility is required for the martingale to hold, as this is not a

requirement in the generalised voter model (Proposition 2.1). Here,

we give a simple (counter-)example of a graph with 3 nodes such

that the voter model on it is not a reversible Markov chain.

Example 3.2 (Counterexample for non-reversible chains). Consider
the initial configuration 𝑆0 = 𝑠0 depicted in Figure 3a in a graph

with matrix 𝐻 given by:

𝐻 =


1

2

1

2
0

0
1

2

1

2

1

2
0

1

2

 (4)

Solving 𝜇𝐻 = 𝜇, we get 𝜇 = (
1

3
, 1

3
, 1

3
). Note that the chain is not

reversible because, e.g., 𝐻 (𝑣1, 𝑣2)𝜇(𝑣1) =
1

6
̸= 0 = 𝐻 (𝑣2, 𝑣1)𝜇(𝑣2).

We can determine P(𝑅(𝑣3) | 𝑆0) by solving the equation putting

together 𝑆0 (Figure 3a) and the four possible states for 𝑆1 (Figures

3b, 3c, 3d, 3e) also using that P(𝑅(𝑣3) | 𝑆0 = 𝑠0) = P(𝑅(𝑣3) | 𝑆1 = 𝑠14),

i.e,

P(𝑅(𝑣3) | 𝑆0) = 𝑠0) =

1

4

(1 + 1 + 0 + P(𝑅(𝑣3) | 𝑆0)) (5)

We get that P(𝑅(𝑣3) | 𝑆0 = 𝑠0) =
2

3
. From that, we get that𝑋0 =

5

9
and

that, on average, 𝑋1 is given by E(𝑋1 | 𝑆0) =
1

4

(
1

3
+

2

3
+ 0 +

5

9

)
=

4
These specific formulas assume that we are dealing with a synchronous case. The

asynchronous case would have the probability be
𝑛−1

𝑛
+

1

𝑛

∑
𝑆𝑡 (𝑤)∈{0,1} 𝐻 (𝑣, 𝑤) when

𝑆𝑡 (𝑣) = 1 and
1

𝑛

∑
𝑆𝑡 (𝑤)=1

𝐻 (𝑣, 𝑤) when 𝑆𝑡 (𝑣) = 2. The equation that we need to

verify stays unchanged after simple manipulation.

5
Note that the expression has to hold for the case where there is a single blue and red

nodes which shows one side. The other side is similarly simple

𝑣1

𝑣2

𝑣3

1

2

1

2

1

2

1

2

1

2

1

2

(a) Initial Config. 𝑆0 = 𝑠0. We have 𝑋0 =
5

9
, but P(red wins | 𝑆0) =

1

3
.

𝑣
1

𝑣
2

𝑣
3

(b) Config. 𝑠11

with 𝑋1 =
1

3
.

𝑣
1

𝑣
2

𝑣
3

(c) Config. 𝑠12

with 𝑋1 =
2

3
.

𝑣
1

𝑣
2

𝑣
3

(d) Config. 𝑠13

with 𝑋1 = 0.

𝑣
1

𝑣
2

𝑣
3

(e) Config. 𝑠14

with 𝑋1 =
5

9
.

Figure 3: Counterexample for the conjecture that the Mar-
tingale property (Theorem 3.1) is valid for non-reversible
chains. Note that edge weights were omitted from Figures
3b,3c, 3d, and 3e for readability.

7

18
̸= 𝑋0. Another way to see the martingale property does not

hold is to evaluate the probability of red winning using a similar

technique as in Equation 5 to get P(red wins | 𝑆0) =
1

3
̸= 𝑋0.

Theorem 3.1 is not easy to use for computing the probabilities

in the general case. One simple use case is when there are no edges

connecting agnostic vertices. It is clear in this case that P(𝑅(𝑣) | 𝑆0)

equals the proportion of red nodes among the neighbours (as we

have seen in Remark 2.3). There is an additional case where one

can say something about the consensus probability as presented in

the following corollary.

