
Policy Graphs and Intention: answering ‘why’ and ‘how’ from a
telic perspective

Victor Gimenez-Abalos
∗

Barcelona Supercomputing Center

Barcelona, Spain

victor.gimenez@bsc.es

Sergio Alvarez-Napagao
∗

Universitat Politécnica de Catalunya

Barcelona Supercomputing Center

Barcelona, Spain

salvarez@cs.upc.edu

Adrian Tormos

Barcelona Supercomputing Center

Barcelona, Spain

adrian.tormos@bsc.es

Ulises Cortés

Universitat Politècnica de Catalunya

Barcelona Supercomputing Center

Barcelona, Spain

ulises.cortes@bsc.es

Javier Vázquez-Salceda

Universitat Politécnica de Catalunya

Barcelona, Spain

jvazquez@cs.upc.edu

ABSTRACT
Agents are a special kind of AI-based software in that they interact

in complex environments and have increased potential for emer-

gent behaviour. Explaining such behaviour is key to deploying

trustworthy AI, but the increasing complexity and opaque nature

of many agent implementations makes this hard. In this work, we

reuse the Policy Graphs method –which can be used to explain

opaque agent behaviour– and enhance it to query it with hypothe-

ses of desirable situations. These hypotheses are used to compute

a numerical value to examine agent intentions at any particular

moment, as a function of how likely the agent is to bring about a

hypothesised desirable situation. We emphasise the relevance of

how this approach has full epistemic traceability, and each belief

used by the algorithms providing answers is backed by specific

facts from its construction process. We show the numeric approach

provides a robust and intuitive way to provide telic explainability

(explaining current actions from the perspective of bringing about

situations), and allows to evaluate the interpretability of behaviour

of the agent based on the explanations; and it opens the door to

explainability that is useful not only to the human, but to an agent.
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1 INTRODUCTION
Among the tasks within the purview of Artificial Intelligence (AI),

the issue of solving problems without giving explicit instructions

on how to solve them is pervasive. However, precisely because of

the definition of such a task, the result is an artefact that, unless
explicitly designed to be transparent, is often not interpretable or,

hence, trustworthy [29, 64]. This is where the field of Explainable
Artificial Intelligence (XAI ) shines through.

Explanations can be viewed as a communicative exercise be-

tween source (i.e. the model or one of its components) and receiver

(i.e. the explainee) that describes the relevant context or the causes
surrounding some facts [28, 39, 63], which in the context of AI is

often related to its final or intermediary outputs or decisions.

Although any such communicative act can be considered an

explanation, some explanations are better than others. Considering

explanations as a cooperative communication, Herbert Paul Grice

would rate explanations according to four utilities [20]: how inter-

pretable the content is to the receiver (manner), how truthful it is

(quality), how concise it is (quantity), and how relevant it is to the

context of the communicative act (relation).
In this paper, we focus on the first two. On one hand, we highlight

the relevance of reliability: whether the explanation given by the

model is factually correct, which is dependent solely on the sender

though it is sometimes sacrificed in pursuit of interpretability. On

the other hand, we consider interpretability as how much of the

explained behaviour can the receiver comprehend and leverage,

which is dependent on the receiver. These two separate optimisation

objectives tend to be in conflict (e.g. the most reliable explanation

would involve a detailed breakdown of its code, while the most

interpretable explanation might be a simplified and potentially

misleading description of its behaviour).

The trade-off ought to be considered pragmatically: What is
explainability used for? Regardless of context and the nature of the

source of explanations, humans find explanations helpful for several

aspects, including [1]: for the sender to justify behaviours so that

the receiver understands it and to hold accountability, responsibility

and transparency; for the receiver to control and correct the sender’s
model via locating flaws and vulnerabilities or to debug; for the

sender to improve based on feedback from the receiver, such as
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inspecting nonsensical behaviours and increasing rationality; and

for the receiver to discover or learn what knowledge the sender has,

and how it leverages it to their advantages.

Any desirable XAI algorithm is tackling at least one of these

objectives [1, 29, 39] while holding some notions (often implicit) of

the desirability of explanations related to some of Grice’s maxims.

When performing explanations over models which can be easily

accessed, this task is already complex enough. But as models are

becoming increasingly opaque, this task becomes more complex [6,

22], sometimes becoming unachievable. We, as a community, need

better tools to tackle this problem [31]. This is particularly the case

for autonomous agents [15] that interact in an environment. It is

tough to understand an agent’s purpose or assumed intentions (e.g. a
cleaning bot that stops cleaning and goes away), especially if one

has no access to its model or it is opaque. In these cases, obtaining

explanations becomes an exercise in anthropomorphism, where a

human interpreter attributes behaviours (based on what a human

would do, as shown by [24]) in a qualitative analysis (e.g. the bot has
low battery, it goes away to recharge) that may be inaccurate and

risks self-deception and harm [48, 62]. However, it is through these

mechanisms that humans have evolved to interpret and coordinate

with other humans (and even phenomena) through time, marking

it as a viable (if dangerous) strategy. If these mechanisms could be

turned into quantitative, verifiable, and reliable explanations, they

could be used to increase the trustworthiness of AI-based systems

by allowing the explainee to compare explanations provided and to

be aware of their quality and manner.

In this paper, we introduce the notion of intention into Policy
Graph (PG), a XAI technique applied to agents in order to explain

their behaviour by extending previous attempts [11, 23, 30, 57]. The

original technique is based on taking observations of opaque agents

to build a symbolic representation of states and actions in a fre-

quentist manner, compiling them into beliefs of policy and state-

transition behaviour based on reliable evidence. To this technique,

we introduce human-hypothesised desires as annotations into this

representation, leveraging the fact that humans can both easily

hypothesise behavioural goals based on information and that ex-

planations involving those goals would be interpretable to them

– as they have come up with them in the first place. We use these

annotations to produce agent intentions as a function of how likely

the agent is to reach the annotated goals from a set state, and use

these to produce telic explanations, involving the ends rather than

the means of the agent. We introduce two metrics that evaluate reli-

ability and interpretability of behaviour, tuned by a hyperparameter

that explicitly controls the trade-off in the provided explanations.

