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ABSTRACT
We study the existence of almost fair and near-optimal solutions

to a routing problem as defined in the seminal work of Rosenthal

[41]. We focus on the setting where multiple alternative routes

are available for each potential request (which corresponds to a

potential user of the network). This model captures a collection

of diverse applications such as packet routing in communication

networks, routing in road networks with multiple alternative routes,

and the economics of transportation of goods.

Our proposed centralized routes have provable guarantees in

terms of both the total cost and fairness concepts such as approxi-

mate envy-freeness. We employ and appropriately combine tools

from algorithmic game theory and fair division. Our results apply

on two distinct models: the splittable case where the request is

split among the selected paths (e.g., routing a fleet of trucks) and

the unsplittable case where the request is assigned to one of its

designated paths (e.g., a single user request). Finally, we conduct an

empirical analysis to test the performance of our approach against

simpler baselines using the real world road network of New York

City.
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1 INTRODUCTION
Online route recommendation platforms are widely popular sys-

tems that help users navigate road networks by serving billions

of a requests on a daily basis. In addition to providing navigation

directions, these systems have the capacity to provide important

dynamic information to the user, such as road segment delays, clo-

sures, etc., which in turn are used to provide high quality route
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recommendations. The approach that is followed by the vast major-

ity (if not all) such systems is natural: receive a navigation request

and route it optimizing for the experience of the user who sent it.

However, as these systems become more and more widespread, it

becomes an interesting question of how one should route requests

with more general objectives in mind. One natural objective is of

course to minimize the social cost, i.e., the aggregate travel time of

all the drivers in the road network. In his seminal work, Rosenthal

defined the network congestion game model for routing [41] which

can be used for such optimization tasks. In this model each agent

wishes to route a unit of (unsplittable) flow between her two end-

points and the cost of each edge 𝑒 scales with the number of agents

ℓ𝑒 that use it, as given by a congestion function 𝑐𝑒 (ℓ𝑒 ). Rosenthal
also considered a weighted or splittable model where the demand of

an agent is an integer𝑤 > 1 that can be split on𝑤 different paths.

Another natural objective is to guarantee fairness among the

agents, for instance, it should be the case that two routing requests

with the same origin and destination will not suffer a very different

cost. However, one can show that this is precisely what happens

in solutions that minimize the aggregate cost under various mod-

els (e.g., in the well known Pigou’s example [39]). The work of

Chakrabarty et al. [13] bounds this “unfairness" when the latencies

(congestion functions) are linear. The problem of finding “fair" or

approximately “fair" outcomes is explored in various contexts in the

literature, such as nonatomic settings [18, 27, 28, 42], bandwidth

allocation [29], and scheduling problems [33].

However, the interplay between cost and fairness creates a trade-

off that one needs to balance, instead of focusing on one of the two

objectives. Our work explicitly explores this trade-off by suggesting

meaningful routing solutions with guarantees on both objectives.

We further complement our results by providing a range of lower

bounds on approximations of both objectives. To the best of our

knowledge our work is the first to explore this trade-off in Rosen-

thal’s atomic routing model. The only closely related work in this

direction is the very recent work of Jalota et al. [28] that considers

the minimization of the social cost under the constraint that the

unfairness between agents that share the same origin and destina-

tion is bounded by some parameter in a nonatomic routing setting,
in which agents are modeled as flow particles and so a convex

program can be used for optimization. The model that we study is

a discrete setting where each agent controls one unit of flow (or

multiple units in the weighted case) which results in a computa-

tionally intractable problem. To address this we need to come up
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with other ways to suggest (approximate) routing solutions, such

as using tools provided by algorithmic game theory.

In Rosenthal’s model [41], the travel time on each edge depends

on the congestion on it and it is denoted by a latency/cost function.

A characteristic in these settings is that often latency functions are

not precisely known up front. Consider for instance the case of road

networks, for which the traffic-induced delays on road segments are

predicted with a margin of error. This inaccuracy can be attributed

to various sources, such as a limited understanding of how much

traffic will actually appear in the network or insufficient learning of

delay functions from past data. However, with the widespread use of

ML techniques and the availability of historical data, it is reasonable

to assume access to an ML predictor that achieves a bounded error.

We consider edge latency functions that are polynomial functions,
an expressive delay function model which includes the functional

form of Bureau of Public Roads [10] and has been used in various

studies such as [16, 32].

In this context, we focus on Rosenthal’s network routing models

(unweighted and weighted) and provide theoretical and experimen-

tal insights. We first suggest routes with provable guarantees both

in terms of the social cost and fairness and show how their per-

formance degrades with errors in the edge cost predictions. Since

those theoretical results are derived from a worst-case analysis, we

put our approach to the test in a real road network and show that

in this realistic scenario the performance of our routing solution is

dramatically improved.

1.1 Our contributions
We study Rosenthal’s network routing models, considering both

settings: in the first one each agent has unit demand and is assigned

a single path, whereas in the second one each agent 𝑖 has a demand

𝑤𝑖 and is, hence, assigned𝑤𝑖 (not necessarily different) paths. We

focus on the case of edge latency functions that are polynomials of

maximum degree 𝑑 . The metrics we seek to optimize are the social
cost, i.e., the aggregate cost of all agents in the network, and the

envy-ratio, i.e., themaximum ratio between (average) costs of agents

with the same endpoints (see Section 2 for a complete definition).

To the best of our knowledge, we are the first to investigate the

trade-off between those two metrics.

We first consider the unit demand/unweighted case. Our first

result shows that the envy-ratio of an optimal path assignment is

at most 2
𝑑+1 − 1 and this is tight (Theorem 3.1); only the upper

bound of 3 for linear edge congestion functions was known from

prior work [13]. We then show that in order to achieve an envy-

ratio better than 2
𝑑
, we need to incur a high social cost and violate

other desirable properties (Theorems 3.2 and 3.3). For envy-ratio
at least 2

𝑑
we first provide lower bounds on the approximation

of the minimum social cost (Theorem 3.4). We then show that

the best Nash equilibrium of the routing game guarantees an envy

ratio of 2
𝑑
and a 𝑑 + 1 approximation to the minimum social cost

(Theorem 3.5); the approximation to the minimum social cost is

due to [14]. Note that the Nash equilibrium in the nonatomic setting

is a flow with envy-ratio equal to 1.

Then, we turn our attention to the more general weighted model

with (integer) splittable flows. We design an algorithm that applies

any positive result that we obtain in the unweighted model (e.g. in

Theorems 3.1 and 3.5) to the weighted model. Specifically, given a

weighted setting, the algorithm computes a desirable outcome for

the unweighted model where each agent 𝑖 is replaced by𝑤𝑖 agents

and then assigns paths to the agents in a round-robin fashion from

best to worst. By considering the same weight/demand 𝑤 for all

agents, Theorem 4.1 shows that the worst-case approximation in

terms of the social cost is preserved and the worst-case envy-ratio

is improved by (approximately) a factor𝑤 , which we show that is

tight for the optimal assignment (Theorem 4.2). Those results are
then extended in the case of different weights (Theorem 4.3).