Corollary 3.3 (Solution for Complete Graph). Let 𝐺 be a
complete graph and consider the asynchronous (pull) voter model with
agnostic states, with initial state 𝑆0. Let 𝛾 denote the proportion of red
nodes among the gnostic ones. Then:

P(𝑅(𝑢) | 𝑆0) = 𝛾 for all 𝑢 ∈ 𝐼 (6)

As a consequence,
P(red wins | 𝑆0) = 𝛾 (7)

Proof. See proof in extended version of the paper [22]. □

3.2 Estimating probabilities with Markov chain
Monte Carlo

While Theorem 3.1 gives us a potential means of computing the

exact probability of achieving consensus with a certain colour, a

generalization of Proposition 2.1, i.e., in general solution for P(𝑅(𝑣) |
𝑆𝑡 ) may not be efficient to compute. With that in mind, we propose

evaluating the probabilities of consensus of the voter model with

agnostic nodes on general graphs by:

By using known results from rumour spreading, Section 4 shows

that the simulation time required until all nodes are gnostic is at

most𝑂(𝑛2
log(𝑛)) for general graphs and only𝑂(𝑛 log(𝑛)) for Erdös

Rényi random graphs with high probability. As usual, ’with high

probability’ means with probability going to 1 as the graph size 𝑛

goes to infinity. The probability space is the product space of the

random graph and the consensus process. In particular, this implies

that running the simulation once is not substantially slower than
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Algorithm 1 Estimating the Probability of Red Consensus

1: Simulate the process until all nodes are gnostic.
2: Apply Proposition 2.1 once all nodes are gnostic to obtain a

probability of red consensus 𝑝 .

3: Repeat the simulation multiple times and compute the average

of the probabilities of red consensus 𝑝 from each run as an

unbiased estimate of the true probability.

computing the terms 𝜇(𝑣) (at least on the worst case). In Section 5,

we present experiments showing that only a few runs (typically

less than a 200) are required to obtain a good estimate (standard

error below 0.01) of the consensus probability. In particular, not

only running the process until all nodes are gnostic is much faster

than waiting until consensus is reached, the error of the estimate

obtained from multiple runs is also much lower when we end the

process at the point where all vertices are gnostic.

4 CONVERGENCE TIME BOUNDS FOR
CONSENSUS

In addition to the question of what are the probabilities of achieving

consensus with a particular colour, the community has also focused

on determining the time it takes for consensus to be achieved on

general graphs. Lemma 4.1 shows that, when agnostic vertices are

present, expected consensus times are bounded by the expected

time it takes for agnostic vertices to disappear plus whatever bounds

one can prove for the classical voter model.

Lemma 4.1 (Time bounds for consensus). Given a graph𝐺 and
a (pull) voter model on 𝐺 with agnostic states (either synchronous
or asynchronous). Let 𝑇𝑐 denote the time it takes for consensus to be
achieved and let𝑇𝑎 denote the time it takes for the agnostic vertices to
disappear. Let 𝑆0 be the starting configuration. Let 𝑓 (𝑛) be a bound on
the expected time of consensus being reached on𝐺 in the classical voter
model (without any agnostic vertices) and any initial configuration.
Then E(𝑇𝑐 |𝑆0) ≤ E(𝑇𝑎 |𝑆0) + 𝑓 (𝑛).

Proof. For proof, see extended version of the paper [22]. □

Note that Lemma 4.1 is only useful for graphs𝐺 in which consen-

sus is guaranteed. Otherwise, 𝑓 (𝑛) may be infinite, in which case,

although true, the result does not give us any useful information. As

a result of Lemma 4.1, all bounds which hold for the standard voter

model will also hold for the case where agnostic vertices are present

with an extra time for the agnostic vertices to disappear. In practice,

the time for agnostic vertices to become gnostic is typically much

shorter than the time it takes to reach consensus as a simple conse-

quence of rumour spreading results. Indeed, it is easy to see that

the process of agnostic vertices disappearing is analogous to that

of standard rumour spreading. However, the typical results in the

literature for the rumour spreading process deal only with the push

model, or sometimes the push-pull model. We, on the other hand,

want results for the pull model. This is only a minor inconvenience

though, as the proof ideas from previous works can also be used for

the pull model. Proposition 4.2 shows that for general graphs, the

expected time it takes in the pull model for the agnostic vertices to

disappear is 𝑂(𝑛2
log(𝑛)). Observe that a star graph, with a gnostic

node not on the center, as well as a path, would take an expected

time of order 𝑛2
for the agnostic vertices to become gnostic. Thus,

Proposition 4.2 is almost tight. We defer the proof of Proposition 4.2

to the Appendix as it is just reusing known ideas from the rumour

spreading model for the push model in the pull case.