This information can be used for XAI , with example algorithms

answering “Why did you take a certain action” as a function of

how it helps bring about a goal compared to other possible actions,

“What do you plan to do” by the intentions –which can be visualised
in real time for quick examination of the agent–, and “How do you

plan to achieve something” as the beliefs that support that fulfilling

a desire is possible by following a course of action. We believe these

questions open the door to justify, and discover agent behaviour,
and opportunities to control and improve it, and enable further

downstream tasks like collaboration and/or competition in multi-

agent systems, human collaboration, and especially auditing of such

systems [23, 49, 55].

2 BACKGROUND
Our focus in this paper is to tackle explainability for opaque and
unknown agents: all the prospective explainee can do is observe its

behaviour. Much like humans dowhen explaining other humans, we

frame the problem in the context of no knowledge of the internals

of an agent, nor complete observability of the context in which

the agent takes its decisions. However, we will assume that the

explainee may have access to a (potentially incomplete) initial

notion of what the desirable behaviour should be in terms of what

is needed in order to control, improve or justify the actions of the

agent [1, 32], from an explainee point of view.

When considering the categories of explainability in which the

proposed technique falls in the context of explainable agency (and

Reinforcement Learning (RL) as a subset), current taxonomies [1, 2, 4,

38, 43, 65] offer different categories. Our method is post-hoc [1, 43]:
explainability applied to agents after its creation, without changing

its internal structure to be more transparent. It is model-agnostic [1,
43], as we require no knowledge of the internals – neither archi-

tecture nor any knowledge of reward function [21] or task decom-

position [7, 59] – which is a less tackled problem compared to

model-specific [3, 8, 14, 27, 34, 46, 60, 61]. On the context of the

scope of explanation [1, 13, 43], we focus on both the global and
local aspect: decisions are taken in states, but include future and

global model behaviour to justify those decisions. Finally, in the

context of RL, a distinction is made between what part of the inter-

nals of an RL agent is explained [38]. Albeit we remain agnostic to

the internals of an agent, within the limitations of each category,

our method best matches Policy-level explainability as our method

focuses on long-term behaviour – rather than single-actions – and

is agnostic to how or whether the agent learnt its behaviour.

In addition to these categories, we emphasise that the kind of

explanation motivating this method goes beyond the original PG
of atomic action selection. Instead, behaviour predictability is im-

portant for producing relevant explanations. As shown in Malle’s

research [35, 37], explanations related to understandable end-goals,

desires, or rewards are preferable to ones linked exclusively on

means. For this purpose, Theory of Mind (ToM) may become a pow-

erful ally [18, 19, 25], focusing on easing the task of behaviour

predictability through the concept of intentions [10, 19, 36, 42].

Intentions are mental states different from others such as beliefs,

desires, knowledge or emotions. In more agentic frameworks, an in-

tention consists on a state of affairs that will be the aim of the agent

and to which it commits [9], while in humanistic ones, intentions

are the result of both desiring and believing to have a course of

action that brings about a state of affairs [35, 37]. These definitions

support our decisions to model intentions in PGs (see § 3.1).
However, especially when dealing with opaque agents, attribut-

ing intent can be dangerous – especially since it can be noted that

not all agents may have explicit intentions. Therefore, this attribu-

tion may not be completely right from a formal perspective [63], but

the fact it is practical and beneficial to do so underpins the motiva-

tion why we do this – humans do this attribution process constantly

to explain affairs. Instead, the burden of attribution ought to be con-

sidered from the point of view of whether it is useful, reliable, and

interpretable, much like with other communicative acts.
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3 METHODOLOGY
PGs are a probabilistic graphical model that compiles two pieces of

knowledge: the agent policy – as 𝑃 (𝑎 |𝑠) – and a world model [16,

17, 45] – as 𝑃 (𝑠′ |𝑎, 𝑠). These two pieces of information, together

with the assumption of the Markov property –that is, that the

probabilities of actions and transitions are independent of previous

states given you know the current one– allow for computing the

probability of any sequence of actions and states, starting from one.

These quantities, when actions and states considered are finite,

allow for a graph-like representation, where nodes are states and

edges are annotated with actions and encode the transition probabil-

ity between states. In previous work [11, 23, 30] there are proposals

on how to collapse continuous states (or actions) to discrete ver-

sions with a discretiser, whose influence is analysed in those works.

The discretiser converts the state into predicates, which we lever-

age later on for explainability-generation purposes, as well as for

the introduction of intentions. The PG is then built in a frequentist

fashion: taking observations of agent behaviour, converting states

and actions into discrete versions, and computing the required prob-

abilities by counting occurrences. In addition to these quantities, in

this work we also add to the representation 𝑃 (𝑠) – as the number

of times out of the total that we visited a state. Note that in this

process, no access to the policy or agent internals is required, and

the origin of each quantity can be traced into empirical evidence.

Following this process, a PG is obtained, and previous work

allows for different kinds of explainability to be applied. In this

work, we extend this representation into an Intention-Aware PG.

3.1 Explainability with Desires and Intentions
Most explainability algorithms in literature speak of causal rela-

tionship, correlation, or relevance between the model’s output and

some input quality [33, 44, 52]. However, when translated into

agent behaviour, the responses can be quite different from the ones

we expect from, for example, humans. For example, when asking a

chef why they put a pot on a hob, they will not reply in terms of

the pot being full of water, or the hob being unused.