Finally, we conduct an experimental study to show the efficacy

of our proposed solutions in a real world setting. We use higher

order polynomial delay functions (as in [10, 16, 32]) and generate

predictions on the travel times with a bounded error. We generate

synthetic demands and calibrate them to the point where the ob-

served route costs of selected demands match the ones observed in

online routing platforms. We show that our algorithm outperforms

natural baselines in terms of fairness while matching them in terms

of the total cost. Then, we examine the case that the edge conges-

tion functions are not accurate, but are rather provided by an ML

predictor. In Theorem 5.1 we bound the distortion that is caused

by the prediction error to any solution with a given envy-ratio and

social cost (with respect to the predicted functions).

We summarize the novelty of our work as follows:

(1) We extend the upper bound of [13] to polynomial costs and

provide a tight lower bound.

(2) To the best of our knowledge, we are the first to provide

theoretical upper and lower bounds with respect to the

optimality-fairness tradeoff in the Rosenthal’s model.

(3) We observe undesirable and unnatural outcomes are in-

evitable when seeking low envy-ratio.

(4) We extent our findings to the weighted case where each

agent controls a fleet of vehicles.

1.2 Related Work
Our work is related to the literature on fairness in congestion games,

unsplittable and splittable congestion games, and algorithms with

ML predictions.

Congestion Games. The problem we consider was first intro-

duced as a congestion game by Rosenthal [41], who studied a case

with a restricted number of paths and integer flows. He showed that

a pure Nash equilibrium always exists in those games by providing

a potential function. Regarding the unweighted case, Meyers and

Schulz [36] studied the computation of the social cost minimiz-

ing outcome. There is a line of works studying the computation

[1, 5, 20] and the efficiency [2, 4, 11, 14, 15] of equilibria in those

games. The nonatomic model, where each agent controls an infini-

tesimal amount of traffic, has also been studied [44, 45].

Haurie and Marcotte [25] initiated the study of a more general

model with arbitrary (splittable) flows. Computation and existence

of equilibria in those games were studied in [3, 8, 9, 23, 24, 34, 38].

The inefficiency of equilibria in this model has been also studied

[17, 22, 43]. Baier et al. [7] proposed the𝑘−splittable variationwhere
each agent is allowed to use a limited number of paths to route their

traffic. There is a long line of works considering the complexity

and approximability of this problem (e.g. [12, 21, 31, 35, 46]).
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Fairness in Congestion Games. Jalota et al. [28] studied the

minimization of social cost in nonatomic setting under the con-

straint of bounded unfairness between agents with the same origin

and destination. In the same setting, Jahn et al. [27] considered

the unfairness of the paths’ “normal” length (they consider path

lengths that do not depend on the congestion). Chakrabarty et al.

[13] studied fair allocations on the basis of minmax fairness
1
in

symmetric unweighted network congestion games (among other

settings). They proved that finding the minmax cost and therefore

the fair allocation, when the edge latencies are linear, is NP-hard; in

this case they showed that the optimal cost is a constant approxima-

tion to the fair allocation. Correa et al. [18] studied similar notions

of fairness and showed similar hardness results for the nonatomic

setting. Kleinberg et al. [29] considered the bandwidth allocation

of unsplittable flow in single source directed graphs and gave algo-

rithms that approximate the maxmin fair allocation. Roughgarden

[42] quantified the unfairness in the symmetric network nonatomic

setting, where the unfairness is defined as the maximum ratio be-

tween the latency of a path in an optimum outcome and the latency

of a path in a Nash equilibrium. Lipton et al. [33] defined the notion

of envy-ratio in scheduling problems with identical processors, as

the ratio between the maximum and the minimum completion time.

It is worth mentioning that fairness among agents has also been

studied in other, not that related but very popular contexts, such

as fair-division of goods, e.g., the famous cake-cutting problem

(see [40]) and algorithmic fairness that targets on socially unbiased

outcomes [19, 26].

2 PRELIMINARIES
Network congestion setting. A network congestion problem is

described by the following tuple

(𝑁, (𝑤𝑖 )𝑖∈𝑁 ,𝐺, (𝑐𝑒 )𝑒∈𝐸 (𝐺) , (𝑆𝑖 )𝑖∈𝑁 ) ,
where 𝑁 = {1, . . . , 𝑛} is a set of agents, 𝑤𝑖 is a positive integer

representing the weight of agent 𝑖 ∈ 𝑁 , 𝐺 is an undirected graph

with 𝐸 (𝐺) being the set of its edges, 𝑐𝑒 is a latency/cost function

of the congestion on edge 𝑒 ∈ 𝐸 (𝐺) and 𝑆𝑖 is the set of all possible
choices/strategies for agent 𝑖 ∈ 𝑁 . We consider two models, the

unweighted (unsplittable flow), where𝑤𝑖 = 1 for all 𝑖 ∈ 𝑁 , and the

more general weighted (splittable flow) model. In both models, each

agent 𝑖 wants to route her traffic from a root 𝑟𝑖 to a destination 𝑡𝑖 in

𝐺 . In the former model, each agent has a unit of traffic that needs

to be routed via a single path. In the latter model, each agent 𝑖 has

𝑤𝑖 units of traffic that are routed via𝑤𝑖 , not necessarily different or

disjoint, paths (still each unit of traffic is routed via a single path).

Strategy profile. Each agent 𝑖 has a set of basic strategies which

contains all the alternative paths that connect 𝑟𝑖 with 𝑡𝑖 and we

denote them by P𝑖 . In the unweighted setting, each agent 𝑖 selects a

single path to route their unit of traffic and, therefore, 𝑆𝑖 is justP𝑖 . In
theweighted setting, each agent 𝑖 may split her traffic and route it via

many paths and therefore, 𝑆𝑖 = P𝑤𝑖

𝑖
; in other words, agent 𝑖 chooses

𝑤𝑖 not necessarily different paths, i.e., 𝑠𝑖 = {𝑝𝑖1, . . . , 𝑝𝑖𝑤𝑖
} ∈ 𝑆𝑖 . A

strategy profile s = (𝑠1, . . . , 𝑠𝑛) is a vector of strategies where 𝑠𝑖 ∈ 𝑆𝑖
is a strategy for agent 𝑖 .

1
A strategy profile is minmax fair if there is no way to decrease the cost of any agent 𝑖

without increasing the cost of another agent 𝑗 who was already experiencing a higher

cost than 𝑖 .

