
Simplifying Imperfect Recall Games
Hugo Gimbert

LaBRI, CNRS, Université de Bordeaux

Talence, France

hugo.gimbert@cnrs.fr

Soumyajit Paul

University of Liverpool

Liverpool, United Kingdom

soumyajit.paul@liverpool.ac.uk

B. Srivathsan

Chennai Mathematical Institute and

CNRS, ReLaX, IRL 2000, Siruseri, India

sri@cmi.ac.in

ABSTRACT

In games with imperfect recall, players may forget the sequence of

decisions they made in the past. When players also forget whether

they have already encountered their current decision point, they

are said to be absent-minded. Solving one-player imperfect recall

games is known to be NP-hard, even when the players are not

absent-minded. This motivates the search for polynomial-time solv-

able subclasses. A special type of imperfect recall, called A-loss

recall, is amenable to efficient polynomial-time algorithms. In this

work, we present novel techniques to simplify non-absent-minded

imperfect recall games into equivalent A-loss recall games. The

first idea involves shuffling the order of actions, and leads to a

new polynomial-time solvable class of imperfect recall games that

extends A-loss recall. The second idea generalises the first one, by

constructing a new set of action sequences which can be “linearly

combined” to give the original game. The equivalent game has a

simplified information structure, but it could be exponentially big-

ger in size (in accordance with the NP-hardness). We present an

algorithm to generate an equivalent A-loss recall game with the

smallest size.

KEYWORDS

Games; Imperfect information games; Imperfect recall

ACM Reference Format:

Hugo Gimbert, Soumyajit Paul, and B. Srivathsan. 2025. Simplifying Imper-

fect Recall Games. In Proc. of the 24th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May

19 – 23, 2025, IFAAMAS, 9 pages.

1 INTRODUCTION

Games play a central role in AI research. In the early 20
𝑡ℎ

century,

[25] showed that perfect information games in extensive form can

be solved by a bottom-up traversal of the game tree. Despite the fact

that this does not readily provide efficient ways to solve large games

such as Chess or Go in practice, this has indeed laid the foundation

for the dramatic progress in the field of perfect information games,

with computer programs being able to challenge human experts.

Solving games becomes more intricate when the players (agents)

have incomplete information about the state of the game – Poker for

instance, where a player does not know the cards of the others. One

of the remarkable imperfect information games where computer

programs have been able to defeat professional human players is

Texas Hold’em Poker [2, 3, 18]. A main technique used in these

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,

USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

algorithms is the abstraction of large games into smaller imperfect

recall games.

Perfect recall is the ability of a player to remember her own

actions. Poker is an imperfect information game played by several

players. However, ideally one would assume that the players have

a perfect recall of their actions. An imperfect recall player does not

remember the sequence of her own actions. Imperfect recall allows

for a structured mechanism to forget the information history and

as [21] argues, it is particularly suited for AI agents.

From a modeling perspective, imperfect recall has been used to

describe teams of agents, where each team can be represented as

a single agent with imperfect recall [4, 22] or to describe agents

modeling multiple nodes which do not share information between

each other due to privacy reasons [7]. Moreover [16] argues that

imperfect recall is a model of bounded rationality. Given the limited

memory of players, it is not realistic to assume that the players

remember all their actions. We refer the reader to [21] for an ex-

cellent introduction to different uses of imperfect recall. From a

practical perspective, the most prominent use of imperfect recall

is in abstracting games [1, 8, 23, 26]. The state space generated

by usual games is typically very large and abstractions are crucial

for solving such games. Abstractions that preserve perfect recall

force a player to distinguish the current information gained, in all

later rounds, even if it is not relevant. Abstractions using players

with imperfect recall have been shown to outperform those using

players with perfect recall [1, 6, 11, 24].

From a complexity perspective, imperfect recall games are known

to be NP-hard [5, 14] even when there is a single player, whereas

perfect recall games can be solved in polynomial-time [14, 19].

Recent studies have aligned the complexity of different solution

concepts for imperfect recall games to the modern complexity

classes [9, 20, 21]. The hardness of imperfect recall games has

motivated the search for subclasses which are polynomial-time

solvable [12, 13], or where algorithms similar to the perfect recall

case can be applied [15, 17]. The class of A-loss recall [12, 13] is a

special kind of imperfect recall, where the loss of information can

be traced back to a player forgetting her own action at a point in

the past – the player remembers where it was played, but forgets

what was played. We consider A-loss recall games to be simple since

there are polynomial-time algorithms for solving them. To the best

of our knowledge, A-loss recall games are the biggest known class

of imperfect recall with a polynomial-time solution. This has led to

research towards finding A-loss recall abstractions [5].

Contributions. Our broad goal in this work is to find efficient

ways to solve imperfect recall games in extensive-form. We do so

by simplifying them into A-loss recall games. We focus on games

where the players are not absent-minded: a player is absent-minded

if she even forgets whether a decision point was previously seen or

not. Here are our major contributions.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

895

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

(1) We first identify a class of one-player games where the

player’s information structure is more complex than A-loss

recall, but shuffling the order of actions results in an equiva-

lent A-loss recall game. This leads to a new PTIME solvable

class of imperfect recall games, that extends A-loss recall

(Theorem 2, Corollary 2, Corollary 3). Furthermore, these

classes themselves can be tested in PTIME.
(2) We show that every game with non-absentminded players

can be transformed into an equivalent A-loss recall game

(Theorem 3). We present an algorithm to generate an equiv-

alent A-loss recall game with the smallest size.

The caveat in the second result above is that the resulting A-loss

recall game could be exponentially bigger. This is expected, since

solving imperfect recall games is NP-hard, whereas A-loss recall

games can be solved in PTIME. The result however shows that in
order to solve imperfect recall games, one could either use a worst-

case exponential-time algorithm on the original game, or apply

our transformation to a worst-case exponential-sized game and

run a polynomial-time algorithm on it. From a conceptual point of

view, our result shows that as long as there is no absentmindedness,

imperfect recall can be transformed into one where the information

loss can be attributed to forgetting own actions at a past point.

Organization of the document. Section 2 introduces a modifica-

tion of the popular matching pennies game that will be used as a

running example to illustrate our results. Section 3 recalls necessary

preliminaries on extensive-form games. Section 4 presents the new

polynomial-time class of shuffled A-loss recall. Section 5 general-

izes the idea of shuffling to incorporate a “linear combination” of

action sequences, and presents the second result mentioned above.

Section 6 extends the results to the two-player setting. Missing

proofs and details can be found in the extended version[10].

2 AN EXAMPLE

Let us start with a one-player game called the single team matching-

unmatching pennies game, which will be used as a running example.

A team of players with the same goal can be interpreted as a single

player. In this case, the team consists of two players Alice and

Bob, each possessing a coin with two sides, Head (H) and Tail (T)

and each of them must choose a side for their respective coins

independently. The game unfolds in the following manner : a fair

𝑛-faced die with outcomes from {0, . . . , 𝑛 − 1} is rolled; then Alice

chooses a side from {𝐻,𝑇 }, followed by Bob choosing from {𝐻,𝑇 }.
Winning or losing depends on the parity of the die outcome. If

the outcome of the die is even, then they win if and only if they

match their sides. If the outcome is odd, they win if and only if

their sides do not match. We consider three variants depending on

what Alice and Bob can observe, and model it in extensive form in

Fig. 1 for 𝑛 = 3. An informal description of the figures follows after

this paragraph.

I. Both Alice and Bob observe nothing (Fig. 1a).

II. Alice can’t distinguish between die outcome 2𝑖 and 2𝑖 + 1

for 𝑖 ≥ 0, but Bob observes nothing (Fig. 1b).

III. Alice can’t distinguish between die outcome 2𝑖 and 2𝑖 + 1

for 𝑖 ≥ 0, Bob only observes coin of Alice but not outcome

of die (Fig. 1c).