Explanations involving human intent are often teleological. They

summarise behaviour by referencing a root cause: the ends bywhich

a course of action is chosen. In many cases, these teleological expla-

nations encompass the realms of morals, ethics and politics [26, 63],

but the actual intention acts as the main predictor of the existence

of abstract mental states. When asking a human cook why they put

a cooking pot on the hob, they would reply: Because I want pasta
carbonara, for which I need to cook the pasta... eventually arriving at

I can achieve it by putting the available water-filled pot on the unused
hob. Depending on the beliefs of the explainer about the necessities
of the explainee, the explanation would be cut short, taking the

slice of the whole trace of reasons that they think is relevant for

the explainee. The explainer cannot reasonably constrain itself to

the lowest level alone [61].

To achieve explainability of this sort, our first observation is

that humans do this already: when analysing a (reasonably well-

performing) agent’s behaviour in a domain, humans tend to an-

thropomorphism [24, 48, 62], establishing logical inferences from a

teleological perspective [51, 63]. Humans attribute intentionality

to the agent. This is especially the case for most toy environments

(e.g. games) of which the human observer has some knowledge of

how to solve and thus is expecting certain behaviours. This extends

to experts observing agents’ behaviour in their domains [40, 54].

Explanations in terms of these attributed intentionalities are, by

virtue of being hypothesised by a human, more understandable

for humans. However, as is now, this is a dangerous affair. Such

attributions are subject to anecdotal fallacy when observing a low

number of interactions.

Instead, we aim to leverage these attributions by making them

testable, and presenting metrics in terms of how reliable it is to

perform that attribution, and how much of the agent’s behaviour

can be explained by the attribution. These attributions can then be

used to enable the agent to answer thewhat,why, and how questions

in a manner not dissimilar to how a human would. This is done

through the introduction of agent desires, which can be modelled

in diverse ways, and agent intentions, that is, the desires we expect
the agent to accomplish (soon) as allowed by the environment [9].

3.1.1 Desires and Intentions. In this work, we refer to the hypothe-

ses over expected behaviour as desires. This desire may or may not

express itself (or not do so frequently) in the behaviour of the agent,

and thus they require verification. If a desire truly expresses itself,

it is often due to the design concerns through which the agent was

created, be that some particular rule in the system, the design of a

reward function, or a statistical bias in the data it trained on.

Pragmatically, defining a desire requires understanding when it

is fulfilled. For this work, we limit to desires of the form of a perform

goal [58], to execute an action in a state where some qualities hold

(e.g. for a cleaning bot to dock into a charger when the house

is clean and it is near the charging port), as they are the most

useful for our use-case, but it is important to note that other types

(e.g. achievement goals) may be modelled equally.

A desire 𝑑 can be defined as a tuple ⟨𝑆𝑑 , 𝑎𝑑 ⟩: a discrete state

region 𝑆𝑑 = {𝑠 ∈ 𝑆 |𝑠 ⊢ 𝑑} where 𝑠 ⊢ 𝑑 means that the state

satisfies the desire’s condition, and the action 𝑎𝑑 that would be

desirable in such state region. As the explainees themselves provide

this characterisation, they are expected to understand it when it

becomes the finality of explaining behaviour. For the cleaning bot

example, the desire to charge when having low battery could be

modelled with 𝑎𝑑 being docking and 𝑆𝑑 any state with low-battery

and being close to the charging port.

Calculating relevant information over these desires is trivial

under the probabilistic description of a PG.How likely are you to find
yourself in a state where you can fulfil your desire by performing the
action? can be computed as the desire state region probability 𝑃 (𝑠 ∈
𝑆𝑑 ) =

∑
𝑠∈𝑆𝑑 𝑃 (𝑠)). How likely are you to perform your desirable

action when you are in the state region? can also be computed as

𝑃 (𝑎𝑑 |𝑠 ∈ 𝑆𝑑 ) =
∑
𝑠∈𝑆𝑑 𝑃 (𝑎𝑑 |𝑠) ∗ 𝑃 (𝑠)/𝑃 (𝑠 ∈ 𝑆𝑑 ).

However, this view is rather myopic: no information appears

available outside states in an 𝑆𝑑 . Most states in a typical problem

do not manifest the specific conditions for immediately fulfilling

a desire. To solve this, we extend desire information backward

through the state transitions, in what we refer to as intentions.

An agent’s intention to fulfil a desire exists if it can be fulfilled

(given by world dynamics and its understanding), and the agent

commits to doing so [9]. The empirical observations of the agent’s

behaviour capture both requirements: the world model captures
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the possibility of a desire being fulfilled, and the policy captures

the agent’s committing or working to achieve them.

Loosely defined, given a desire ⟨𝑆𝑑 , 𝑎𝑑 ⟩, the agent’s intention of

fulfilling it in a state 𝑠 (𝐼𝑑 (𝑠)) can be measured as the probability

that the agent will attain the desire from 𝑠 . Informally, it is the sum

of probabilities of all possible state-action sequences which end up

bringing about 𝑑 : a sequence ending in [𝑠𝑖 , 𝑎𝑑 ], with 𝑠𝑖 ∈ 𝑆𝑑 .
Let T (𝑠, 𝑑) be the (potentially infinite) set of trajectories (se-

quences of states and actions) originating from 𝑠 and arriving at

any 𝑠′ ∈ 𝑆𝑑 . The intention of the desire in state 𝑠 can be computed

with the PG information as:

𝐼𝑑 (𝑠) =
∑︁

𝑠𝑒𝑞∈T (𝑠,𝑑 )
𝑃 (𝑎𝑑 |𝑙𝑎𝑠𝑡_𝑠𝑡𝑎𝑡𝑒 (𝑠𝑒𝑞))𝑃 (𝑠𝑒𝑞)

where 𝑃 (𝑠𝑒𝑞) is the probability of seeing a sequence of states and

actions 𝑠𝑒𝑞 as computed by the PG:

𝑃 (𝑠𝑒𝑞) = Π
|𝑠𝑒𝑞 |
𝑡=1

𝑃 (𝑠𝑡+1 |𝑎𝑡 , 𝑠𝑡 )𝑃 (𝑎𝑡 |𝑠𝑡 )
To succinctly deal with infinitely-looping paths, we compute

intention backwards: starting from 𝑆𝑑 and recursively propagat-

ing intention updates to parent states. A stopping criterion 𝜖 is

introduced to stop the propagation of intentions below a certain

probability. Algorithms 1 and 2 illustrate the process. We note that

desire propagation is stopped from crossing through transitions

that would fulfil them, as not doing so would compute the ‘expected

number of times a desire will be fulfilled’ instead of a probability.

Algorithm 1 Register a Desire into a PG and propagate intentions

Require: 𝑑 = ⟨𝑆𝑑 , 𝑎𝑑 ⟩, 𝑃𝐺
for 𝑠 ∈ 𝑃𝐺 do

𝐼𝑑 (𝑠) ← 0

end for
for 𝑠 ∈ 𝑆𝑑 do

𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 ← 𝑃 (𝑎𝑑 |𝑠)
Propagate_intention(𝑠, 𝑑, 𝑃𝐺, 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡)

end for

Algorithm 2 Propagate intentions to node 𝑠 .

procedure Propagate_intention(𝑠, 𝑑, 𝑃𝐺, 𝑖𝑛𝑐)
𝐼𝑑 (𝑠) ← 𝐼𝑑 (𝑠) + 𝑖𝑛𝑐
for 𝑝 ∈ {𝑝 ∈ 𝑃𝐺 |𝑃 (𝑆 ′ = 𝑠 |𝑆 = 𝑝) ≠ 0} do ⊲ All parents of s

if 𝑝 ∉ 𝑆𝑑 then ⊲ P cannot fulfil the desire

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑏𝑙𝑒_𝑖𝑛𝑐 ← 𝑃 (𝑆 ′ = 𝑠 |𝑆 = 𝑝) ∗ 𝑖𝑛𝑐
else ⊲ P could fulfill the desire by doing 𝑎𝑑 , ignore 𝑎𝑑

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑏𝑙𝑒_𝑖𝑛𝑐 ← 𝑃 (𝑆 ′ = 𝑠, 𝐴 ≠ 𝑎𝑑 |𝑆 = 𝑝) ∗ 𝑖𝑛𝑐
end if
if 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑏𝑙𝑒_𝑖𝑛𝑐 ≥ 𝜖 then ⊲ Stop criterion

Propagate_intention(𝑝,𝑑, 𝑃𝐺, 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑏𝑙𝑒_𝑖𝑛𝑐)
end if

end for
end procedure

𝐼𝑑 (𝑠) is a useful tool for answering complex queries:What do you
intend to do in state 𝑠?, can be replied with all desires with an 𝐼𝑑 (𝑠)
over a certain threshold; How come you believe you can do 𝑑 , which
can be replied with empirical evidence of how one can bring about

𝑑 , using descendants 𝐼𝑑 (𝑠′) to prospect the graph;Why did you take
action 𝑎 at state 𝑠?, can be replied to in terms of desires as: I have
the desire 𝑑 , which I can bring about from state 𝑠 , and by performing
action 𝑎 either I am closer to achieving it, or there is a chance I will
increase my odds of doing so. The algorithms for replying to these

queries can be found in § 3.1.2.

The intention value is easily interpretable, as it is the proba-

bility that some desire will be brought about by the agent from a

state. However, the lower the intention, the more uncertain its ful-

filment, and the continuous property of intentions makes it so that

a user may convince themselves of wrong information by vastly

overestimating a probability. For this, we propose to restrict inten-

tion attribution to intentions above a parameter: the commitment
threshold 0 < 𝐶 ≤ 1. This parameter specifies the scepticism of an

explainee: at which minimum probability the explainee is willing

to believe the agent will try to fulfil a desire. For safety and relia-

bility purposes, any 𝐼𝑑 (𝑠) < 𝐶 is to be disregarded and not used to

produce explanations, whereas, for any state 𝑠 such that 𝐼𝑑 (𝑠) ≥ 𝐶 ,

the agent can be said to have (at least some) intention to fulfil 𝑑 .

We refer to the set of states with a desire 𝑑 attributed as 𝑆 (𝐼𝑑 ).
This commitment threshold is a parameter directly related to the

reliability-interpretability trade-off. With low 𝐶 , more intention

is attributed and thus more explanations can be provided (and

thus behaviour is apparently more interpretable) at the cost of

attributing courses of action that are improbable (thus providing

unreliable explanations). With high 𝐶 , the likelihood of intentions

being fulfilled increases as does reliability of explanations including

them, at the cost of leaving more behaviour unexplained. Both of

these quantities can be measured given a commitment threshold.

Formally, we call 𝑃 (𝑠 ∈ 𝑆 (𝐼𝑑 )) the attributed intention prob-
ability, i.e. the probability that, at any point of observation, the

agent is attributed the intention: 𝑃 (𝑠 ∈ 𝑆 (𝐼𝑑 )) =
∑
𝑠∈𝑆 (𝐼𝑑 ) 𝑃 (𝑠).

This metric estimates interpretability of behaviour: as intention

attribution is more likely, it is easier to answer to why it is acting.