Symmetric congestion network. A congestion network is

symmetric if all agents have the same basic strategies, i.e., for every

two agents 𝑖 and 𝑗 , P𝑖 = P𝑗 . In the unweighted setting, or in the

weighted setting where all agents have the same weight, all agents

have the same strategy space, i.e., 𝑆𝑖 = 𝑆 𝑗 , for any 𝑖, 𝑗 .

Agents’ latency/cost. Given a strategy profile s, let ℓ𝑒 (s) be the
load on edge 𝑒 due to the congestion caused by s; in the unweighted

setting, ℓ𝑒 (s) = |{𝑠𝑖 | 𝑒 ∈ 𝑠𝑖 , 𝑖 ∈ 𝑁 }| and in the weighted setting,

ℓ𝑒 (s) = |{𝑝𝑖 𝑗 | 𝑒 ∈ 𝑝𝑖 𝑗 , 𝑖 ∈ 𝑁, 1 ≤ 𝑗 ≤ 𝑤𝑖 }|. Then, the latency on 𝑒

is given by 𝑐𝑒 (ℓ𝑒 (s)) or simply 𝑐𝑒 (s) and the latency of any path 𝑝

is given by 𝑐𝑝 (s) =
∑
𝑒∈𝑝 𝑐𝑒 (s). In the unweighted case, 𝑠𝑖 is just a

path and so, each agent 𝑖 experiences a latency of𝐶𝑖 (s) = 𝑐𝑠𝑖 (s). In
theweighted case, 𝑠𝑖 is a set of paths and so, each agent 𝑖 experiences

a latency of 𝐶𝑖 (s) =
∑
𝑝∈𝑠𝑖 𝑐𝑝 (s).

Polynomial cost functions.We consider polynomial latency
functions that are very expressive and can capture many different

scenarios regarding the dependency of the latency on the conges-

tion. A latency function 𝑐𝑒 (ℓ) is polynomial if it is of the form

𝑐𝑒 (ℓ) =
∑𝑑
𝑟=0 𝑎𝑒,𝑟 ℓ

𝑟
, for some constants 𝑎𝑒,𝑟 ≥ 0. A special polyno-

mial cost functions are the affine cost functions where 𝑑 = 1.

We next discuss our two objectives in the network congestion

problem, which are to minimize the social cost and to minimize the

envy-ratio, and one constraint, which is local Pareto-efficiency.
Social cost. The social cost of a strategy profile s is given by

𝑆𝐶 (s) = ∑
𝑖∈𝑁 𝐶𝑖 (s). The optimum, i.e., the social cost minimizing

solution, is defined as mins 𝑆𝐶 (s) over all strategy profiles s.
Envy-ratio. Inspired by fair division of a resource or indivisible

goods we adapt fairness notions in network congestion settings

and more specifically, we propose the use of the envy-ratio that

have been considered in scheduling problems [33]. We remark that

this is the same notion with the minimax fairness studied in [13].

In any network congestion instance let 𝐴 be an outcome and𝐶𝑖 (𝐴)
be the latency/cost for agent 𝑖 under 𝐴. The envy-ratio of 𝐴 is the

minimum 𝛼 ≥ 1 such that for any two agents 𝑖 and 𝑗 with 𝑆𝑖 = 𝑆 𝑗 ,

𝐶𝑖 (𝐴) ≤ 𝛼𝐶 𝑗 (𝐴) (in the case of agents with different weights, the

cost 𝐶𝑖 (𝐴), is replaced with the cost per unit weight 𝐶𝑖 (𝐴)/𝑤𝑖 ).
2

We remark that the envy-ratio is equivalent to approximate envy-

freeness, where 𝐴 is 𝛼 envy-free (𝛼−EF) if any agent envies any

other agent by at most 𝛼 , i.e. for any agents 𝑖 and 𝑗 ,𝐶𝑖 (𝐴) ≤ 𝛼𝐶 𝑗 (𝐴).
Local Pareto-efficiency. An outcome is Pareto-efficient if there

is no other solution where no agent is worse off (experiences more

latency) and at least one agent is better off (experiences strictly

less latency). Requiring a Pareto-efficient outcome is desirable but

very restricted and usually difficult to find. We relax this concept

and define the local Pareto-efficiency. An outcome is locally Pareto-
efficient if there is no other solution derived by a unilateral deviation,
i.e., by a single agent changing their strategy, where no agent is

worse off and at least one agent is better off. We require that our

outcome satisfies local Pareto-efficiency. To justify this restriction,

note that an outcome doesn’t satisfy local Pareto-efficiency when

there are resources/edges that are not used, and by using them

some agents’ latency improves. Obviously, this is not a desirable

2
Note that we only compare the latencies of agents with the same set of alternative

paths (agents with the same root and destination). The reason is that otherwise the

latencies may differ due to different distances and not due to unfairness. When it

comes to the general case it is not clear what is the right way to define the envy-ratio

and one may need to normalize according to some ground latency.
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outcome and it is only natural to use any unused resource in order

to improve some agents’ latency without harming anybody else.

Finally, a useful concept for our results is Nash equilibrium.

Nash equilibrium. A (pure) Nash equilibrium is a strategy pro-

file s such that for any agent 𝑖 and any alternative strategy 𝑠 ′
𝑖
∈ 𝑆𝑖

for agent 𝑖 , 𝐶𝑖 (s) ≤ 𝐶𝑖 (𝑠 ′𝑖 , s−𝑖 ).

3 RECOMMENDED ROUTING AND ANALYSIS -
UNWEIGHTED MODEL

In this section we investigate the trade-off between minimizing

the social cost and minimizing the envy in the case where every

agent has a unit weight (unweighted model). We provide the exact

envy-ratio for the minimum social cost outcome, and inapprox-

imability bounds as we move away from the minimum social cost.

We complement our results by showing the existence of a locally

Pareto-efficient outcome with the minimum envy-ratio possible;

this outcome is any pure Nash equilibrium. The price of stability

bound known in the literature [14] provides the best approxima-

tion of such an outcome to the minimum social cost. Finally, we

consider the case where the cost functions may be inaccurate and

their coefficients are given by an ML prediction.

3.1 Envy-Ratio in the Minimum Social Cost
Outcome

We begin our analysis by understanding what is the worst-case

envy-ratio in an optimal solution in terms of the social cost. We

note that a solution minimizing the social cost by definition satisfies

local Pareto-efficiency. Chakrabarty et al. [13] showed that the envy-

ratio of the optimal allocation is at most 3 for linear cost functions,

i.e. 𝑐𝑒 (𝑥) = 𝑎𝑒𝑥 . Our result is a generalization to polynomial cost

functions and we additionally provide a tight lower bound.

Theorem 3.1. The envy-ratio in the optimal allocation is at most
2
𝑑+1 − 1 (𝑑 ≥ 1) and this is asymptotically tight.