1

H

0

T

H

0

H

1

T

T

0

1

3

0

H

1

T

H

1

H

0

T

T

1

1

3

1

H

0

T

H

0

H

1

T

T

2

1

3

(a) Alice and Bob, both observe

nothing

1

H

0

T

H

0

H

1

T

T

0

1

3

0

H

1

T

H

1

H

0

T

T

1

1

3

1

H

0

T

H

0

H

1

T

T

2

1

3

(b) Alice can’t distinguish be-

tween 2𝑖 and 2𝑖 + 1 for 𝑖 ≥ 0, Bob

observes nothing

1

H

0

T

H

0

H

1

T

T

0

1

3

0

H

1

T

H

1

H

0

T

T

1

1

3

1

H

0

T

H

0

H

1

T

T

2

1

3

(c) Bob only observes Alice’s coin

Figure 1: Three versions of the single team matching-

unmatching pennies game for 𝑛 = 3

Alice and Bob want to maximize their expected payoff. We will

see their possible strategies in Section 3. Later, we will see that

game I falls under the simple class of A-loss recall. In Section 4 and

Section 5 we will see how to simplify games II and III respectively.

Before we delve into the background and results, here is a de-

scription of the extensive-form model. The root node (the triangle),

is the event of rolling the die. The triangle nodes are called Chance
nodes, and the edges out of them associate probabilities to each

of the outcomes. For this game, the distribution is uniform. The

circle nodes denote decision nodes of the team. The nodes in the

second level (root being the first) belong to Alice whereas the nodes

in the third level belong to Bob. The actions labelled in edges out

of these nodes denote the actions available to the corresponding

players. A leaf node indicates an end state, and a path from root to

leaf denotes a play from start to end. Each leaf is associated with a

payoff that the team receives at the end of the corresponding play.

E.g., in Fig. 1a in the play resulting from the path 0, 𝐻,𝑇 the payoff

is 0 because the team loses. It is 1 when they win.

Imperfect information is expressed using a dotted line: a player

cannot distinguish between two nodes joined by a dotted line. For

e.g., in Fig. 1a the dotted red line joining all of Alice’s nodes in-

dicates that Alice cannot observe the die outcome. Similarly, the

blue dotted line for Bob indicates, he neither observes the outcome

of the die, nor the side of the coin chosen by Alice. These sets of

indistinguishable nodes are called information sets.

3 BACKGROUND AND NOTATIONS

This section presents the formal definitions. The single teammatching-

unmatching pennies game has only one player and chance nodes,

but in general we will talk about zero-sum two player games. As

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

896

𝑐 𝑑 𝑐 𝑑

𝑎

𝑒 𝑓 𝑒 𝑓

𝑏

𝑟

𝑢1 𝑢2

𝑢3 𝑢4 𝑢5 𝑢6

𝐼1

𝐼2 𝐼3

(a) Max with perfect recall

𝑎 𝑏

𝑎 𝑏

𝑟

𝑢1 𝐼1

(b) Max with absentminded-

ness

Figure 2: Recalls of Max

in Fig. 5, there are two players Max (circle nodes) and Min (square

nodes). The payoff at the leaf, is the amount Min loses and Max
gains. The goal ofMax is to maximize the expected payoff whereas

Min wishes to minimize it. In Fig. 1Max was the team consisting

of Alice and Bob.

In this paper, we mainly work with game-structures and not

games themselves. Game-structures are essentially games sans the

numerical quantities. Any game on a game structure can be rep-

resented symbolically as in shown Fig. 4a with symbolic payoffs

𝑧𝑖s and symbolic chance probabilities 𝑝𝑖s (with constraints on 𝑝𝑖 ’s).

An extensive form game can be obtained from a game structure by

plugging in values for 𝑧𝑖s and 𝑝𝑖s. We work with game structures

because the notions of perfect recall and imperfect recall can be

determined simply by looking at the game-structure.

Formally, a game-structure T is a tuple (𝑉 , 𝐿, 𝑟, 𝐴, 𝐸,I) where
𝑉 is a finite set of non-terminal nodes partitioned as 𝑉Max, 𝑉Min
and 𝑉Chance; 𝐿 is a finite set of leaves; 𝑟 ∈ 𝑉 is a root node; 𝐴 =

𝐴Max ∪ 𝐴Min is a finite set of actions; 𝐸 ⊆ 𝑉 × (𝑉 ∪ 𝐿) is an

edge relation that induces a directed tree; edges originating from

𝑉Max ∪𝑉Min are labelled with actions from 𝐴; we write 𝑢
𝑎−→ 𝑣 if

(𝑢, 𝑣) is labelled with 𝑎, and assume that there is no incoming edge

𝑢 −→ 𝑟 to the root node 𝑟 ; I = IMax ∪ IMin is a set of information

sets for 𝑖 ∈ {Max,Min}, each information set 𝐼 ∈ I𝑖 is a subset

of vertices belonging to 𝑖 , i.e. 𝐼 ⊆ 𝑉𝑖 , and moreover, the set of

information sets I𝑖 partitions 𝑉𝑖 . E.g., in Fig. 2a, IMax = {𝐼1, 𝐼2, 𝐼3}
and 𝐼1 = {𝑟 }, 𝐼2 = {𝑢3, 𝑢4} and 𝐼3 = {𝑢5, 𝑢6}. We can understand

these information sets as a signal that the player receives when she

reaches a node in it. On receiving the signal, the player knows the

actions that are available to play at that position.

An information set models the fact that a player cannot distin-

guish between the nodes within it. Therefore, the set of outgoing

actions from each node in an information set is required to be the

same. This allows us to define Act(𝐼) as the set of actions available
at information set 𝐼 . E.g., in Fig. 2a, Act(𝐼2) = {𝑐, 𝑑}. For technical
convenience, we make a second assumption: for all 𝐼 , 𝐼 ′ ∈ I with

𝐼 ≠ 𝐼 ′, we have Act(𝐼) ∩Act(𝐼 ′) = ∅. Therefore, the actions identify
the information sets. With this assumption, in Fig. 1, the actions

of Alice should be seen as 𝐻𝐴,𝑇𝐴 and those of Bob’s as 𝐻𝐵,𝑇𝐵 . But

we omit the subscripts in the figure for clarity.

Definition 1 (Extensive form games). A two-player zero-sum game

in extensive form is a tuple (T , 𝛿,U) whereT is a game-structure, 𝛿 is

the chance probability associating to eachChance node, a probability
distribution on the outgoing actions, and U : 𝐿 ↦→ Q is the utility

function associating a payoff to each leaf.

The size of a game is the sum of the bit-lengths of all chance

probabilities and leaf payoffs in it. A behavioral strategy for player

Max (Min resp.) assigns a probability distribution to Act(𝐼) for each
𝐼 ∈ IMax (IMin resp.). Once we fix behavioral strategies 𝜎 and 𝜏 for

Max andMin respectively, each edge in the game has an associated

probability of being taken, given by the corresponding strategy

or Chance. The probability of reaching a leaf 𝑢 ∈ 𝐿 is given by

the product of all the numbers along the path to the leaf. Consider

Fig. 3a. Let 𝜎 assign
1

4
to 𝑏 and

3

4
to

¯𝑏; 0 and 1 to 𝑐 and 𝑐 , and 1

3
to 𝑎

and
2

3
to 𝑎. The probability of reaching the leaf 𝑏𝑎 is then: 𝑝1× 1

4
× 2

3
.

For a leaf 𝑢, we denote this quantity by Prob𝜎,𝜏 (𝑢). The expected
payoff E(𝜎, 𝜏) when Max plays 𝜎 and Min plays 𝜏 , then equals∑
𝑢∈𝐿 Prob𝜎,𝜏 (𝑢)U(𝑢). The solution concept that we will consider

in this paper is the notion of maxmin. The maxmin value of a game

is given by max

𝜎
min

𝜏
E(𝜎, 𝜏) where 𝜎, 𝜏 are behavioral strategies of

Max andMin respectively. A strategy ofMax which provides the

maxmin value is called a maxmin strategy. In one-player games,

we only have Max player and the maxmin value of the game is

max

𝜎
E(𝜎). For one-player non-absentminded games, the maxmin

value can be in fact obtained by a pure strategy – pure strategies

are special cases of behavioural strategies which assign either 0 or

1 to each action [14].

The maxmin value of the game in Fig. 1a is
2

3
since Alice and

Bob can win at most in 2 of the 3 die rolls by playing matching

sides. Another way to see this is to consider the four possible pure

strategies 𝐻𝐻,𝐻𝑇,𝑇𝐻,𝑇𝑇 , which induce payoffs
2

3
,

1

3
,

1

3
and

2

3

respectively. Now since, in the rest of the following two versions,

the team has more information
1
they can guarantee at least

2

3

by playing the same strategy. Interestingly, one can observe (by

enumerating all pure strategies) that they cannot do better than

that in any version.