Conversely, we call expected intention to the probability that,

once attributed, an intention will be fulfilled:

E𝑠∈𝑆 (𝐼𝑑 ) (𝐼𝑑 (𝑠)) =
∑︁

𝑠∈𝑆 (𝐼𝑑 )
𝐼𝑑 (𝑠) ∗

𝑃 (𝑠)
𝑃 (𝑠 ∈ 𝑆 (𝐼𝑑 ))

This second metric represents reliability of explanations: the higher

the value, the more likely an attributed intention comes to pass.

Although perfection in both these metrics seem an absolute re-

quirement for explainability, real scenarios leave this option likely

out of reach. On one hand, for a sufficiently low 𝐶 and enough

desires considered, it is likely possible to reach perfect intention
probability (i.e. always being able to attribute why), but at the cost
of being wrong several times. On the other hand, even with a high

𝐶 value and a perfectly rational agent, in stochastic environments

it is possible (even likely) that an agent with an intention fails to

achieve it due to unexpected environment changes. As such, we

believe crucial to not only measure, but also let the trade-off be

explicit and in control of the explainee.

Finally, beside these desires, we introduce the Any desire to

aggregate all. This desire is the aggregate of all other desires, cor-

responding to a fake intention 𝐼𝐴𝑛𝑦 (𝑠) = 𝑚𝑎𝑥𝑑 𝐼𝑑 (𝑠). In turn, the

previous metrics computed for Any desire aggregate the reliability

and interpretability of explanations overall.
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3.1.2 Using Intentions in Explanation Algorithms. Previous work
argues that the form of any explanation must account for its func-

tion as an answer to a why question [53], highlighting the intrinsic

causal nature of explanations. However, the intent behind a ’why’

question can be varied, and humans tend to have greater context to

understand which kind of answer is expected of them. In the folk-

conceptual theory of behaviour explanation, one can categorise

between explanations provided for unintentional and intentional

behaviour [35, 37]. Where most previous work [11, 23, 30] focuses

on answering why queries as a function of beliefs about the cur-

rent state (of which the agent has seemingly no agency over when

the question is asked) and thus are of a more unintentional optic.

Instead, we shift the focus to answering in the form of intentions

and desires for intentional behaviour explanation: asking questions

such as “What for?” as a more specific version of “Why?”.
Intentional behaviour-related questions can be categorised into

three modes [35]: Reasons Explanation (RE), which are by far the

most common, examine the causality of action based on what inten-

tions the agent has and how an action furthers them; Causal History
of Reasons (CHR), which assume that the intent of the action is ap-

parent and rather focus on the reason behind it being desirable; and

Enabling factors (EF ), which justify why an action that is apparently

desirable was successful (generally when its success was perceived

to be improbable or difficult). To cover these types of modes, we

propose some queries, together with a shared vocabulary between

questions and answers that allow to make question chains. The

queries and answers form are the following
1
:

• "What do you intend to do in state 𝑠?": It answers a part

of RE (possible intent of actions performed in a state). The

reply is in terms of desires 𝑑 as well as intention values

(i.e. probabilities 𝐼𝑑 (𝑠)).
• "Why do you do action 𝑎 in state 𝑠?": This responds to the

action-side of a Reasons Explanations, by examining how

𝑎 could increase the odds of a desire 𝑑 being fulfilled by

bringing you to a different state 𝑠′. It could also be stated as a
what for question, but we keep the why form for the purpose

of having different keyword identifiers for the queries.

• "How do you plan to fulfil intention 𝐼𝑑 from 𝑠?": this follow

up question can be viewed as answering EF , by making

PG beliefs explicit over a course of action bringing about a

desire 𝑑 . When chained after the previous question, one can

question why being in a state 𝑠′ increases intention: showing
the possible future paths from 𝑠′ that bring about 𝑑 .

The first question (What) is trivially answered within the frame-

work: given a state 𝑠 , it returns all attributed intentions: {𝐼𝑑 (𝑠) ≥ 𝐶}.
We use the commitment threshold to ensure the reliability of the

answer to this question is within the desired by the explainee, dis-

carding low-valued intentions.

To answer the second question (Why), let us consider: if no
intention exists in 𝑠 , then the action is not intentional –that is,

caused by an intent– from the perspective of the PG and no answer

should be returned. Else, each attributed intent is a candidate, to

be tested independently. If the intent is the cause of an action, this

1
Notice how no question tackles CHR yet as we argue it has less priority in this setup:

reasons about why a desire 𝑑 hypothesised by the explainee ought to make sense to

the explainee; and thus remains future work.

action must result in an increase of intent: this can happen in two

ways. Either the action results in an expected increased intent, or

the action is a gamble that can result in an increased intent. The

former can be expressed as:

E𝑃 (𝑠′ |𝑎,𝑠 ) (𝐼𝑑 (𝑠′)) − 𝐼𝑑 (𝑠) =
∑︁
𝑠′

𝑃 (𝑠′ |𝑎, 𝑠) ∗ 𝐼𝑑 (𝑠′) − 𝐼𝑑 (𝑠)

The latter can be expressed in terms of the probability of an increase

𝑃 (𝐼𝑑 (𝑠′) ≥ 𝐼𝑑 (𝑠) |𝑠, 𝑎) and expected positive increase:

E𝑃 (𝑠′ |𝑎,𝑠,𝐼𝑑 (𝑠′ )≥𝐼𝑑 (𝑠 ) ) 𝐼𝑑 (𝑠
′)

Instead of either aggregation, a histogram of 𝑃 (𝐼𝑑 (𝑠′) − 𝐼𝑑 (𝑠) |𝑠, 𝑎)
could be used for visual analysis. It is worth noting that contrastive

explanations can be built by using two why questions over different

actions, and examining the different replies. With answers possibly

irrational (e.g. in case of RL agents with suboptimal policies or

vestigial exploration behaviour), this opens the possibility of using

explanations to improve or control agent behaviour.
Finally, for the third question (How) which examines by exten-

sionWhy the agent believes a desire can be achieved from state 𝑠 ,

the PG models are used to plot future trajectories in two possible

ways, in Algorithms 3 and 4.