Proof. Suppose on the contrary that in the optimum s there
are two agents 𝑖, 𝑗 , with the same root and destination, such that

𝐶𝑖 (s) > (2𝑑+1 − 1)𝐶 𝑗 (s). We show next that if agent 𝑖 deviates to 𝑠 𝑗
results in a smaller social cost, contradicting s being the optimum.

Let s′ = (𝑠 𝑗 , s−𝑖 ) be the outcome derived by s after agent 𝑖

deviates to 𝑠 𝑗 . Note that the latency doesn’t change on the edges

that belong either to both 𝑠𝑖 and 𝑠 𝑗 or to neither of them. Therefore,

𝑆𝐶 (s′) −𝑆𝐶 (s) =
∑︁

𝑒∈(𝑠 𝑗∖𝑠𝑖 )∪(𝑠𝑖∖𝑠 𝑗 )
(ℓ𝑒 (s′)𝑐𝑒 (s′) −ℓ𝑒 (s)𝑐𝑒 (s)) . (1)

Consider any edge 𝑒 ∈ 𝑠 𝑗∖𝑠𝑖 and let ℓ = ℓ𝑒 (s); then ℓ𝑒 (s′) = ℓ+1.
Next, for simplicity we drop the index 𝑒 from the coefficients. The

difference of the right-hand side of (1) for 𝑒 becomes,

ℓ𝑒 (s′)𝑐𝑒 (s′) − ℓ𝑒 (s)𝑐𝑒 (s)

= (ℓ + 1)
𝑑∑︁
𝑟=0

𝑎𝑟 (ℓ + 1)𝑟 − ℓ
𝑑∑︁
𝑟=0

𝑎𝑟 ℓ
𝑟

= ℓ

𝑑∑︁
𝑟=0

𝑎𝑟

𝑟∑︁
𝑘=0

(
𝑟

𝑘

)
ℓ𝑘 − ℓ

𝑑∑︁
𝑟=0

𝑎𝑟 ℓ
𝑟 +

𝑑∑︁
𝑟=0

𝑎𝑟 (ℓ + 1)𝑟

=

𝑑∑︁
𝑟=1

𝑎𝑟

𝑟−1∑︁
𝑘=0

(
𝑟

𝑘

)
ℓ𝑘+1 +

𝑑∑︁
𝑟=0

𝑎𝑟 (ℓ + 1)𝑟

≤
𝑑∑︁
𝑟=1

𝑎𝑟

(
ℓ𝑟

𝑟−1∑︁
𝑘=0

(
𝑟

𝑘

)
+ (2ℓ)𝑟

)
=

𝑑∑︁
𝑟=1

𝑎𝑟 ℓ
𝑟 (

2
𝑟 − 1 + 2𝑟

)
≤ (2𝑑+1 − 1)𝑐𝑒 (s) ,

where the first inequality comes from the fact that ℓ ≥ 1, because

agent 𝑗 is using 𝑒 . Consider now any edge 𝑒 ∈ 𝑠𝑖 ∖ 𝑠 𝑗 and again let

ℓ = ℓ𝑒 (s); then ℓ𝑒 (s′) = ℓ − 1. We again drop the index 𝑒 from the

coefficients of the polynomial cost function. The difference of the

right-hand side of (1) for 𝑒 becomes,

ℓ𝑒 (s′)𝑐𝑒 (s′) − ℓ𝑒 (s)𝑐𝑒 (s)

= (ℓ − 1)
𝑑∑︁
𝑟=0

𝑎𝑟 (ℓ − 1)𝑟 − ℓ
𝑑∑︁
𝑟=0

𝑎𝑟 ℓ
𝑟

= ℓ

𝑑∑︁
𝑟=0

𝑎𝑟

𝑟∑︁
𝑘=0

(
𝑟

𝑘

)
ℓ𝑘 (−1)𝑟−𝑘 − ℓ

𝑑∑︁
𝑟=0

𝑎𝑟 ℓ
𝑟 −

𝑑∑︁
𝑟=0

𝑎𝑟 (ℓ − 1)𝑟

=

𝑑∑︁
𝑟=1

𝑎𝑟

𝑟−1∑︁
𝑘=0

(
𝑟

𝑘

)
ℓ𝑘+1 (−1)𝑟−𝑘 −

𝑑∑︁
𝑟=0

𝑎𝑟 (ℓ − 1)𝑟

≤
𝑑∑︁
𝑟=1

𝑎𝑟 ℓ
𝑟

(
𝑟∑︁

𝑘=0

(
𝑟

𝑟 − 𝑘

)
(−1)𝑟−𝑘 − 1

)
− 𝑎0

= −
𝑑∑︁
𝑟=1

𝑎𝑟 ℓ
𝑟 − 𝑎0 = −𝑐𝑒 (s) ,

where for the second to last equality we used the fact that for

𝑟 > 0,

∑𝑟
𝑘=0

( 𝑟
𝑟−𝑘

)
(−1)𝑟−𝑘 =

∑𝑟
𝑘′=0

( 𝑟
𝑘′
)
(−1)𝑘′ = 0. Using the above

inequalities in (1), we get

𝑆𝐶 (s′) − 𝑆𝐶 (s) ≤ (2𝑑+1 − 1)
∑︁

𝑒∈𝑠 𝑗∖𝑠𝑖

𝑐𝑒 (s) −
∑︁

𝑒∈𝑠𝑖∖𝑠 𝑗

𝑐𝑒 (s)

≤ (2𝑑+1 − 1)
∑︁
𝑒∈𝑠 𝑗

𝑐𝑒 (s) −
∑︁
𝑒∈𝑠𝑖

𝑐𝑒 (s)

= (2𝑑+1 − 1)𝐶 𝑗 (s) −𝐶𝑖 (s) < 0 ,

where the second inequality comes after adding the non-negative

term (2𝑑+1 − 1)∑𝑒∈𝑠 𝑗∩𝑠𝑖 𝑐𝑒 (s) −
∑
𝑒∈𝑠 𝑗∩𝑠𝑖 𝑐𝑒 (s) for 𝑑 ≥ 0. The last

inequality comes from our assumption that the envy-ratio is more

than 2
𝑑+1 − 1. 𝑆𝐶 (s′) < 𝑆𝐶 (s) means that s is not optimal which is

a contradiction. Therefore, the envy-ratio is at most 2
𝑑+1 − 1.

This upper bound is asymptotically tight as we show next. Con-

sider the network in Figure 1 with two agents where both have root

𝑟 and destination 𝑡 . There are only two edges connecting 𝑟 to 𝑡 with

costs functions 𝑥𝑑 + 2𝑑+1 − 2 − 𝜀, for 𝜀 > 0, and 𝑥𝑑 , respectively. It

is easy to verify that the optimum solution is to route the agents

via different paths. This results in envy-ratio of 2
𝑑+1 − 1 − 𝜀 that

converges to the upper bound as 𝜀 goes to zero. □
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r2 agents→ t

𝑥𝑑 + 2𝑑+1 − 2 − 𝜀

𝑥𝑑

Figure 1: Lower bound on the envy-ratio of the optimum
solution in the unweighted model.