Histories and recalls. We now move on to describing the various

types of imperfect information, based on what the player remem-

bers about her history. A node𝑤 ∈ 𝑉 is reached by a unique path

from the root: 𝑟 = 𝑣0 −→ 𝑣1 −→ · · · −→ 𝑣𝑛 = 𝑤 . Let 𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖𝑘
be the vertices in this sequence which do not belong to Chance.

Then, hist(𝑤) = 𝑎1𝑎2 · · ·𝑎𝑘−1
, where 𝑣𝑖 𝑗

𝑎 𝑗−−→ 𝑣𝑖 𝑗+1 . For a player

𝑖 ∈ {Max,Min} the history of 𝑖 at 𝑤 , denoted by hist𝑖 (𝑤), is the
sequence of player 𝑖’s actions in the path to 𝑤 , which is simply

the sub-sequence of hist(𝑤) restricted to actions from 𝐴𝑖 . E.g.: in

Fig. 2a, histMax (𝑢3) = histMax (𝑢4) = 𝑎; in Fig. 3a, histMax (𝑢3) = 𝑏

and histMax (𝑢2) = 𝜖 , the empty sequence. It is important to remark

that this definition uses the assumption that actions determine

information sets – otherwise, we would need to incorporate the

information sets that were visited along the way, into the history.

Let H denote the set of all histories and H𝑖 be the set of all

histories of player 𝑖 . For an information set 𝐼 ∈ I𝑖 let H(𝐼) =

{hist(𝑢) | 𝑢 ∈ 𝐼 } be the set of histories of all nodes in 𝐼 . Similarly,

we can defineH𝑖 (𝐼) with respect toH𝑖 . LetH(𝐿) denote the set
of all leaf histories.

When H𝑖 (𝐼) has multiple histories, at a node 𝑣 ∈ 𝐼 the player

does not remember which history she traversed to reach 𝑣 . Hence

1
This can be observed by the fact that information sets in each version are refinements

of the previous versions.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

897

the player loses information. For two nodes 𝑢 and 𝑣 in 𝐼 , compar-

ing hist𝑖 (𝑢) and hist𝑖 (𝑣) reveals the loss or retention of previously

withheld information at the respective nodes. To capture this there

are different notions of recall.

Perfect recall. Player 𝑖 is said to have perfect recall (pfr) if for

every 𝐼 ∈ I𝑖 , and every pair of distinct vertices 𝑢, 𝑣 ∈ 𝐼 , we have
hist𝑖 (𝑢) = hist𝑖 (𝑣), i.e. |H𝑖 (𝐼) | = 1. Otherwise, the player is said to

have imperfect recall. Fig. 2a is an example of a perfect recall game.

Imperfect recall. Fig. 3a gives an example of a game-structure that

has imperfect recall. Notice that states 𝑢3 and 𝑢4 lie in the same

information set 𝐼3, but the sequence of the player’s actions leading

to these states is different: history at 𝑢3 is 𝑏, whereas at 𝑢4 it is

¯𝑏. Within imperfect recall, there are distinctions. The imperfect

recall in Fig. 3b and the one in Fig. 3a are in some sense different:

in Fig. 3b, the inability to distinguish between the two nodes in

𝐼1 can be traced back to a point in the past where she forgets her

own action from some information set (𝐼3 in this case), whereas in

Fig. 3a, the player has been able to distinguish between the two

outcomes of the Chance node, but later forgets at 𝐼3 where she

started from, leading to four histories 𝑏, ¯𝑏, 𝑐 and 𝑐 at 𝐼3.

A-loss recall. Game-structures as in Fig. 3b are said to have A-loss

recall. A consequence of having A-loss recall is that a player always

remembers any new information gained from Chance outcomes,

which is not the case in Fig. 3a. Player 𝑖 has A-loss recall (alr) if

for all 𝐼 ∈ I𝑖 , and every pair of distinct vertices 𝑢, 𝑣 ∈ 𝐼 , either

hist𝑖 (𝑢) = hist𝑖 (𝑣), or hist𝑖 (𝑢) is of the form 𝑠𝑎𝑠1, and hist𝑖 (𝑣) of
the form 𝑠𝑏𝑠2, where 𝑎, 𝑏 ∈ Act(𝐼 ′) for some 𝐼 ′ ∈ I, with 𝑎 ≠ 𝑏.

The game in Fig. 1a has A-loss recall, whereas the others, Fig. 1b

and Fig. 1c do not.

Finally, player 𝑖 is said to be non-absentminded (nam) if∀𝑢, 𝑣 ∈ 𝑉𝑖
with 𝑢 lying on the path to 𝑣 , the information set that 𝑢 belongs

to is different from the information set that 𝑣 belongs to, i.e. all

nodes of 𝑖 on a path from 𝑟 to leaf node lie in distinct information

sets. Fig. 2b is an example whereMax is absentminded, since both 𝑟

and 𝑢1 lie in the same information set. Notice that pfr impliesalr,

which in turn implies implies nam.

When Max and Min have recalls 𝑅Max, 𝑅Min ∈ {pfr, alr, nam}
respectively we will denote the game as a (𝑅Max, 𝑅Min)-game. A

one-player game with recall 𝑅 is denoted as 𝑅-game. In this paper

we are only concerned with one-player nam-games and two-player

(nam,nam)-games. Let us now recall some known results.

• A maxmin solution in a (pfr, alr)-game can be computed

in polynomial- time [12, 14, 19]. As a corollary, an opti-

mal solution in a one-player alr-game can be computed

in polynomial-time [12].

• Themaxmin decision problem for (nam,nam)-games is both

NP-hard [14] and Sqare-Root-Sum-hard [9]
2
. The NP-

hardness and the Sqare-Root-Sum-hardness hold even for

(alr, pfr)-games [5, 9]. The maxmin decision problem for

one-player nam-games is NP-complete [14].

Our core idea is to view game structures through the polynomials

they generate.

Leaf monomials. In a game structure, assigning variable 𝑥𝑎 to

each action 𝑎, the monomial obtained by taking the product of

2
Sqare-Root-Sum is the decision problem of checking if the sum of the square roots

of 𝑘 positive integers is less than another positive number

𝑧1

𝑎

𝑧2

𝑎

𝑏

𝑧3

𝑎

𝑧4

𝑎

¯𝑏

𝑝1

𝑧5

𝑎

𝑧6

𝑎

𝑐

𝑧7

𝑎

𝑧8

𝑎

𝑐

𝑝2

𝑟

𝑢1 𝑢2

𝑢3 𝑢4 𝑢5

𝑢6

𝐼3
𝐼1 𝐼2

(a)Maxwithout alr but has s-alr

𝑧1

𝑏

𝑧3

¯𝑏

𝑧5

𝑐

𝑧7

𝑐

𝑎

𝑧2

𝑏

𝑧4

¯𝑏

𝑧6

𝑐

𝑧8

𝑐

𝑎

𝐼3

𝐼1 𝐼2
𝑝1 𝑝2 𝑝2𝑝1

(b)Max with alr

Figure 3: Equivalent alr game using s-alr for gamewithout

alr

all 𝑥𝑎 along the path to each leaf 𝑡 is called a leaf monomial, and

denoted as 𝜇 (𝑡). E.g., the leaf monomials of the game-structure in

Fig. 2a are {𝑥𝑎𝑥𝑐 , 𝑥𝑎𝑥𝑑 , 𝑥𝑏𝑥𝑒 , 𝑥𝑏𝑥 𝑓 }. For a game structure T , we
will write 𝑋 (T) for the set of leaf monomials. For a game 𝐺 , let

ProbChance (𝑡) denote the product of Chance probabilities in the

path to 𝑡 . The polynomial given by

∑
𝑡 ∈𝐿

ProbChance (𝑡) · U(𝑡) · 𝜇 (𝑡)

is called the payoff polynomial of a game. A constraint of the form∑
𝑎∈Act(𝐼)

𝑥𝑎 = 1 for an information set 𝐼 will be called a strategy

constraint. Any non-negative valuation satisfying these constraints

gives a behavioral strategy to the players. The maxmin value in a

game can be given by the maxmin of the payoff polynomial over

all possible values satisfying the strategy constraints.