The former is a simpler, optimistic explanation: assuming the

world and agent behave in optimal ways, starting from 𝑠 choose

𝑠′, 𝑎 that maximise 𝐼𝑑 (𝑠′) restricted to 𝑃 (𝑠′, 𝑎 |𝑠) > 0 (i.e. being a

valid successor). Given that 𝐼𝑑 (𝑠) is computed as an expectancy of

successor intentions, 𝐼𝑑 (𝑠′) ≥ 𝐼𝑑 (𝑠) is guaranteed. This process is
iterated until the desire is fulfilled, and a sequence of actions and

states is returned. Given the predicate-like nature of the represen-

tation, the response can be given concisely by returning predicate

changes (as opposed to full state descriptions). However, this al-

gorithm gives a plausible path but does not account for setbacks

or world stochasticity. Algorithm 4 complements the answer by

considering sampling random state successors from 𝑃 (𝑠′, 𝑎 |𝑠) iter-
atively, recording multiple possible sequences. This results in the

possibility of a sequence arriving in a state where the intention

is no longer attributed (i.e. falls below 𝐶). As such, this algorithm

returns both belief-evidence justifying the value of 𝐼𝑑 (𝑠).

Algorithm 3 How do you plan to fulfill 𝑑 from 𝑠?

procedure how(𝑑, 𝑠, 𝑃𝐺)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑠

if 𝑠 ⊢ 𝑑 then ⊲ State can fulfill desire

return 𝑎𝑑 ⊲ return action that fulfills the desire

end if
𝑠′ ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑠′,𝑎∈𝑆𝑢𝑐𝑐 (𝑠 ) 𝐼𝑑 (𝑠′)
return Concat(𝑎, 𝑠′, how(𝑑, 𝑠′, 𝑃𝐺))

end procedure

There is a limitation to these questions: if a certain course of

action was never performed during the PG construction, it is not

possible to reason or perform explanations with these algorithms

without further assumptions. We discuss this further in § 5.

Finally, a last method of XAI is considered based on the needs

for quick explainability. As explainability is useful to predict be-

haviour and coordinate with agents, a real-time visual intention

tracking graph can be plotted using 𝐼𝑑 (𝑠) in real time. Since 𝐼𝑑 can
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Algorithm 4 Stochastic how do you plan to fulfill 𝑑 from 𝑠?

procedure how_stochastic(𝑑, 𝑠,𝐶, 𝑃𝐺)

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑠

if 𝑠 ⊢ 𝑑 then ⊲ State can fulfill desire

return 𝑎𝑑 , 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 ⊲ return action that fulfills the desire

end if
if 𝐼𝑑 (𝑠′) < 𝐶 then ⊲ Intention is no longer attributed

return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒

end if
𝑠′, 𝑎 ∼ 𝑃 (𝑠′, 𝑎 |𝑠)
return cat(𝑎, 𝑠′, how_stochastic(𝑑, 𝑠′,𝐶, 𝑃𝐺))

end procedure

be precomputed, its algorithmic cost is tied to the discretisation

algorithm only. The resulting plots are easily interpretable at a

glance, showing what the current intents of the agent is, allowing

to easily predict future agent behaviour intuitively.

4 EXPERIMENTS
In this section, we present empirical results for the application of the

methodology and metrics to a concrete use case: the Overcooked-AI

environment [5], which allows for different environmental layouts,

with different characteristics and challenges. This is the proposed

experimentation methodology:

(1) In § 4.1 we explain the environment, layouts and agent-

training methods used. For each layout, we train specialised

agents from scratch. Different combinations of agents are

tested. The performance of the agents is computed according

to the environment rewards.

(2) In § 4.2 a discretiser tested in the literature [11, 57] is used

to build the PG from a dataset built through observations of

the trained agents. A set of desires that seem relevant for the

Overcooked-AI scenario is created and 𝐼𝑑 s are computed.

(3) In § 4.3 intention metrics are computed for the policy graphs,

showcasingwhich insights of agent behaviour can be gleaned

from the metrics alone. The reliability-interpretability trade-

off is evaluated through ROC-like curve comparing the two

metrics as 𝐶 is changed.

(4) Finally, in § 4.4 some example outputs of the explainability

algorithms are shown.

All experiments are done on the Overcooked-AI environment.

Training code has been developed using Pantheon-RL [47]. The

library for producing the policy graphs is pgeon [56]
2
, being devel-

oped by the authors and other contributors.

4.1 Environment, Layouts and Agents used
Overcooked is a simple multi-agent environment in which agents

collaborate with the purpose of serving dishes. In the scope of this

paper, this is restricted to a 2-agent environment, in which agents

must cook soup. Agent action-space consists of four directional

displacements ( Up, Down, Left, Right), a non-action ( Stay),
and an action to Interact. Displacement only works in walkable

spaces (salmon-coloured tiles), and only if the tile is unoccupied:

agents cannot occupy the same tile. Interact permits to grab items

2
https://github.com/HPAI-BSC/pgeon

Figure 1: Visualisation of the Simple and Random 0 layouts.