3.2 Envy-Ratio and Social Cost Trade-off
In this subsection we investigate the trade-off between the envy-

ratio and social cost objectives. We first present a sequence of

impossibility results, which indicate that for a small envy-ratio we

must have a high social cost and also violate local Pareto-efficiency.

Theorem 3.2. For any 1 < 𝛽 ≤ 2
𝑑 , we cannot guarantee both

envy-ratio less than 𝛽 and approximation ratio to the optimum social
cost less than (𝑞 + 1)𝑑 − 𝜀, where 𝑞 = ⌊ 1

𝛽1/𝑑−1 ⌋ and 𝜀 > 0 is an
arbitrarily small positive value.

Proof. Consider the network of Figure 2, where 𝑛 = 𝑘 · 𝑞! + 1,
for some positive integer 𝑘 , agents have root 𝑟 and destination 𝑡

and there are 𝑛 − 1 edges of the same cost function 𝑥𝑑 .

First notice that in any outcome where there exists an edge with

ℓ ≤ 𝑞 agents, it cannot be that all used edges have ℓ agents and

therefore the envy-ratio would be at least
(𝑞+1)𝑑
𝑞𝑑

= (1 + 1

𝑞 )
𝑑 ≥

(1 + 𝛽1/𝑑 − 1)𝑑 = 𝛽 . So, if the envy-ratio is less than 𝛽 , all agents

have cost at least (𝑞 + 1)𝑑 .

rn agents→ t

𝑥𝑑

𝑥𝑑

𝑥𝑑

Figure 2: Trade-off between the envy-ratio and the approxi-
mation ratio, for 𝛽 ≤ 2

𝑑 .

The minimum social cost appears when one edge is used by two

agents and all other edges are used by exactly one agent and it

is 𝑛 − 2 + 2𝑑+1. So, the approximation ratio is at least
𝑛 (𝑞+1)𝑑
𝑛−2+2𝑑+1 =

(𝑞 + 1)𝑑 − (2
𝑑+1−2) (𝑞+1)𝑑
𝑛+2𝑑+1−2 ; note that 𝑛 can be arbitrarily high by

increasing the parameter 𝑘 and therefore, there exists sufficiently

large𝑛 such that
(2𝑑+1−2) (𝑞+1)𝑑

𝑛+2𝑑+1−2 ≤ 𝜀. Then, the theorem follows. □

Theorem 3.3. For any 1 < 𝛽 ≤ 2
𝑑 , we cannot guarantee both

envy-ratio less than 𝛽 and satisfying local Pareto-efficiency.

Proof. Consider the example of Figure 2 with 𝑛 agents and 𝑛−1
edges. In the optimum, one edge is used by two agents and all other

edges are used by exactly one agent. This outcome has envy-ratio

2
𝑑
. In any other outcome, there are unused edges and edges that

are used by at least 2 agents. Consider some agent 𝑖 that uses one of

the latter edges. 𝑖’s cost is at least 2𝑑 and with a unilateral deviation

to an empty edge, it would drop to 1. Therefore, we cannot have

an outcome that is locally Pareto-efficient and has envy-ratio less

than 2
𝑑
in this instance. □

Theorem 3.4. For any 2𝑑 < 𝛽 ≤ 2
𝑑+1 − 1, we cannot guarantee

both envy-ratio less than 𝛽 and approximation ratio to the optimum
social cost less than 2

𝑑+1

1+𝛽 .

Proof. To show this we consider the network of Figure 3 with

two agents with root 𝑟 and destination 𝑡 . If the agents use different

paths, the envy-ratio is 𝛽 . The only way that the envy-ratio is less

than 𝛽 is when both agents use the same edge. The solution where

both agents use the same edge, that has the minimum social cost, is

when both agents use the lower edge with social cost 2 · 2𝑑 = 2
𝑑+1

.

The optimal social cost appears when the agents use different edges

and it is 1 + 𝛽 . Therefore, the best approximation ratio we can have

for envy-ratio less than 𝛽 is
2
𝑑+1

1+𝛽 . □

r2 agents→ t

𝑥𝑑 + 𝛽 − 1

𝑥𝑑

Figure 3: Trade-off between the envy-ratio and the approxi-
mation ratio for 𝛽 > 2

𝑑 .

3.3 Locally Pareto-Efficient Outcome with the
Minimum Envy-Ratio

We now present a positive result: there exists an outcome, namely

the pure Nash equilibrium, that guarantees an envy-ratio at most

2
𝑑
. A pure Nash equilibrium always exists [41] and the inefficiency

of the best equilibrium in terms of the social cost is at most𝑑+1 [14].
Note that any Nash equilibrium is trivially locally Pareto-efficient,

and therefore this is the best outcome in terms of envy-ratio that is

locally Pareto-efficient. We then get the following theorem.

Theorem 3.5. There exists an outcome that is locally Pareto-
efficient, has envy-ratio at most 2𝑑 , and its approximation ratio
against the minimum social cost is at most 𝑑 + 1.

Proof. Suppose that s is any pure Nash equilibrium in the net-

work congestion game. This means that no player may decrease

their latency by unilaterally deviating to another strategy/path.

We first show that the envy-ratio in s (i.e., in any pure Nash

equilibrium) is at most 2
𝑑
. For this consider any two agents 𝑖 and

𝑗 with the same root and destination and let s′ = (𝑠 𝑗 , s−𝑖 ) be the
outcome derived by s after agent 𝑖 deviates to 𝑠 𝑗 . The fact then s
is a pure Nash equilibrium means that agent 𝑖 cannot improve his

cost by choosing 𝑠 𝑗 and therefore, 𝐶𝑖 (s) ≤ 𝐶𝑖 (s′) .
Note that when 𝑖 deviates from 𝑠𝑖 to 𝑠 𝑗 , the load doesn’t change

on the edges that belong to both 𝑠 𝑗 and 𝑠𝑖 and increases by 1 on the

edges belonging to 𝑠 𝑗 but not to 𝑠𝑖 . So,

𝐶𝑖 (s) ≤ 𝐶𝑖 (s′) =
∑︁

𝑒∈𝑠 𝑗∖𝑠𝑖

𝑐𝑒 (s′) +
∑︁

𝑒∈𝑠 𝑗∩𝑠𝑖
𝑐𝑒 (s′)