Overview of our work. In this work, our mantra for simplifying

games is to find simpler games with same payoff polynomials (upto

renaming of variables). Leaf monomials are the building blocks

of payoff polynomials. We give methods to generate from a given

game-structure T , a transformed game-structure T ′ with A-loss

recall such that: either T ′ has the same set of leaf monomials

(Section 4), or each leaf monomial of T is a linear combination of

the leaf monomials of T ′ (Section 5).

4 SHUFFLED A-LOSS RECALL

We start with an example. The game-structure in Fig. 3a is an

equivalent game of version II of the matching-unmatching game

(Fig. 1b) obtained by merging die outcome 0 and 1 (and renam-

ing 𝐻,𝑇), with 𝑝1 = 2

3
, 𝑝2 = 1

3
. The game does not have alr: we

have HMax (𝐼3) = {𝑏, ¯𝑏, 𝑐, 𝑐}. Since {𝑏, ¯𝑏} and {𝑐, 𝑐} are from dif-

ferent information sets, the pair of histories 𝑏 and 𝑐 , for instance,

is a witness for no alr. The player forgets what she knew about

Chance actions. Now, consider the game-structure in Fig. 3b, ob-

tained by shuffling the actions (𝑎 goes above 𝑏 and 𝑐). This game-

structure has alr. The crucial observation is that both the game-

structures, Fig. 3a and Fig. 3b, lead to the same leaf monomials
3
:

{𝑥𝑎𝑥𝑏 , 𝑥𝑎𝑥 ¯𝑏 , 𝑥𝑎𝑥𝑏 , 𝑥𝑎𝑥 ¯𝑏 , 𝑥𝑎𝑥𝑐 , 𝑥𝑎𝑥𝑐 , 𝑥𝑎𝑥𝑐 , 𝑥𝑎𝑥𝑐 }. Similarly, in

Fig. 1b, by shuffling the turns of Alice and Bob, we get an alr recall

game that induces the same leaf monomials.

We say that the game-structure of Fig. 3a has shuffled A-loss

recall. Even though the game-structure originally does not have

alr, it can be shuffled in some way to get an alr structure. Not

every game-structure has shuffled A-loss recall. In this section, we

3
Two monomials are same if their sets of variables are same

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

898

provide a PTIMEalgorithm to identify whether a game-structure

has shuffled A-loss recall. If the answer is yes, the algorithm also

computes the shuffled game-structure. As a result, we are able to

show that one-player shuffled A-loss recall games can be solved in

PTIME. We will keep our discussion to one-player games played by

Max, and later in Section 6 discuss extensions to two-player games.

We will require few notions and notations, which we introduce

gradually as we need them.

For a game structure T , we write 𝐿T for the set of its leaves.

Define |T |, the size of a game structure T , to be |𝐿T |, the total

number of its leaves. We work with history sequences originating

from game structures. Fix a finite set of information sets I and

a set of actions Act(𝐼) for each 𝐼 ∈ I. Recall that the action sets

of distinct information sets are disjoint. Let 𝐴 =
⊎

𝐼 ∈I Act(𝐼). A
sequence is a finite word over 𝐴∗ that contains at most one letter

from each Act(𝐼) 4. Let 𝑠 [𝑖] denote the 𝑖th action in 𝑠 . For sequences
𝑠1 and 𝑠2 of length 𝑘 , we say 𝑠2 is a permutation of 𝑠1 if ∃ a bijective
function 𝜌 : {1, . . . , 𝑘} ↦→ {1, . . . , 𝑘} such that ∀𝑖 , 𝑠1 [𝑖] = 𝑠2 [𝜌 (𝑖)].

Definition 2 (Shuffled A-loss recall). A game structure T is said

to have shuffled A-loss recall (s-alr) if ∃ a game structure T ′ with
|T | = |T ′ | such that

• T ′ has A-loss recall
• There is a bijection 𝑓 : 𝐿T ↦→ 𝐿T′ such that ∀𝑡 ∈ 𝐿T ,
hist(𝑓 (𝑡)) is a permutation of hist(𝑡).

When T has s-alr we call the structure T ′ an s-alr witness of

T . The following lemma is a consequence on leaf monomials.

Lemma 1. Suppose T has s-alr with s-alr witness T ′, then T and

T ′ have the same set of leaf monomials.

Detecting s-alr. Checking whether a structure T has pfr or

alr can be done in polynomial-time, simply by checking histories

at every information set. On the other hand, from the definition

of s-alr, it is not immediate if one could test it efficiently. One

approach could be finding good permutations for each leaf history

in order to get the s-alr witness but this could potentially lead to

exponentially many checks. In the following discussion we will

provide a polynomial-time algorithm to test s-alr in a structure.

Theorem 1. Given a game structure T , there is an algorithm that

checks if T has s-alr in time𝑂 (|T |). Moreover if T does have s-alr,

this algorithm also outputs an s-alr witness structure T ′.

To prove Theorem 1, we will work with the history sequences.

For a game structure T , recall that H(𝐿T) is the set of all leaf

histories in T . We will construct a set of leaf histories 𝐻 ′ such
that 𝐻 ′ = H(𝐿T′) for some alr structure T ′. Since we work with

sequences, and not game-structures themselves, we will need a

notion of alr for sets of words. When we are given a game, alr

can be detected by looking at the histories. When we are given a

set of histories, it is not as direct. We will need to determine some

structure inside the sequences.

alr on sequence sets. Two sequences 𝑠1, 𝑠2 over 𝐴 are said to be

connected if there is some information set 𝐼 such that both 𝑠1 and

𝑠2 contain an action from Act(𝐼). E.g., suppose Act(𝐼1) = {𝑎, 𝑏},
4
We restrict to such words in𝐴∗ since histories in an nam game structure have this

property

Act(𝐼2) = {𝑐, 𝑑}, Act(𝐼3) = {𝑒, 𝑓 }; then 𝑠1 = 𝑎𝑐 and 𝑠2 = 𝑒𝑏 are

connected since 𝑠1 contains 𝑎, 𝑠2 contains 𝑏, both of which are in

Act(𝐼1). Sequences 𝑠1, 𝑠2 are said to be disconnected if they are not

connected. For the same alphabet as before, let 𝑠3 = 𝑒 , then 𝑠1 and

𝑠3 are disconnected.

We say that a set of sequences 𝑆 is connected if for every disjoint

partition of 𝑆 as 𝑆1⊎𝑆2 (where 𝑆1, 𝑆2 are non-empty), there exist 𝑠1 ∈
𝑆1 and 𝑠2 ∈ 𝑆2 such that 𝑠1 and 𝑠2 are connected. E.g., consider 𝑆 =

{𝑎𝑐, 𝑒𝑏, 𝑒} with information sets as above. This set 𝑆 is connected,

even though𝑎𝑐 and 𝑒 are not connected. For a set 𝑆 , we can construct

an undirected graph as follows: each 𝑠 ∈ 𝑆 is a vertex, and there

is an edge between 𝑠1, 𝑠2 ∈ 𝑆 if they are connected. Notice that a

set 𝑆 is connected iff there is a path between any two vertices in

this graph. This interpretation allows to decompose 𝑆 uniquely as

𝑆 =
⊎

𝑖 𝑆𝑖 where each 𝑆𝑖 is a maximal connected component in the

graph.

We can now give a definition of alr on sequences. This is de-

fined inductively as follows. The set {𝜖} has alr. A disconnected

set 𝑆 with decomposition

⊎
𝑖 𝑆𝑖 has alr if each of its connected

components 𝑆𝑖 has alr. A connected set 𝑆 has alr if there exists

an 𝐼 ∈ I s.t.:

(1) every sequence in 𝑆 starts with Act(𝐼): i.e. each𝑤 ∈ 𝑆 is of

the form 𝑎𝑢 for some 𝑎 ∈ Act(𝐼), and
(2) the set of continuations of each 𝑎 ∈ Act(𝐼) has alr: for each

𝑎 ∈ Act(𝐼), the set {𝑢 | 𝑎𝑢 ∈ 𝑆} has alr.
Let us illustrate this definition on examples from Fig. 2. In 2a, we

have the leaf histories 𝐻1 = {𝑎𝑐, 𝑎𝑑, 𝑏𝑒, 𝑏 𝑓 }. Notice that 𝐻1 is a

connected set. There is an information set 𝐼1 with Act(𝐼1) = {𝑎, 𝑏}
such that the first condition above is true. For the second condition,

let us look at the continuations: 𝐻𝑎
1

= {𝑐, 𝑑} and 𝐻𝑏
1

= {𝑒, 𝑓 }.
Both 𝐻𝑎

1
and 𝐻𝑏

1
are connected and satisfy the first condition. The

second condition is vacuously true for 𝐻𝑎
1
and 𝐻𝑏

1
. This shows 𝐻1

has alr (as expected, since on game-structures, pfr is a subclass

of alr). Now, let us look at Fig. 3a. The leaf histories are given

by 𝐻2 = {𝑏𝑎, 𝑏𝑎, ¯𝑏𝑎, ¯𝑏𝑎, 𝑐𝑎, 𝑐𝑎, 𝑐𝑎, 𝑐𝑎}. Observe that 𝐻2 is connected.