Proposition 4.2 (rumour spreading bounds for general

graphs). Given a regular graph𝐺 (potentially with loops) and a (pull)
voter model with agnostic states (either synchronous or asynchronous),
where the vertices choose their neighbours (including potentially itself)
with equal probability. Let 𝑇𝑎 denote the number of rounds it takes
for the agnostic vertices to disappear from the graph. Then E[𝑇𝑎] =

𝑂(𝑓 (𝑛)) where 𝑓 (𝑛) = 𝑛 log(𝑛) for the synchronous case and 𝑓 (𝑛) =

𝑛2
log(𝑛) for the asynchronous case.

While Proposition 4.2 gives a bound for general graphs, it is

likely that for a typical graph, the rumour spreading process is

significantly faster. Indeed, it has been shown by [20, 39] that in

the case of random graphs, the time it takes for agnostic vertices to

disappear is of order𝑛 log(𝑛). As their results are for the push model,

we state Proposition 4.3 which is for the pull model. We again defer

the proof to the appendix as we are just reusing previously known

ideas for the push model of the rumour spreading process in the

pull case.

Proposition 4.3 (rumour spreading bounds for random

graphs). Let 𝑝 >> log(𝑛)/𝑛 and 𝐺 ∼ 𝐺(𝑛, 𝑝) be an Erdös Rényi
random graph. Consider a (pull) voter model on 𝐺 with agnostic
states (either synchronous or asynchronous). Let 𝑇𝑎 denote the num-
ber of rounds it takes for the agnostic vertices to disappear. Then, with
high probability we have that E[𝑇𝑎] = 𝑂(𝑓 (𝑛) log(𝑛)) where 𝑓 (𝑛) = 1

in the synchronous case and 𝑓 (𝑛) = 𝑛 in the asynchronous case.

Lastly, as a consequence of the above results, one can easily see

that a single run of our Markov Chain Monte Carlo algorithm is

relatively fast, as it is the time to simulate the process until no

agnostic vertex remains plus the computation of the influences

𝜇(𝑣) (which only needs to be done once for the graph). Apart from

the number of runs necessary to obtain a good estimate (which is

analyzed in Section 5), both propositions show that a single run of

the MCMC algorithm proposed takes time𝑂(𝑛2
log(𝑛)) in the worst

case and 𝑂(𝑛 log(𝑛)) in the typical case which means MCMC is an

efficient way of estimating the probabilities of consensus.

5 EXPERIMENTAL ANALYSIS WITH MCMC
Our key approach is to estimate probabilities by using MCMC,

performing the simulations only until the point where all nodes are

gnostic and using Proposition 2.1 to get probability values that can

later be averaged over many runs to obtain an unbiased estimator

for the consensus probability of a certain colour. Results from the

rumour spreading theory ensure that each single run is fast. In this

section, we aim to argue that not many runs are necessary to obtain

good probability estimates by making a few experiments for certain

graph families.

Before we describe the experiments in detail, note that an upper

bound on the number of experiments required can be trivially ob-

tained by considering the case where we do not stop the algorithm

when all nodes become gnostic but instead go all the way until

consensus is reached. This will give us a series of zeros and ones

(corresponding to the target colour being the consensus one or not),
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which can then be averaged to get a probability. It is easy to see

that each run is distributed as a Bernoulli and therefore their sum

is distributed as a Binomial with the number of iterations 𝑖𝑡 and

the target consensus probability 𝑝 as parameters. The average will

then have variance equal to
𝑝(1−𝑝)

𝑖𝑡 which implies that the standard

error (which is a proxy of the true error in the estimate) will scale

as the inverse of the square root of the number of iterations. It is

also easy to see that this approach of running the algorithm until

consensus is reached gives worse estimates than the one where we

stop the algorithm when agnostic nodes disappear.