PPO1, PPO2 HAg, HPPO RAg, PPO2

simple 387.9 (25.3) 251.3(31.6) 21.6 (16.7)

random0 395.0 (54.4) 108.0 (46.5) 7.6 (6.0)

Table 1: Reward mean and Std Dev of the agent pairs.

if the agent faces in the direction of an item depot (in our case,

onions or dishes), drop them on an empty counter (non-walkable,

unoccupied brown tile), interact carried items with a pot (with

diverse effects), or deliver a cooked dish in the service tile (non-

walkable grey tile). Figure 1 displays example layouts of tiles, the

ones used for experimentation in this paper.

The game-loop is: agents must interact with onion depots to

grab onions, then interact with pots to put them in. Once three

onions are in a pot, it waits for 20 game ticks. After it ends, the pot

can be interacted with a dish to scoop onion soup. Lastly, onion

soup can be delivered in the service tile, providing score to both

agents irrespective of which one delivered. Although tricks can be

done to smooth the reward function in RL agent training, the only

action that provides score is the last one.

The two layouts used for this paper are commonly used in the

literature. Simple is cramped, and agent collision is common. Ran-

dom 0 is an asymmetric scenario where cooperation is not just

optimal but necessary, as allowances available are different and

agents require passing items over a counter.

The agents examined in this paper aremainly RL ones. Agents are
trained in pairs, with the reward being the environment’s default

without additional intermediary incentives. The training routines

for RLwere not left to converge into an optimal policy, and thus still

exhibit some irrational or erratic behaviour at times. This highlights

in the results that the techniqueworks not only for perfectly optimal

and rational agents. The agent pairs examined are the following:

• Pair A (PPO1 (Blue), PPO2 (Green)): two agents trained from

scratch with Proximal Policy Optimisation (PPO)[50]. These
agents were used to validate PGs in previous work [12].

• Pair B (HPPO (Blue), HAg (Green)): A PPO agent trained to

collaborate with a human-like agent created via imitation

learning on human play-data. The pair was used in previous

work [5, 57]. Note that some behaviours learnt by the PPO
agent (HPPO) are suboptimal given the lack of co-adaption.

• Random baseline (RAg (Blue), PPO2 (Green)): similar to Pair
A but PPO1 is substituted by an agent that samples actions

from a uniform probability distribution (all actions have

probability 20% regardless of the state). This agent pair is

used as a baseline for comparison with the other two pairs.

For each layout, the agents were trained from scratch, so there

are a total of nine different agents, and a total of six arrangements

(with RAg being in both layouts). The performance evaluation can

be seen in Table 1, computed as means and standard deviations of

500 episodes in each layout per agent pair.
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Variable Domain

held O, D, S, ∅

pot_state𝑖∀𝑖 ∈ [𝑛_𝑝𝑜𝑡𝑠 ]
Empty, Cooking

Waiting, Finished
item_pos𝑖∀𝑖 ∈ {O, D, S, Pot, service} ↑, ↓,←,→, I, S

held_partner O, D, S, ∅

partner_zone
N, NE, E, SE,
S, SW, W, NW

Table 2: Variables and domains of the discretiser.

4.2 Discretiser and Desires
For the construction of the PGs, we use a discretiser from litera-

ture [11, 57] summarised in Table 2. It consists on five kinds of pred-

icates: the contents of what the observed agent is carrying (held,
either Onion, Dish, Soup, or nothing), the state of (each of) the pot(s)

(pot_state, Empty: no onions, Cooking: 1-2 onions, Waiting: 3
onions, or Finished: soup), the action that would bring you closest

to each interesting item: onion, dish, pots, soup, or service area

(item_pos), what the partner agent is carrying (held_partner) and
the location of the partner relative to the agent (partner_zone).
The PGs have been generated from observing 1500 episodes, with

up to 400 steps per episode.

With these predicates, we do the exercise as potential explainees

watching agent behaviour and come up with two initial types of

desires: agents putting onions in the pot, and agents delivering

soup at the service area. We remark how the former, while being

conductive to obtaining reward down the line, is not explicitly

rewarded by the training methods used in § 4.1. In addition, in

multiple-pot layouts, there may be differences in how onions are

placed in pots based on howmany there are in it: intuitively, topping

up a pot is better, as cooking time is an overhead which can be

parallelised with filling up a second pot. The discretiser allows us

to distinguish between putting an onion in an Empty or a Cooking
pot, so we register the following desires:

(1) To start cooking: 𝑆𝑠𝑡𝑎𝑟𝑡_𝑐𝑜𝑜𝑘𝑖𝑛𝑔 are states where the agent
holds Onion, and is in interact position with a Empty pot;

𝑎𝑠𝑡𝑎𝑟𝑡_𝑐𝑜𝑜𝑘𝑖𝑛𝑔 is Interact. In case of multiple pots, one in-

stance of each desire is created per pot.

(2) To cook: Same as above, but with a Cooking pot.

(3) To service: 𝑆𝑠𝑒𝑟𝑣𝑖𝑐𝑒 are states where the agent holds soup

and has the service in Interact position; 𝑎𝑠𝑒𝑟𝑣𝑖𝑐𝑒 is Interact.

More desires could have also been hypothesised, such as pick-

ing onions when the pot is not full, or a dish when it is waiting.

There is no drawback to using those, and they could perfectly be

explored too, increasing behaviour interpretability –as more states

are attributed intentions– without affecting reliability.

4.3 Intention Metrics
After registering the desires, we compute the attributed intention
probability and expected intention metrics for each of the lay-

outs and agent pairs. Figure 2 show these metrics for the two agent

pairs (and random) in the same layouts (Simple and Random 0) and

a 𝐶 of 50%. This information can be used to gauge how likely the

method is for providing satisfying explanations to the explainee. To

study the 𝐶-thresholds, we used Figure 3 to visualise the trade-off

between interpretability and reliability for all layouts and agents.