=
∑︁

𝑒∈𝑠 𝑗∖𝑠𝑖

𝑑∑︁
𝑟=0

𝑎𝑒,𝑟 (ℓ𝑒 (s) + 1)𝑑 +
∑︁

𝑒∈𝑠 𝑗∩𝑠𝑖
𝑐𝑒 (s)
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≤
∑︁

𝑒∈𝑠 𝑗∖𝑠𝑖

𝑑∑︁
𝑟=0

𝑎𝑒,𝑟 (2ℓ𝑒 (s))𝑑 +
∑︁

𝑒∈𝑠 𝑗∩𝑠𝑖
𝑐𝑒 (s)

≤ 2
𝑑

∑︁
𝑒∈𝑠 𝑗∖𝑠𝑖

𝑐𝑒 (s) +
∑︁

𝑒∈𝑠 𝑗∩𝑠𝑖
𝑐𝑒 (s) ≤ 2

𝑑𝐶 𝑗 (s) ,

where the second inequality comes from the fact that for any edge

𝑒 ∈ 𝑠 𝑗 , ℓ𝑒 (s) ≥ 1, since agent 𝑗 is using 𝑒 .

The upper bound on the approximation ratio to the minimum

social cost comes from known bounds on the price of stability

which is the ratio between the social cost of the best pure Nash

equilibrium
3
and the minimum social cost. So, if we consider a

pure Nash equilibrium that minimizes the social cost, the price of

stability provides the approximation ratio to the minimum social

cost. The exact price of stability for general (not only network)

congestion games with polynomial cost functions is given in [14]

and it is the following:

max

𝑟>1

(2𝑑𝑑 + 2𝑑 − 1) · 𝑟𝑑+1 − (𝑑 + 1) · 𝑟𝑑 + 1
(2𝑑 + 𝑑 − 1) · 𝑟𝑑+1 − (𝑑 + 1) · 𝑟𝑑 + 2𝑑𝑑 − 𝑑 + 1

, (2)

which is upper bounded by 𝑑 + 1 and converges to this value as 𝑑

increases [14]. □

Corollary 3.6. For affine cost functions, i.e., for 𝑑 = 1, there exists
an outcome (namely the best pure Nash equilibrium) with envy-ratio
at most 2 and approximation ratio at most 1.577. Additionally, there
is no outcome with envy-ratio at most 2 and approximation ratio
better than 4/3.

Proof. From Theorem 3.5, if we set 𝑑 = 1 we get that any pure

Nash equilibrium admits an envy-ratio of at most 2. By setting again

𝑑 = 1 in (2), the best pure Nash equilibrium has an approximation

ratio to the minimum social cost of at most 1.577. The rest of the

results come from Theorem 3.4 for 𝑑 = 1. □

Remark 1. The bound on the approximation ratio from [14] is
tight for general congestion games but provide only an upper bound
for the network congestion games. It may be the case that this bound
may improve for network congestion games or that our lower bound
in Theorem 3.4 is not tight. This means that it is still possible that the
best pure Nash equilibrium is the outcome with envy-ratio at most 2𝑑

and the best approximation ratio against the minimum social cost.

4 RECOMMENDED ROUTING AND ANALYSIS -
WEIGHTED MODEL

We now study the weighted model. Our main contribution is an

algorithm that allocates paths to the agents, and a corresponding

theorem for the theoretical guarantees on the induced solution in

terms of the social cost and the envy-ratio. The theorem reduces the

guarantees of the unweighted model to guarantees for the weighted

model.We first give our result under the assumption that all weights

are the same, i.e.𝑤𝑖 = 𝑤 for all agents 𝑖 , where𝑤 is a global integer

parameter. Then, we extend our result to the more complicated case

of different weights.

3
By best pure Nash equilibrium we mean the pure Nash equilibrium with the minimum

social cost.

4.1 Weighted Model with Same Weights
In this subsection we assume that the agents have all the same

weight. We design a simple algorithm that solves a problem with

more agents with unit weights and allocates the paths of this solu-

tion to the weighted agents in a round-robin fashion.

Theorem 4.1. Given a weighted congestion setting denoted by
G = (𝑁, (𝑤)𝑖∈𝑁 ,𝐺, (𝑐𝑒 )𝑒∈𝐸 (𝐺) , (𝑆𝑖 )𝑖∈𝑁 ), let 𝑁𝑤 be the set of agents
derived after replacing each agent of 𝑁 with 𝑤 agents. Suppose
that there exists an outcome s′ of the unweighted setting G′ =

(𝑁𝑤 , (1)𝑖∈𝑁𝑤 ,𝐺, (𝑐𝑒 )𝑒∈𝐸 (𝐺) , (P𝑖 )𝑖∈𝑁𝑤 ), where the envy-ratio is at
most 𝛽 and the approximation ratio to the minimum social cost is
at most 𝛼 . Then, for G, there exists an outcome s with envy-ratio at
most 1 + 𝛽−1

𝑤 and approximation ratio at most 𝛼 .

Proof. Suppose that in G there are 𝑛𝑟𝑡 agents with root 𝑟 and

destination 𝑡 . Considering s′, there are 𝑛𝑟𝑡𝑤 (not necessarily dif-

ferent) paths from 𝑟 to 𝑡 , each one selected by each agent of the

unweighted model with root 𝑟 and destination 𝑡 . We will construct

s by carefully allocating𝑤 of those paths to each of the 𝑛𝑟𝑡 agents

of the weighted model. We do this in a round-robin fashion after

ordering the cost of the paths in a non-decreasing order. We give

Algorithm 1 that assigns𝑤 , not necessarily different, paths to each

agent of the weighted case.

Algorithm 1: Round Robin on Weighted Model with equal

weights𝑤

1 𝑁𝑤 ← Set of agents derived after replacing each agent of 𝑁

with𝑤 agents

2 s′ ← Outcome on (𝑁𝑤 , (1)𝑖∈𝑁𝑤 ,𝐺, (𝑐𝑒 )𝑒∈𝐸 (𝐺) , (P𝑖 )𝑖∈𝑁𝑤 )

with envy-ratio ≤ 𝛽 and approx. ratio ≤ 𝛼

3 s′ ← Sort s′ by non decreasing latency

4 s← |𝑁 | empty sets of paths

5 𝑖 ← 0

6 for 𝑝 in s′ do
7 s[𝑖].Insert(𝑝)
8 𝑖 ← (𝑖 + 1) mod (𝑛)
9 end

10 Return s

First note that s and s′ have exactly the same social cost, because

the same amount of traffic passes through each edge. Additionally,

the two instances have same demand (i.e., same units of traffic to be

routed from any vertex 𝑟 to any vertex 𝑡 ), meaning that they have

the same minimum social cost. Hence, since the approximation

ratio of s′ is 𝛼 , it holds that the approximation ratio of s is also 𝛼 .
We next show the upper bound on the envy-ratio. For each agent

𝑖 of the weighted setting, let 𝑠𝑖 = {𝑝𝑖1, . . . , 𝑝𝑖𝑤𝑖
}, where the paths

are ordered according to the order that Algorithm 1 allocates them

to 𝑖 . The next two key claims compare the cost of the allocated

paths between any two agents.