However, the first condition in the alr definition does not hold. So

𝐻2 is not alr. We can show that the recursive definition of alr-sets

and that of alr game structures are equivalent.

Proposition 1. A game structure T has alr iffH(𝐿T) has alr.

s-alr on sequence sets. We can also extend the definition of s-alr

to sequence sets. 𝑆 has s-alr if ∃ another set 𝑆 ′ such that (i) 𝑆 ′ has
alr and (ii) there is a bijection 𝑓 : 𝑆 ↦→ 𝑆 ′ where ∀𝑠 ∈ 𝑆, 𝑓 (𝑠) is a
permutation of 𝑠 . We call the set 𝑆 ′ an s-alr witness of 𝑆 .

Exploiting the recursive definition of alr sets we will provide

recursive necessary and sufficient conditions for sequence sets to

have s-alr. Firstly, one can check for s-alr for a set 𝑆 by checking

s-alr for each individual maximal connected components.

Proposition 2. Let 𝑆 be a disconnected set and 𝑆 =
⊎

𝑖 𝑆𝑖 be the

decomposition of 𝑆 into maximal connected components. Then 𝑆 has

s-alr iff ∀𝑖, 𝑆𝑖 has s-alr .

Corollary 1. Let 𝑆 = ⊎𝑖𝑆𝑖 be the decomposition of 𝑆 where each 𝑆𝑖
has s-alr witnessed by sets 𝑆 ′

𝑖
. Then 𝑆 has s-alr and 𝑆 ′ =

⋃
𝑖 𝑆
′
𝑖
is an

s-alr witness of 𝑆 .

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

899

Secondly, for connected sets we will provide another recursive

condition to have s-alr. We use another notation. For an action

𝑎 ∈ 𝐴, we write 𝑆𝑎 := {𝑢1𝑢2 | 𝑢1𝑎𝑢2 ∈ 𝑆}, for the set of sequences
obtained by picking a sequence in 𝑆 that contains 𝑎, and dropping

the 𝑎 from it.

Proposition 3. Let 𝑆 be a connected set. 𝑆 has s-alr iff there exists

an information set 𝐼 ∈ I such that

(1) every sequence 𝑠 ∈ 𝑆 contains an action from Act(𝐼),
(2) and for all 𝑎 ∈ Act(𝐼), the set 𝑆𝑎 has s-alr.

The above proposition can be naturally translated into an al-

gorithm. However, this does not yet ensure a polynomial-time

complexity. If there are two information sets 𝐼1 and 𝐼2 that satisfy

Condition 1 of Proposition 3, the order in which we pick them

might, in principle, create a difference and hence one has to guess

the right order. The next lemma says this does not happen.

Lemma 2. Let 𝑆 be a connected set and let 𝐼 be an arbitrary infor-

mation set such that every sequence 𝑠 ∈ 𝑆 contains an action from

Act(𝐼). Then: 𝑆 has s-alr iff for all 𝑎 ∈ Act(𝐼), the set 𝑆𝑎 has s-alr.

Moreover, if for each 𝑎, 𝑆 ′𝑎 is s-alr witness of 𝑆𝑎 , then
⋃

𝑎 𝑎𝑆
′
𝑎 is an

s-alr witness of 𝑆 .

Algorithm 1 Compute shuffled A-loss recall

1: Input : 𝑆

2: Output: s-alr witness 𝑆 ′ of 𝑆 if it exists

3: if 𝑆 is connected then

4: if ∃𝐼 such that every 𝑠 ∈ 𝑆 contains an action from Act(𝐼)
then

5: for 𝑎 ∈ Act(𝐼) do
6: 𝑆 ′𝑎 ← s-alr witness of 𝑆𝑎
7: end for

8: return

⋃
𝑎 𝑎𝑆

′
𝑎

9: else

10: EXIT and report 𝑆 does not have s-alr

11: end if

12: else

13: 𝑆 = ⊎𝑆𝑖 where each 𝑆𝑖 is connected

14: 𝑆 ′
𝑖
← s-alr witness of 𝑆𝑖

15: return ∪𝑖𝑆 ′𝑖
16: end if

Proposition 3 and Lemma 2 lead to Algorithm 1.This algorithm

runs in time O(|𝑆 |), proving Theorem 1.

Here is an example run of the algorithm on Fig. 3a. We have

𝑆 = {𝑏𝑎,𝑏𝑎, ¯𝑏𝑎, ¯𝑏𝑎, 𝑐𝑎, 𝑐𝑎, 𝑐𝑎, 𝑐𝑎}. All the sequences contain an ac-

tion from Act(𝐼1) = {𝑎, 𝑎}. For the recursive call, we the set 𝐻 =

{𝑏, ¯𝑏, 𝑐, 𝑐}. This set is disconnected, with components 𝐻1 = {𝑏, ¯𝑏}
and 𝐻2 = {𝑐, 𝑐}. For 𝐻1, 𝐻2 the same sets are witness for s-alr.

For 𝐻 , the witness is the same set again. For 𝑆 , the witness is

𝑎𝐻
⊎
𝑎𝐻 = {𝑎𝑏, 𝑎 ¯𝑏, . . . , 𝑎𝑐, 𝑎𝑐}. This set can be translated to the

game Fig. 3b, with alr. Now, back to our running example Fig. 1b.

Let 𝐻01,𝑇01 and 𝐻2,𝑇2 be Alice’s actions out of the information

sets obtained after die roll 0 or 1, and 2 respectively. The induced

sequence set is {𝐻01𝐻,𝐻01𝑇,𝑇01𝐻,𝑇01𝑇,𝐻2𝐻,𝑇2𝑇 }, which can be

𝑧1

𝑐

𝑧2

𝑐

𝑎

𝑧3

𝑑

𝑧4

¯𝑑

𝑎

𝑝1

𝑧5

𝑐

𝑧6

𝑐

𝑏

𝑧7

𝑑

𝑧8

¯𝑑

¯𝑏

𝑝2

𝑟

𝑢1 𝑢2

𝑢3 𝑢4 𝑢5

𝑢6

𝐼1 𝐼2𝐼3 𝐼4

(a) Max without s-alr

𝑤1

𝑎

𝑤2

𝑎

1

2

𝑤3

𝑏

𝑤4

¯𝑏

1

2

𝑑

𝑤5

𝑎

𝑤6

𝑎

1

2

𝑤7

𝑏

𝑤8

¯𝑏

1

2

¯𝑑

𝑐

𝑤9

𝑎

𝑤10

𝑎

1

2

𝑤11

𝑏

𝑤12

¯𝑏

1

2

𝑑

𝑤13

𝑎

𝑤14

𝑎

1

2

𝑤15

𝑏

𝑤16

¯𝑏

1

2

¯𝑑

𝑐

𝐼3

𝐼4

𝐼1 𝐼2

(b)Max with alr

Figure 4: Equivalent alr game using alr-span for game

without s-alr

seen to have s-alr. In fact, for all values for 𝑛, the game II has

s-alr.

Theorem 1 and the fact thatalr games can be solved in polynomial-

time give us the following theorem, and hence a new polynomial-

time solvable class with imperfect recall.

Theorem 2. The maxmin value in one-player games with s-alr can

be computed in polynomial time.

5 SPAN

We move on to another way of simplifying game-structures by

generalizing s-alr. The game-structure in Fig. 4a (call it T1) is an
equivalent version of game III (Fig. 1c). It neither has pfr, nor alr.

Using Algorithm 1, we can show that it does not have s-alr either.

Now, consider the game-structure in Fig. 4b (call it T ′
1
). It has alr.