Interact(0.82) Right(0.89) Down(1.0) Interact

held(S)

pot_state

(Pot0;Empty)

item_pos(O;I)

item_pos

(Pot0;←)

item_pos

(Service;↓)
item_pos(S;↓)

item_pos(O;↑)
item_pos

(Service;I)

item_pos(S;→)

pot_state

(Pot0;Cooking)

held(D)

pot_state

(Pot0;Finished)

item_pos(O;→)

item_pos

(Pot0;I)

item_pos

(Service;→)

item_pos(S;→)

item_pos(O;I)

item_pos

(Service;↓)
item_pos(S;↓)
pot_state

(POT0;Empty)

Table 3: Deterministic answer: How will you service from
State 11? for HPPO in Simple. At each stage, it gives an action
and beliefs over state-changes. Green: added predicates; red:
removed predicates. The header row is: Action (𝐼𝑑 (𝑠′)).

In the case of Simple, both agent pairs appear to specialise, each

agent focusing on different desires: Green cooks, Blue serves; prob-

ably due to the difficulties of coordinated cooking in the cramped

space. RAg scores extremely poorly but manages to fulfil some de-

sires very infrequently (likely due to the small state-space). While

for Pair A the agents are completely specialised, never doing the

other task, for Pair B’s HAg policy learnt to serve infrequently and

the two agents do both roles, though it is an unlikely occurrence.

In the case of Random 0, Green agents are unable to fulfil any

desire as they are trapped on the left aisle. The other two useful

agents (PPO1, HPPO) show clear differences in interpretability of

behaviour, and thus apparent rationality. When examining under

the real-time explainability –or a good number of episodes– it

becomes apparent that this is related to HPPO being frequently

blocked by HAg: 80% of the time, HPPO is waiting for onions to

place in the pot, and no intentional behaviour can exist without

affordances making desires viable.

4.4 Example XAI Outputs
Finally, example explanations are produced via the algorithms in

§ 3.1.2. Let us select randomly a relatively common state (with

attributed intentions) from the HPPO-Simple PG: State 11. Its pred-
icates describe that it holds a dish, it is in front of the pot –which

is done cooking– with the rest of predicates describing relative

positions of the depots and other agent being southwest.

With a 𝐶 of 50%, the answer to what it intends to do in 𝑆 = 11

is service (𝐼𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 0.505). From this action, only Interact, Down
and Up actions have been observed. The answer Why do Interact
in 𝑆 = 11 is that it furthers service as it increases 𝐼𝑠𝑒𝑟𝑣𝑖𝑐𝑒
by 0.08. For How to achieve service from 𝑆 = 11, Table 3 shows

the reply, showing the sequence of actions and believed transitions.

In this case, further analysis of the PG unveils the reason for low

(50.5%) intention: as the position of the other agent close to the

plates means it could be grabbing one, and HAg often does this.

Unable to pick soup and stuck with a dish, HAg stops cooking soup,

resulting in suboptimal behaviour, and thus HPPO often (49.5% of

the time) aborts serving in favour of letting the other agent do so.

Finally, a trajectory is studied in Figure 4. In this graph, the

intentions of the agent through time (𝐼𝑑 (𝑠𝑡 )) predicts behaviour at
a distance. Periods of no-intention are followed by abrupt increases,

coinciding with HAg passing items over the counter.
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(a) Intention metrics for the Simple Layout

(b) Intention metrics for the Random 0 Layout; PPO2 and HAg agents were intentionless and thus removed

Figure 2: Intention metrics for the 5 agents (in order, PPO1, PPO2, HPPO, HAg, and RAg) and 𝐶 = 0.5.

Figure 3: Attributed intention probability and expected in-
tention probability over commitment thresholds in layouts
Simple and Random 0. AUC represents explainability.

5 DISCUSSION AND FUTUREWORK
Introducing intentions into XAI offers new vocabulary to do queries

to an opaque model. We introduce metrics for hypothesising and

testing behavioural hypotheses in the form of desires, offering

insights into behaviour. The causal nature of intentions –and the

state-changes they produce– allow to chain questions with concise

answers, allowing for succinct explainability. In this paper, we

focus on the formal part and intuitive usage of intentions, but

also offer three possible XAI queries and algorithms for doing

explainability from a telic, intention-based perspective, plus a real-

time visualisation for observing intention progression through time.

We remark that the objective of this paper is to give tools to

characterise the agent, opening mechanisms to identify rational

versus irrational or random behaviour from the perspective of an

explainee. Notably, the explainee need not be a human, not doesXAI
need to be about justifying behaviour, and the current limitations

of the method can be exploited to feed new algorithms.

For example, as unseen transitions, or state regions with low

number of observations decrease the PG interpretability –cannot

reason about unseen transitions–, with access to the environment

one can create a self-correcting policy that creates goals to explore

unobserved parts of the state-action-space, creating an interven-
tional world model 𝑃 (𝑠′ |𝑑𝑜 (𝑎), 𝑠) [41] which qualitatively improves

Figure 4: Intentions ofHPPO inRandom0 example. Intention
progression is marked with dotted lines, and desire comple-
tion with vertical solid lines. Each colour represents a desire.

information over observation alone and would allow more coun-

terfactual explanations. Similarly, an opposite direction can be ex-

plored by removing or discouraging actions that are not explainable

from the intention perspective, pruning the policy and potentially

increasing agent rationality.

Finally, there are two main limitations which this work does not

address. Firstly, to fine-tune explainability for human-desirability,

human studies may be needed; which have remained outside the

scope of this work as we focused on other facets of intention use-

fulness. Secondly, currently we only examine desires of the perform
or achievement type, though we remain optimistic about extending

these to maintenance [58].
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