Claim 1. For any two agents 𝑖 and 𝑗 in the weighted setting,∑
𝑝∈𝑠𝑖∖{𝑝𝑖𝑤 } 𝑐𝑝 (s) ≤

∑
𝑝∈𝑠 𝑗∖{𝑝 𝑗1 } 𝑐𝑝 (s) .
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Proof. Due to the way we assigned the paths in the round-robin

fashion, it is 𝑐𝑝𝑖𝑘 (s) ≤ 𝑐𝑝 𝑗 (𝑘+1) (s) for every 𝑘 ∈ {1, . . . ,𝑤 −1}. After
summing over all 𝑘 ∈ {1, . . . ,𝑤 − 1}, the claim follows. □

Claim 2. For any two paths 𝑝𝑖 and 𝑝 𝑗 that are used under s,
𝑐𝑝𝑖 (s) ≤ 𝛽 · 𝑐𝑝 𝑗

(s).

Proof. According to Algorithm 1, there exist agents 𝑖 ′ and 𝑗 ′

of the unweighted case, such that 𝑠 ′
𝑖′ = 𝑝𝑖 and 𝑠 ′

𝑗 ′ = 𝑝 𝑗 . Since s′

has envy-ratio at most 𝛽 , 𝑐𝑠𝑖 (s′) ≤ 𝛽 · 𝑐𝑠 𝑗 (s′), which equivalently

means that 𝑐𝑝𝑖 (s) ≤ 𝛽 ·𝑐𝑝 𝑗
(s) (recall that s and s′ result in the same

latency at each edge). □

By using Claims 1 and 2 we get the envy-ratio upper bound as

we show next. For any agents 𝑖 and 𝑗 in the weighted setting,

𝐶𝑖 (s) =
∑︁
𝑝∈𝑠𝑖

𝑐𝑝 (s) ≤
∑︁

𝑝∈𝑠 𝑗∖{𝑝 𝑗1 }
𝑐𝑝 (s) + 𝑐𝑝𝑖𝑤 (s)

≤
∑︁

𝑝∈𝑠 𝑗∖{𝑝 𝑗1 }
𝑐𝑝 (s) + 𝛽 · 𝑐𝑝 𝑗1

(s) =
∑︁
𝑝∈𝑠 𝑗

𝑐𝑝 (s) + (𝛽 − 1)𝑐𝑝 𝑗1
(s)

≤
(
1 + 𝛽 − 1

𝑤

) ∑︁
𝑝∈𝑠 𝑗

𝑐𝑝 (s) =
(
1 + 𝛽 − 1

𝑤

)
𝐶 𝑗 (s) ,

where the last inequality comes from the fact that 𝑐𝑝 𝑗1
(s) ≤ 𝑐𝑝 𝑗𝑘

(s)
for all 𝑘 ∈ {1, . . . ,𝑤}. This completes the proof of Theorem 4.1. □

The next theorem (whose proof is in the full version of the

paper), Theorem 4.2, provides asymptotically tight upper bound on

the envy-ratio for the optimal outcome.

Theorem 4.2. In the weighted model with equal weights 𝑤 , the
best envy-ratio of any optimal outcome is exactly 1 + 2

𝑑+1−2
𝑤 (𝑑 ≥ 1).

4.2 Weighted Model with General Weights
Here, we consider the general case where the weights can be differ-

ent. For the envy-ratio it is not meaningful to compare the actual

costs of the agents, because they route different amount of traffic.

Instead, we use the average cost per unit for each agent. More for-

mally, for an outcome s, the average cost per unit for agent 𝑖 with
weight𝑤𝑖 is

𝐶𝑖 (s)
𝑤𝑖

.

We next give a theorem similar to Theorem 4.1 (whose proof

is in the full version of the paper), and for this we define 𝜁 as a

function of 𝛽 and the vector of weights w = (𝑤1, . . . ,𝑤𝑛) which is

given by 𝜁 (𝛽,w) = max𝑤𝑖 ,𝑤𝑗

(⌈
𝑤𝑖+1
𝑤𝑗+1

⌉
𝑤𝑗+𝛽
𝑤𝑖

)
.

Theorem 4.3. Given a weighted congestion setting

G = (𝑁,w,𝐺, (𝑐𝑒 )𝑒∈𝐸 (𝐺) , (𝑆𝑖 )𝑖∈𝑁 ),

let𝑁 ′ be the set of agents derived after replacing each agent 𝑖 ∈ 𝑁 with
𝑤𝑖 agents. Suppose that there exists an outcome s′ of the unweighted
setting G′ = (𝑁 ′, (1)𝑖∈𝑁 ′,𝐺, (𝑐𝑒 )𝑒∈𝐸 (𝐺) , (P𝑖 )𝑖∈𝑁 ′), where the envy-
ratio is at most 𝛽 and the approximation ratio to the minimum social
cost is at most 𝛼 . Then, forG, there exists an outcome swith envy-ratio
at most 𝜁 (𝛽,w) and approximation ratio at most 𝛼 .

Note that the result of Theorem 4.3, when all weights are equal,

does not fully match the result of Theorem 4.1. We remark that, if

the ratio𝑤 𝑗 +1/𝑤𝑖 +1 is an integer4 for all the cases where𝑤 𝑗 ≥ 𝑤𝑖 ,

then a slightly tighter analysis is possible resulting to the bound of

Theorem 4.1 for equal weights.

5 EXPERIMENTAL EVALUATION
In this section we put our algorithm to the test against simpler

baselines, using the road network of New York City. We remark

that our theoretical results seem quite pessimistic as they consider

a worst case analysis. The purpose of our experiments is to exhibit

that for real networks we observe a small change in the social cost

and a simultaneous more significant improvement in the envy ratio.

Hence, the experiments showcase the practical implications of our

algorithm.

We consider equal weights 𝑤 , and for the case of 𝑤 = 1, we

compute a Nash equilibrium using best-response dynamics. For the

case of𝑤 > 1, we additionally apply Algorithm 1. We extract the

road network from OpenStreetMap [37]. We assign cost functions

to the edges using the functional form of the Bureau of Public Roads

[10], exactly as in [16, 32]. Specifically we set:

𝑐𝑒 (𝑥) =
𝛾𝑡

𝑓
𝑒

𝛽4𝑒
𝑥4 + 𝑡 𝑓𝑒 ,

where 𝑡
𝑓
𝑒 is the time needed to cross the edge when the road is

empty, i.e., the free-flow travel time, and 𝛽𝑒 is the capacity of the

street, defined as the number of lanes multiplied by the free-flow

speed. We tune parameter 𝛾 so that the induced travel times at

equilibrium approximately match the ones observed in online navi-

gation systems.