Our first experiment will show that using our approach is sub-

stantially better than the error estimate from the previous para-

graph. We run our algorithm for cliques and cycles with 1001 nodes

for a varying number of runs and plot the standard error 𝜎𝑥 of the

estimate for it.
6
We contrast those results with the standard error

of the algorithm, where each run goes all the way until consensus

is reached (described in the previous paragraph). Observe that Fig-

ure 4 shows that the error rates are substantially lower for the case

where we use our algorithm versus the case where one runs until

consensus is reached
7
. In fact, even as little as 40 runs are enough

to be below 0.01 error in both cases.

Figure 4 also contains an additional line showing the standard

error of our algorithm using a connected subgraph with 1001 nodes

and 1925 edges of the graph representing a social network in Slo-

vakia (Pokec from [42]). This subgraph was generated by selecting

an initial random vertex 𝑣 and performing a random walk (depth

first search) until 1001 vertices were selected. Naturally, the line

corresponding to the algorithm where we wait for consensus is

very close to the result for cliques and cycles as should be expected

(since it approximates the standard deviation of a Binomial dis-

tribution with number of iterations and target probability 𝑝 as

parameters divided by the number of iterations). Moreover, note

that our algorithm is again substantially better than waiting until

consensus is reached, just like for cliques and cycles, suggesting

that our approach is also very effective for a typical social network.

As an additional experiment, we wonder whether there is a

positive effect of increasing the graph sizes on 𝜎𝑥 . It turns out that

the answer is yes as Figure 5 shows. There, we run our algorithm

for graph sizes varying from 300 to 3000, with a fixed number of

iterations (400).
8
We perform the experiment on cliques and cycles

again and vary the proportion of gnostic nodes as well.

Lastly, we add that we also performed both experiments on

Erdős-Rényi random graphs with the same values of 𝑛 and 𝑝 = 0.05

and found that the 𝜎𝑥 line for the random graphs essentially stays

superposed with the complete graph so we did not find it necessary

to include it in the figure to avoid pollution.

For the code repository for these experiments, see [21] or access

https://github.com/tmadeira/vmmrs.

6
Note that having an odd number of nodes on cycles guarantees the process always

converges

7
Note that, additionally, each individual run takes substantially longer to complete if

we wait until consensus is reached

8
Using less than 400 iterations yields a graph with more variance as expected, but the

same type of decay.

0 100 200 300 400
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0.06

0.08

0.1

Runs

σx̄

clique using formula clique until consensus

cycle using formula cycle until consensus

pokec using formula pokec until consensus

Figure 4: A comparison of the cumulative standard error of
the probability of red consensus after all nodes are gnostic
and the actual consensus until the simulation finishes. Each
simulation ran 400 times on cliques, cycles and a connected
subgraph of the Pokec social networkwith 1001 nodes (5% red,
5% blue, 90% agnostic). For cycles, the initial configuration
has all red nodes side by side follow by all blue nodes side
by side. For the Pokec subgraph, red and blue nodes were
assigned at random, with the rest being agnostic.

500 1,000 1,500 2,000 2,500 3,000
0

0.002

0.004

0.006

n

σx̄

clique (5%) cycle (5%)

clique (50%) cycle (50%)

Figure 5: A comparison of the standard error of the proba-
bility of red consensus running the simulation 400 times for
cliques and cycles of different sizes starting with different
proportions of gnostic nodes (5%, 50%). Again, the initial con-
figuration for cycles has all red nodes side by side follow by
all blue nodes side by side.
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6 DISCUSSION
For simplicity, in this work, we focused on the pull model as that

allows us to analyse both synchronous and asynchronous protocols.

However, it is natural to wonder what happens when other strate-

gies are used to transmit information.While synchronous push does

not make sense for the voter model, asynchronous push and asyn-

chronous push-and-pull could be used and Proposition 2.1 shows

that the martingale for the voter model holds for asynchronous

push. It is likely possible to use our martingale from Theorem 3.1

for those strategies as well, requiring only a little extra work, much

like the distinction between the asynchronous and synchronous

pull protocols.

Much more importantly though, the Markov chain Monte Carlo

method of estimating the probabilities of consensus would function

in exactly the same way. We could make use of the many known

results from the rumour spreading literature to give us guarantees

of fast runtime of a single run of the MCMC algorithm on many

different types of graphs for those protocols, such as: bounds for the

case of general graphs [1, 19], random graphs [1, 20, 39], preferential

attachment graphs [17], graphs with good conductance [9] and

social networks [10]. In general, our work implies that one can

efficiently estimate probabilities of consensus for a given colour

even in the case where agnostic nodes are present as long as a

protocol that allows for fast rumour spreading is used.