Each leaf monomial of T1 can be written as a linear combination

of the leaf monomials of T ′
1
: e.g., the leaf monomial 𝑥𝑎𝑥𝑐 of T1 is

equal to 𝑥𝑐𝑥𝑑𝑥𝑎 + 𝑥𝑐𝑥 ¯𝑑𝑥𝑎 , a combination of leaf monomials of T ′
1
.

The game-structure T1 is said to be spanned by T ′
1
. This property

allows to solve games derived from the structure T1 by converting

them into a game on T ′
1
with a suitably designed utility function

so that both games induce the same payoff polynomial, and then

solving the resulting A-loss recall game. This is illustrated in Fig. 4a

and Fig. 4b. Results in this section:

• We show that every nam imperfect recall game structure is

spanned by an alr structure (Theorem 3). The caveat is that

the smallest alr span may be of exponential size: we exhibit

a family of game structures where this happens (Theorem 4).

• We provide an algorithm to compute an A-loss recall span of

smallest size. We show that the associated decision problem

is in NP (Theorem 5). We also identify classes of games with

‘small’ alr-span using a new parameter (Corollary 2).

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

900

We will now formally present alr-span. Similar to last section,

we will keep our discussion to one-player games and later discuss

extensions to two players in Section 6.

Since we will deal with polynomials formed using leaf mono-

mials, we need the notion of reducing one polynomial to another.

Recall that since these variables are denoting behavioral strategies,

every valuation to the variables satisfies the strategy constraints.

We say polynomial 𝑓1 reduces to 𝑓2 under strategy constraints if we

can get 𝑓2 by applying finitely many substitutions in 𝑓1 of the form∑
𝑎∈𝐴𝑐𝑡 (𝐼)

𝑥𝑎 = 1. E.g., 𝑥𝑎𝑥𝑑𝑥𝑐 + 𝑥𝑎𝑥𝑑𝑥𝑐 + 𝑥𝑎𝑥𝑑𝑥𝑐 + 𝑥𝑎𝑥𝑑𝑥𝑐 reduces

to 𝑥𝑑 by applying the substitutions 𝑥𝑎 + 𝑥𝑎 = 1 and 𝑥𝑐 + 𝑥𝑐 = 1.

Observe that, when 𝑓1 reduces 𝑓2, they are essentially the same

polynomials over the space with strategy constraints, i.e. they eval-

uate to the same value under every assignment of values satisfying

the strategy constraints.

Definition 3 (alr-span). Let T be a game structure with set of leaf

monomials 𝑋 (T). We call a structure T ′ an alr-span of T if

• T ′ has alr.
• each monomial in 𝑋 (T) can be generated by monomials in

𝑋 (T ′) by linear combinations i.e. ∀𝜇 ∈ 𝑋 (T) there exist co-
efficients {𝑐𝜇

𝜇′}𝜇′∈𝑋 (T′) ∈ R
|𝑋 (T′) |

such that the polynomial∑
𝜇′∈𝑋 (T′)

𝑐
𝜇

𝜇′𝜇
′
reduces to 𝜇 under strategy constraints.

The game structure T ′
1
in Fig. 4b is an alr-span of T1 in Fig. 4a.

E.g., for the monomial 𝑥 ¯𝑏𝑥 ¯𝑑 in T1, the linear combination 𝑥𝑐𝑥 ¯𝑑𝑥 ¯𝑏 +
𝑥𝑐𝑥 ¯𝑑𝑥 ¯𝑏 reduces to it by substituting 𝑥𝑑 + 𝑥 ¯𝑑 = 1. In fact, observe

that for any monomial 𝜇 in 𝑋 (T1), the sum of the two monomials

in 𝑋 (T ′
1
) that contain the actions in 𝜇, reduces to 𝜇.

The next proposition states that we can use alr-span T ′
1

to

solve games on structure T1 (see Fig. 4a and Fig. 4b). We can assign

suitable payoffs 𝑤𝑖s in terms of 𝑧𝑖s and 𝑝𝑖s to get an equivalent

game. Let 𝑡𝑖 be the leaf that has payoff 𝑤𝑖 .The payoff 𝑤𝑖 is the

sum of the quantities

ProbChance (𝑡)𝑐𝜇 (𝑡)𝜇 (𝑡𝑖)
U(𝑡)

ProbChance (𝑡𝑖) for all 𝑡 in T1, in which

𝜇 (𝑡𝑖) contributed to generate 𝜇 (𝑡). E.g., 𝑡1, with polynomial 𝑥𝑐𝑥𝑑𝑥𝑎
contributes in generating only 𝑥𝑎𝑥𝑐 (for the leaf corresponding

to 𝑧1). Hence 𝑤1 = 2𝑝1𝑧1. Similarly, 𝑤5 = 2𝑝1𝑧1. In the payoff

polynomial of the second game, since 𝑥𝑐𝑥𝑑𝑥𝑎 + 𝑥𝑐𝑥𝑑𝑥𝑎 = 𝑥𝑎𝑥𝑐 , we

will have the term 𝑝1𝑧1𝑥𝑎𝑥𝑐 in the payoff polynomial. This way, we

will get the same payoff polynomial as original game, thus reducing

the original game to a game on T ′
1
.

Proposition 4. Let T be a game structure and T ′ an alr-span of

T . Then for every game 𝐺 = (T , 𝛿,U) on T , there exists a game

𝐺 ′ = (T ′, 𝛿 ′,U ′) on T ′ such that solving𝐺 can be reduced to solving

𝐺 ′.

Existence of alr-spans. From the definition, one can see that

when T has s-alr, an s-alr witness is also an alr-span of T . Sur-
prisingly, we can show that every nam structure has alr-span.

Theorem 3. Every nam-game structure T has an alr-span.

Proof Sketch. We can explicitly provide an alr-span T ′ of T .
Let I be the set of information sets in T . The structure T ′ has |I |
levels of player nodes corresponding to each 𝐼 ∈ I. All nodes in a

level are placed in one information set. Therefore the leaves of T ′

are all possible monomials using the information sets I. Moreover,

T ′ has alr. To generate a monomial 𝜇 ∈ 𝑋 (T) one can combine

the monomials of all paths containing actions from 𝜇 in 𝑋 (T ′). □

Minimal alr-span. In order to take advantage of Proposition 4,

one would need to find small alr-spans. We observe that the alr-

span obtained in the proof of Theorem 3 has exponential size. We

will now delve into finding alr-spans of smallest size : a minimal

alr-span. First we will list some key observations concerning mini-

mal alr-spans which will lead to an algorithm for computing one.

Then we will show that the exponential blowup in size of alr-spans

is unavoidable in general by exhibiting a class of games with mini-

mal alr-span of exponential size. Since alr-games are solvable in

polynomial time, this aligns with the fact that the maxmin problem

for general one-player nam-games is NP-hard.

Similar to Section 4, we will work directly with sequence sets.

The notions related to span are extended to sequence sets in a

natural manner, i.e. when T ′ is an alr-span of T , H(𝐿T′) is an
alr-span ofH(𝐿T)

Proposition 5. For a sequence set 𝑆 , let 𝑆 =
⊎

𝑖 𝑆𝑖 be the decompo-

sition of 𝑆 into maximal connected components. Let 𝑆 ′
𝑖
be a minimal

alr-span of 𝑆𝑖 . Then 𝑆
′ =

⊎
𝑖 𝑆
′
𝑖
is a minimal alr-span of 𝑆

We can show that a minimal alr-span of a connected set is also

connected. By definition, the alr-span is a set of sequences that

has alr, and by the first point in the definition of alr on sequence

sets, we deduce that there is an 𝐼 such that all sequences in the

minimal span start with Act(𝐼).

Lemma 3. Let 𝑆 be a connected set and 𝑆 ′ be a minimal alr-span

of 𝑆 . Then ∃𝐼 ∈ I, such that all sequences in 𝑆 ′ start with Act(𝐼).

The next observation says how to find this 𝐼 .

Lemma 4. Let 𝑆 be a connected set. If there is an 𝐼 such that every

sequence of 𝑆 has an action in Act(𝐼), then there is a minimal alr-

span 𝑆 ′ of 𝑆 such that all sequences in 𝑆 ′ start with Act(𝐼).

If there is no such 𝐼 , then we need to enumerate over all infor-

mation sets to find the smallest. Once we fix an 𝐼 , the next lemma

says how to find a minimal alr-span which starts with Act(𝐼).