The baselines we compare against greedily assign routes to the

agents and are called Greedy and Marginal-Greedy (for the analysis

of such algorithms see [30] and the papers cited therein). Both

routes rely on greedily assigning shortest paths to agents, however

each one uses a different cost structure for the edges. In more detail,

the structure for both algorithms is as follows: Begin with an empty

network and assign 𝑤 paths to each agent iteratively. Assign 𝑤

times the shortest path to the agent under consideration, each time

updating the edge costs based on the previous assignments. The

cost used byGreedy is simply the cost that an additional atomwould

experience on the edge given its current congestion, i.e., with ℓ the

load on edge 𝑒 , the edge cost used by the algorithm is 𝑐𝑒 (ℓ + 1/𝑤).
The cost used by Marginal Greedy is the marginal increase that an

additional atom would cause to the social cost of the edge, i.e., by
using the same notation, the cost is: (ℓ+1/𝑤) ·𝑐𝑒 (ℓ+1/𝑤)−ℓ ·𝑐𝑒 (ℓ) .

The Greedy baseline is natural in the sense that it simulates

the algorithm used in actual online navigation systems: receive a

request and greedily route it on the shortest available path. The

Marginal-Greedy baseline is a direct extension that takes the social

cost (one of our objectives) into account when routing requests one

by one.

We divide the maps of New York in 8 regions and generate a de-

mand arrival rate of 50 between each pair. To simplify computation,

we generate a set of 10 candidate routes for each origin-destination

pair using the well known penalty method [6]. It is expected that

these 10 routes will cover most, if not all, ways that drivers typically

4
This happens when all weights are equal. Another example is when each 𝑤𝑖 is of the

form 2
𝑘𝑖 − 1, for some positive integer 𝑘𝑖 .
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Figure 4: Our algorithm matches the total cost and improves fairness over the baselines.

traverse between the two endpoints. The strategies of players are

then defined on these 10 candidate routes. We provide our instances

(in the form of candidate routes and cost functions) and the code

for our algorithm and baselines in our supplemental material.

We repeat our computations for𝑤 = 1, 2, 3, 4 on delay functions

given by potentially erroneous predictions (we remind the reader

that the case of 𝑤 = 1 corresponds to some Nash equilibrium).

Specifically, we generate a prediction for each 𝑐𝑒 (𝑥𝑒 ) that is at most

(1 + 𝛿) · 𝑐𝑒 (𝑥𝑒 ), where 𝛿 is the max error parameter. We make the

following observations illustrated in Figure 4:

• There are small perturbations in the total cost across algo-

rithms and runs. Overall the greedy baseline is performing

the best on this metric but with a very small margin over

the other two (typically within 1% − 2%).
• Our algorithm performs significantly better than both base-

lines in terms of the envy ratio. For perfect predictions, an

extra 3% cost appears for the most envious agent for𝑤 = 1

that quickly drops to near 0% as𝑤 increases. For the Greedy
algorithm this extra cost is 33% and for the Marginal Greedy
it is 116%.

• The envy-ratio of our algorithm decreases as we increase

the number of paths 𝑤 , which matches the intuition from

our theoretical bounds.

5.1 Inaccurate Cost Functions
We close the section by presenting theoretical results for the case

when the delay estimates are given with bounded error, specifically,

the case when cost functions may be inaccurate and their coeffi-

cients are given by an ML prediction. The next theorem quantifies

how this inaccuracy may impact the envy-ratio and the social cost

approximation ratio of any outcome. The prediction error we con-

sider is described as follows: For any outcome s, let 𝑐𝑒 (s) and 𝑐𝑒 (s)
be the predicted and the actual, respectively, latency on edge 𝑒 . The

prediction error is the minimum values 𝛿1, 𝛿2 ≥ 1 such that for

each edge 𝑒 and any s, 𝑐𝑒 (s)/𝛿1 ≤ 𝑐𝑒 (s) ≤ 𝛿2𝑐𝑒 (s).

Theorem 5.1. Let s be any outcome with envy-ratio 𝛽 and approx-
imation ratio to the minimum social cost 𝛼 according to the predicted
cost functions. Then, according to the actual latency on the edges,
the envy-ratio is at most 𝛿1𝛿2𝛽 and the approximation ratio to the
minimum social cost is at most 𝛿1𝛿2𝛼 .

The proof is given in the full version of the paper.

Remark 2. Algorithms with predictions are often evaluated in
terms of robustness, which implies that the best known worst case

guarantees, when no predictions are provided, are recovered when
the predictions are arbitrarily bad. In our settings, the worst case
guarantees when the costs are unknown (which is the situation with
no predictions) may be arbitrarily bad; in this regard, any algorithm,
including ours, satisfies robustness. To see that consider two parallel
paths between an origin and destination (e.g., a case of two islands
connected by two bridges). Any algorithm will have to use one of the
bridges but that bridge could have a very high cost compared to the
other one (e.g., be closed altogether) incurring an arbitrarily bad social
cost. The same holds with respect to the envy-ratio unless the routing
algorithm always uses a single path which is a trivial case.

6 DISCUSSION AND FUTURE DIRECTIONS
We study the traditional routing models of Rosenthal which have

received significant interest historically and have many interesting

application in the modern routing space, including online maps

navigation, Internet packet routing, and vehicle fleet routing (trucks,

ride-sharing, etc). In this work we consider one further important

aspect for solving this problem beyond simply minimizing the cost:

addressing fairness among agents in the network. We study the

trade-off between the two objectives and give tight bounds on the

envy-ratio when optimizing the social cost. We further prove that

there are known notions (Nash equilibra) that optimize the envy-

ratio in a meaningful way (by satisfying local Pareto-efficiency) and

design algorithms with strong theoretical guarantees in terms of

the twofold objective. Finally, we show that in a real road network

our algorithm provides strong gains over natural baselines.

We leave as a future direction the cases where the envy-ratio

is at most 𝛽 for 2
𝑑 < 𝛽 < 2

𝑑+1
. Our conjecture is that there are

outcomes in between the ones with the optimal social cost and the

best reasonable envy-ratio. We propose the study of the best (in

terms of social cost)𝛼−approximate Nash equilibria; those solutions

loosen the condition of the pure Nash equilibrium by allowing

situation where agents may be benefited by deviating but not by

much. Clearly, 𝛼−approximate Nash equilibria widen the class of

outcomes comparing to Nash equilibria and it is possible that the

best of them results in a better approximation ratio.

Finally, one important aspect to tackle is the computational com-

plexity of the suggested outcomes that we discuss in the full version

of the paper.
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