7 CONCLUSION AND FUTUREWORK
Here, we introduce a variant of the voter model in which nodes

can be agnostic, i.e., have no opinion or colour. Once gnostic, nodes

cannot return to being agnostic. This can therefore been seen as

a merge between two well-studied processes: the classical voter

model and the rumour spreading process. Our approach allows

for efficient estimation of the consensus probabilities for many

different information transmission protocols (such as, synchronous

pull, asynchronous pull, asynchronous push and asynchronous

push-and-pull). We also provide a martingale akin to the one from

the classical voter model, and use it to compute exact probabilities of

consensus for complete graphs, and initial configurations in general

graphs but where there are no edges between agnostic nodes.

In future work, we consider attempting exact computation of

the consensus probabilities for other graph families, like 𝑑-regular

graphs. Moreover, as observed in Section 8 there is an information

transmission protocol that involves nodes transitioning into an

undecided state. That protocol has the advantage of guaranteeing

(with probability converging to 1) that a majority opinion achieves

consensus. We find it an interesting question whether the results

with that protocol also hold in the case where agnostic nodes are

present and how the agnostic nodes influence the consensus times.

Additionally, it may be of interest to study continuous consensus

protocols [33] in the presence of initially agnostic processes.

8 RELATEDWORK
The notion of reversibility in the context of the voter model has

previously been used by Hassin & Peleg [24] to provide winning

probabilities on a class of dynamic networks called ‘stabilising

dynamic graphs’. In these networks, until a given round, edges may

disconnect and nodes attempting to copy a disconnected neighbour

keep their own colour, similarly to gnostic nodes choosing agnostic

ones in our protocol. The authors showed that their previous results

hold for networks with reversible Markov chains, i.e. the total

influence of the nodes of a given colour remains a martingale in

the new process.

Several works studied agents that can be ‘undecided’ as an in-

termediate state, with nodes transitioning to this state when they

select a differently coloured neighbour ([2, 3, 11, 40]). For a com-

plete graph with binary opinions, the synchronous variant of this

protocol has been shown to converge to the most common (plu-

rality) colour in 𝑂(log𝑛) rounds with high probability, assuming

there is an initial difference of Ω(

√︁
𝑛 log𝑛) in the numbers of agents

with each colour [12]. Similar results have been obtained for the

asynchronous protocol in the context of chemical reaction net-

works [13]. Additionally, for the consensus problem with 𝑘 > 2

opinions, Becchetti et al. defined a ‘monochromatic distance’ func-

tion which measures the distance between any colour configuration

and consensus, and used this to bound the convergence time of the

synchronous process by 𝑂(𝑘 log𝑛) [6].

On the other hand, Demers et al. proposed rumour-spreading pro-

tocols to aid the maintenance of distributed databases; these include

push, pull, and push-pull transmissions [16]. For the synchronous

push model, it is known that the number of rounds required to

broadcast the rumour to all nodes is at most 𝑂(𝑛 log𝑛), which is

tight for the star graph [19]. This process has also been analysed for

several other topologies, including complete graphs, hypercubes,

bounded-degree graphs, and random graphs [19].

Our model also has similarities to the biased voter model pro-

posed in [7], where one colour (corresponding to the agnostic state)

has a bias of 0. However, their results do not apply in our setting

since they assume that one colour has a strictly higher preference

than all other colours. See also [28] for the biased voter model with

2 opinions in the continuous-time model. Our work is also related

to [45]. In it, the authors study the evolution of a process with

agnostic nodes, where the key difference is that gnostic nodes can

never change colour.

Previous works on opinion diffusion have also studied related

concepts to agnostic nodes, such as stubbornness. Those are mostly

in the context of the majority model [4, 38] and the related Friedkin-

Johnson model [41, 43]. The main difference between these models

and ours is that the process dynamics is deterministic in themajority

and Friedkin-Johnson models, whereas in the voter model, the

process dynamics are randomised.

9 CODE REPOSITORY AND EXTENDED PAPER
For the code repository for these experiments, see [21] or access

https://github.com/tmadeira/vmmrs. For the extended version of

the paper with complete proofs and additional experiments, see

[22].
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