Lemma 5. Let 𝑆 be a connected set, and let 𝐼 ∈ I. An alr-span of

smallest size among all alr-spans starting withAct(𝐼) is the following:
𝑆 ′ =

⋃
𝑎∈Act(𝐼) 𝑎𝐻

′
𝑎 where𝐻 ′𝑎 is a minimal alr-span of 𝑆𝑎∪𝑆𝐼 where

𝑆𝐼 := {𝑠 ∈ 𝑆 | 𝑠 contains no action from Act(𝐼).

Algorithm for computing minimal alr-span. Based on the lem-

mas above, we can design a recursive algorithm to compute a min-

imal alr-span for an input sequence set 𝑆 . Firstly, if 𝑆 is discon-

nected, based on Proposition 5, 𝑆 is decomposed into maximal

connected components and a minimal alr-span is computed for

each component. When 𝑆 is connected: (1) for each 𝐼 ∈ I, compute

𝐻𝐼 = {𝑠 | 𝑠 contains no action fromAct(𝐼)}; (2) if there is some

𝐼 such that 𝐻𝐼 = ∅ (Lemma 4), find the smallest alr-span start-

ing with Act(𝐼) using Lemma 5; (3) else, for each 𝐼 , compute the

smallest alr-span starting from Act(𝐼) using Lemma 5 and return

the smallest. We remark that in the algorithm to find the minimal

alr-span, 𝜖 might appear in intermediate sequence sets. In that

case, we just remove 𝜖 from the set and continue the algorithm.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

901

Next, we show that there are game-structures whose minimal

alr-spans are exponentially large.

Theorem 4. For every 𝑛 > 0, there exists a game structure T𝑛 of size

O(𝑛2) such that the size of a minimal alr-span of T𝑛 is Ω(2𝑛).

Complexity. In order to investigate the complexity of computing

a minimal alr-span of a game structure, we consider the follow-

ing decision problem and show it to be in NP. We leave open the

question of whether it is NP-hard.

MIN-ALR-SPAN: Given a game structure T and an integer 𝑘 > 0,

is there a game structure T ′ such that |T ′ | ≤ 𝑘 and T ′ is an alr-

span of T ?

Theorem 5. The decision problem MIN-ALR-SPAN is in NP.

Proof Sketch. One can guess aT ′ of size atmost𝑘 , and also the

linear combinations required for each 𝜇 ∈ 𝑋 (T). This is polynomial

in size. For each monomial 𝜇 ∈ 𝑋 (T) we verify if the monomials

in 𝑋 (T ′) containing all variables from 𝜇 can generate 𝜇. This can

be done efficiently in polynomial-time. □

Efficiently solvable classes. We get back to finding efficiently solv-

able classes of imperfect recall games, this time using a parameter

called shuffle-depth SD, that is naturally derived from our algorithm

for computing a minimal alr-span.

When 𝑆 is disconnected with 𝑆 = ⊎𝑆𝑖 and each 𝑆𝑖 connected :

define SD(S) = max𝑖 𝑆𝐷 (𝑆𝑖). When 𝑆 is connected and 𝑆 has s-alr,

define SD(S) = 0. Otherwise define

𝑆𝐷 (𝑆) = 1 +min

𝐼
max

𝑎∈𝐼
SD(𝑆𝑎 ∪ 𝑆𝐼)

For a T with SD 𝑘 , our minimal alr-span algorithm would en-

counter sets with s-alr after recursively running upto depth 𝑘 .

This takes O(|T |𝑘+1) time.

Proposition 6. The minimal alr-span of game structure T with

SD = 𝑘 can be computed in time O(|T |𝑘+1).

Corollary 2. The maxmin value in a one-player game can be com-

puted in PTIME for games having structures with constant SD.

The game III for any 𝑛 has SD 2, and using our algorithm one

can find equivalent alr-game with just a quadratic blowup in size.

6 TWO-PLAYER GAMES

For a two-player game structure T and the corresponding sequence

set 𝑆 , we can look at the projection of sequences on individual

player actions, 𝑆Max and 𝑆Min, consider their alr-spans and knit

them together. Consider the 2-player game in Fig. 5. Projections

of the sequence set in this game w.r.t individual players would

correspond to game structures in Fig. 5b (for Max) and Fig. 3a (for

Min). The structure Fig. 5b already has pfr. As seen before, Fig. 3b

is an s-alr witness for Fig. 3a. We can plug in this s-alr witness to

all leaf nodes of Fig. 5b and get the structure Fig. 5c. Information

sets are maintained across all copies of Fig. 5c as shown in the

illustration. More generally, if T ′Max is an alr-span of TMax, and

T ′Min is an alr-span of TMin, we can obtain an (alr, alr) structure
where all nodes of Max precede all nodes of Min, and a copy of

T ′Min is attached to each leaf node of Max, and information sets of

Min are maintained across all copies of T ′Min, as shown in Fig. 5.

𝑧1

𝑎

𝑧2

𝑎

𝑏

𝑧3

𝑎

𝑧4

𝑎

¯𝑏

𝑑

𝑧5

𝑎

𝑧6

𝑎

𝑐

𝑧7

𝑎

𝑧8

𝑎

𝑐

¯𝑑

(a) (pfr, s-alr) game

𝑑 ¯𝑑

(b) pfr game structure

2𝑧1

𝑏

2𝑧3

¯𝑏

1

2

2𝑧5

𝑐

2𝑧7

𝑐

1

2

𝑎

2𝑧2

𝑏

2𝑧4

¯𝑏

1

2

2𝑧6

𝑐

2𝑧8

𝑐

1

2

𝑎

𝑑

2𝑧1

𝑏

2𝑧3

¯𝑏

1

2

2𝑧5

𝑐

2𝑧7

𝑐

1

2

𝑎

2𝑧2

𝑏

2𝑧4

¯𝑏

1

2

2𝑧6

𝑐

2𝑧8

𝑐

1

2

𝑎

¯𝑑

(c) (pfr,alr) game

Figure 5: Equivalent two player game obtained by compos-

ing alr-spans of respective Max, Min structures

We can assign suitable payoffs in a similar manner to Proposition 4

to get an equivalent game on this new game structure.

Theorem 6. Solving an (nam,nam) game on structure T can be re-

duced to solving an (alr, alr) game on a structure of size |T ′Max | |T
′
Min |

where T ′Max and T
′
Min are minimal alr-spans of TMin.

Since (pfr, alr)-games can be solved in polynomial-time, Theo-

rem 6 and Corollary 2 lead to new polynomial-time solvable classes.

Corollary 3. The maxmin value in a (pfr,nam) game where SD of

TMin is constant can be computed in polynomial time. As a conseqe-

unce, (pfr, s-alr) games can be solved in polynomial time.

7 CONCLUSION

We have presented a study of imperfect recall without absentmind-

edness, through the lens of A-loss recall. Specifically, we have given

two methods to transform imperfect recall games to A-loss recall

games. Behavioral strategies for the original game can be obtained

by analyzing the transformed game. This investigation has resulted

in new PTIME solvable classes of one-player and two-player games.

We have also shown how to find a transformation of minimal size.

It would be interesting to see the influence of these notions of s-alr

and alr-span, and the idea of using sequence sets instead of games,

in algorithms that use imperfect recall abstractions.

In summary, in this work, we have laid the foundations to sim-

plify imperfect recall in terms of alr. We do hope that this perspec-

tive leads to further theoretical and experimental investigations.

ACKNOWLEDGMENTS

The second author is supported by the EPSRC through project

EP/X03688X/1. A considerable part of this work was done when

the second author was at LaBRI, Université de Bordeaux and then

at IRIF, Université Paris Cité.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

902

REFERENCES

[1] Noam Brown, Sam Ganzfried, and Tuomas Sandholm. 2015. Hierarchical Ab-

straction, Distributed Equilibrium Computation, and Post-Processing, with Ap-

plication to a Champion No-Limit Texas Hold’em Agent. In Proceedings of the

2015 International Conference on Autonomous Agents and Multiagent Systems, AA-

MAS 2015, Istanbul, Turkey, May 4-8, 2015, Gerhard Weiss, Pinar Yolum, Rafael H.

Bordini, and Edith Elkind (Eds.). ACM, 7–15. http://dl.acm.org/citation.cfm?id=

2772885

[2] Noam Brown and Tuomas Sandholm. 2017. Libratus: The Superhuman AI for No-

Limit Poker. In Proceedings of the Twenty-Sixth International Joint Conference on

Artificial Intelligence, IJCAI-17. 5226–5228. https://doi.org/10.24963/ijcai.2017/772

[3] Noam Brown and Tuomas Sandholm. 2019. Superhuman AI for multiplayer

poker. Science 365, 6456 (2019), 885–890. https://doi.org/10.1126/science.aay2400

[4] Andrea Celli and Nicola Gatti. 2018. Computational Results for Extensive-Form

Adversarial Team Games. In Proceedings of the Thirty-Second Conference on Artifi-

cial Intelligence (AAAI’18). AAAI Press, New Orleans, Louisiana, USA, 965–972.

[5] Jirí Cermák, Branislav Bosanský, Karel Horák, Viliam Lisý, andMichal Pechoucek.

2018. Approximating maxmin strategies in imperfect recall games using A-loss

recall property. Int. J. Approx. Reasoning 93 (2018), 290–326.

[6] Jiri Cermak, Branislav Bosanský, and Viliam Lisý. 2017. An Algorithm for

Constructing and Solving Imperfect Recall Abstractions of Large Extensive-

Form Games. In Proceedings of the Twenty-Sixth International Joint Conference on

Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, Carles

Sierra (Ed.). ijcai.org, 936–942. https://doi.org/10.24963/IJCAI.2017/130

[7] Vincent Conitzer. 2019. Designing Preferences, Beliefs, and Identities for Artificial

Intelligence. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI

2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference,

IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial

Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019.

AAAI Press, 9755–9759. https://doi.org/10.1609/AAAI.V33I01.33019755

[8] Sam Ganzfried and Tuomas Sandholm. 2014. Potential-Aware Imperfect-Recall

Abstraction with Earth Mover’s Distance in Imperfect-Information Games. In

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July

27 -31, 2014, Québec City, Québec, Canada, Carla E. Brodley and Peter Stone (Eds.).

AAAI Press, 682–690. https://doi.org/10.1609/AAAI.V28I1.8816

[9] Hugo Gimbert, Soumyajit Paul, and B. Srivathsan. 2020. A Bridge between

Polynomial Optimization and Games with Imperfect Recall. In Proceedings of

the 19th International Conference on Autonomous Agents and Multiagent Systems,

AAMAS ’20. International Foundation for Autonomous Agents and Multiagent

Systems.

[10] Hugo Gimbert, Soumyajit Paul, and B. Srivathsan. 2025. Simplifying imperfect

recall games. arXiv:2502.13933 [cs.GT] https://arxiv.org/abs/2502.13933

[11] Michael Johanson, Neil Burch, Richard Valenzano, and Michael Bowling. 2013.

Evaluating state-space abstractions in extensive-form games. In Proceedings of

the 2013 international conference on Autonomous agents and multi-agent systems.

271–278.

[12] Mamoru Kaneko and J Jude Kline. 1995. Behavior strategies, mixed strategies

and perfect recall. International Journal of Game Theory 24 (1995), 127–145.

[13] J Jude Kline. 2002. Minimummemory for equivalence between ex ante optimality

and time-consistency. Games and Economic Behavior 38, 2 (2002), 278–305.

[14] Daphne Koller and Nimrod Megiddo. 1992. The complexity of two-person zero-

sum games in extensive-form. Games and Economic Behavior 4, 4 (1992), 528–552.

[15] Christian Kroer and Tuomas Sandholm. 2016. Imperfect-Recall Abstractions

with Bounds in Games. In Proceedings of the 2016 ACM Conference on Economics

and Computation, EC ’16, Maastricht, The Netherlands, July 24-28, 2016, Vincent

Conitzer, Dirk Bergemann, and Yiling Chen (Eds.). ACM, 459–476. https://doi.

org/10.1145/2940716.2940736

[16] Nicolas S. Lambert, Adrian Marple, and Yoav Shoham. 2019. On equilibria in

games with imperfect recall. Games and Economic Behavior 113 (2019), 164–185.

https://doi.org/10.1016/j.geb.2018.09.007

[17] Marc Lanctot, Richard G. Gibson, Neil Burch, and Michael Bowling. 2012. No-

Regret Learning in Extensive-Form Games with Imperfect Recall. In Proceedings

of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh,

Scotland, UK, June 26 - July 1, 2012. icml.cc / Omnipress. http://icml.cc/2012/

papers/58.pdf

[18] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan

Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. 2017.

DeepStack: Expert-level artificial intelligence in heads-up no-limit poker. Science

356, 6337 (2017), 508–513. https://doi.org/10.1126/science.aam6960

[19] Bernhard Von Stengel. 1996. Efficient Computation of Behavior Strategies. Games

and Economic Behavior 14, 2 (1996), 220–246.

[20] Emanuel Tewolde, Caspar Oesterheld, Vincent Conitzer, and Paul W. Goldberg.

2023. The computational complexity of single-player imperfect-recall games

(IJCAI ’23). Article 321, 10 pages. https://doi.org/10.24963/ijcai.2023/321

[21] Emanuel Tewolde, Brian Hu Zhang, Caspar Oesterheld, Manolis Zampetakis,

Tuomas Sandholm, Paul Goldberg, and Vincent Conitzer. 2024. Imperfect-Recall

Games: Equilibrium Concepts and Their Complexity. In Proceedings of the Thirty-

Third International Joint Conference on Artificial Intelligence, IJCAI-24, Kate Larson

(Ed.). International Joint Conferences on Artificial Intelligence Organization,

2994–3004. https://doi.org/10.24963/ijcai.2024/332 Main Track.

[22] Bernhard von Stengel and Daphne Koller. 1997. Team-Maxmin Equilibria. Games

and Economic Behavior 21, 1 (1997), 309–321. https://doi.org/10.1006/game.1997.

0527

[23] Kevin Waugh, Martin Zinkevich, Michael Johanson, Morgan Kan, David Schni-

zlein, and Michael H. Bowling. 2009. A Practical Use of Imperfect Recall. In

Eighth Symposium on Abstraction, Reformulation, and Approximation (SARA’09).

AAAI, California, USA, 175 – 182.

[24] Kevin Waugh, Martin Zinkevich, Michael Johanson, Morgan Kan, David Schni-

zlein, and Michael H. Bowling. 2009. A Practical Use of Imperfect Recall. In Eighth

Symposium on Abstraction, Reformulation, and Approximation, SARA 2009, Lake

Arrowhead, California, USA, 8-10 August 2009, Vadim Bulitko and J. Christopher

Beck (Eds.). AAAI. http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/

view/839

[25] Ernst Zermelo. 1913. Uber eine Anwendung der Mengenlehre auf die Theorie

des Schachspiels. InProceedings of the Fifth International Congress of Mathe-

maticians II.

[26] Jiří Čermák, Viliam Lisý, and Branislav Bošanský. 2020. Automated construction

of bounded-loss imperfect-recall abstractions in extensive-form games. Artificial

Intelligence 282 (2020), 103248. https://doi.org/10.1016/j.artint.2020.103248

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

903

http://dl.acm.org/citation.cfm?id=2772885
http://dl.acm.org/citation.cfm?id=2772885
https://doi.org/10.24963/ijcai.2017/772
https://doi.org/10.1126/science.aay2400
https://doi.org/10.24963/IJCAI.2017/130
https://doi.org/10.1609/AAAI.V33I01.33019755
https://doi.org/10.1609/AAAI.V28I1.8816
https://arxiv.org/abs/2502.13933
https://arxiv.org/abs/2502.13933
https://doi.org/10.1145/2940716.2940736
https://doi.org/10.1145/2940716.2940736
https://doi.org/10.1016/j.geb.2018.09.007
http://icml.cc/2012/papers/58.pdf
http://icml.cc/2012/papers/58.pdf
https://doi.org/10.1126/science.aam6960
https://doi.org/10.24963/ijcai.2023/321
https://doi.org/10.24963/ijcai.2024/332
https://doi.org/10.1006/game.1997.0527
https://doi.org/10.1006/game.1997.0527
http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/839
http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/839
https://doi.org/10.1016/j.artint.2020.103248

	Abstract
	1 Introduction
	2 An example
	3 Background and notations
	4 Shuffled A-loss recall
	5 Span
	6 Two-player games
	7 Conclusion
	Acknowledgments
	References

