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ABSTRACT
We propose a new approach for controlling task allocation in teams

of robots with different capabilities. This approach allows human

operators, who have a better understanding of the situation, to influ-

ence or even dictate how tasks are distributed, whilst allowing au-

tonomous decisions. Our method works within existing consensus-

based allocation algorithms by introducing intercession in the bid-

ding process. Intercession allows agents to bid on behalf of oth-

ers. This allows for a flexible range of control, from completely

decentralized to fully human-controlled, without refactoring the

consensus-based allocation scheme, which has been proven to be

efficient. We build upon an existing algorithm, Consensus-based

Bundle Auction (CBBA), while maintaining its solution quality and

ability to reach agreement (convergence). We test our new method,

I-CBBA, in simulated multi-robot task allocation (MRTA) scenarios

using the ROS framework.
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1 INTRODUCTION
Multi-robot systems (MRS) have emerged as a promising technol-

ogy with diverse applications in sectors like search and rescue,

environmental monitoring, and infrastructure inspection. Their

ability to perform tasks autonomously and efficiently renders them

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,
USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

highly valuable. Multi-robot Task Allocation (MRTA) addresses the

critical challenge of assigning a set of tasks to a team of robots

with varying capabilities [5]. The primary objective of MRTA is to

optimize system performance, typically measured by minimizing

task completion time or maximizing task coverage, while consider-

ing various operational constraints such as robot capabilities, task

dependencies, and environmental factors. MRTA encompasses a

spectrum of techniques, ranging from centralized algorithms with

global decision-making to distributed approaches where robots

collaborate to determine task assignments [8, 14]. The successful

development and implementation of MRTA algorithms are crucial

for facilitating effective teamwork within MRS, ultimately unlock-

ing their full potential across various application domains.

Achieving optimal performance in MRTA scenarios often re-

quires a delicate equilibrium between automated task allocation

and human oversight [6]. While automated algorithms have demon-

strably achieved impressive results, concerns persist regarding the

relinquishing of complete control to centralized or decentralized

decision-making processes, such as auction-based methods [7] and

consensus-based approaches [3]. This aligns with the limitations

identified in mixed-initiative control frameworks [1, 2]. Moreover,

human operators, equipped with domain expertise and real-time

situational awareness, could offer invaluable insights and adapt to

unforeseen circumstances that may challenge purely algorithmic

approaches [15]. Consensus-based task allocation is a decentral-

ized approach for MRS where robots collaborate to determine task

assignments. Unlike centralized methods with a single decision-

maker, each robot in a consensus-based system considers its capa-

bilities, task dependencies, and environmental factors to propose its

own allocation plan. Through iteration, robots reach an agreement

on an optimal task distribution. This approach leverages the collec-

tive intelligence of the robot team while promoting robustness and

scalability in complex environments.

This work tackles the challenge of integrating human control

within the decentralized MRTA framework. We propose a novel

concept: intercession in consensus-based auction mechanisms. This

approach endeavors to achieve a critical equilibrium between algo-

rithmic efficiency and human oversight. By introducing interces-

sion, human operators gain enhanced control over task allocation

without sacrificing the robustness, flexibility and performance of

automated auction-based allocation methods.
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Figure 1: A sample S&R scenario. � and Ê represent the
ground robot and the drones, c the goto tasks, and action
tasks for the rest (observation 4 and resupply ~ ).

This paper is structured as follows. Section 2 presents the sce-

nario motivating our contributions. Section 3 provides background

on MRTA and consensus-based task allocation, along with related

works. Section 4 expounds the core contribution of the paper, I-

CBBA, an extension to CBBA [3] with intercession. We evaluate

I-CBBA on synthetic scenarios using a ROS implementation in

Section 5. Section 6 concludes the paper with some perspectives.

2 MOTIVATING MULTI-ROBOT SCENARIO
We consider a Search and Rescue (S&R) scenario, illustrated in

Figure 1, where teams of autonomous robots, such as drones or

rovers, are deployed to locate and assist survivors in disaster areas,

which can include sinister such as fires and building collapses [11].

Equipped with sensors, cameras, and specialized tools, these robots

navigate through rubble, hazardous terrain, and other challenging

conditions to search for signs of life. The goal is to quickly locate

survivors, assess their condition, and coordinate rescue efforts to

address the various situations as efficiently and effectively as possi-

ble. The missions may therefore generally be broken down into two

distinct sets of tasks: the exploration tasks, where robots are sent to
positions to explore as to detect survivors and situations to address

(which we will refer to as goto tasks), and the action tasks, such as

rescuing victims, clearing debris, and extinguishing fires (which we

will refer to as action tasks, for instance, actions 𝑎1 and 𝑎2). Given

the heterogeneous nature of the challenges handled, agents are

therefore usually specialized, and each responsible of addressing

different subsets based on task requirements. Once an action task

is identified, the robots autonomously allocate these tasks among

themselves based on distance and their respective skills.

It is important to note that the task allocation process exclu-

sively considers factors explicitly modeled, such as distance and

specialization. It consequently overlooks non-captured factors like

environmental changes or unexpected obstacles/situations. Incor-

porating more factors into the situation analysis and evaluation

increases computational complexity, requiring sophisticated models

and extensive data processing, which can be computationally inten-

sive and harder to acquire and maintain. This complexity also poses

scalability issues, potentially leading to delays in decision-making

as the number of robots and tasks increases.

Consequently, mixed-initiative systems prove particularly valu-

able as human operators possess contextual knowledge or expertise

that cannot be fully encapsulated by algorithms alone. Operators

may have insights into survivor behavior, environmental hazards,

or the significance of certain clues that might not be apparent to

autonomous systems. For instance, an operator noticing smoke

from a distance can infer the presence of fire and redirect a fire-

fighting robot to the location, preventing delays and optimizing

resource use through the interpretation of subtle environmental

cues. Additionally, operator intervention enhances safety by ad-

dressing unforeseen hazards that robots might not detect, such as

rerouting a robot away from structurally unstable areas to protect

both the machines and nearby individuals. This proactive approach

ensures safer operations in dynamic, unpredictable environments.

Furthermore, human oversight adds reliability and robustness to

multi-robot systems by allowing intervention during failures –such

as sensor malfunctions– so that an operator can manually reas-

sign tasks, ensuring the mission continues efficiently even when

autonomous systems face issues.

In consequence, our approach aims to leverage the respective

strength of autonomous systems in efficient problem-solving, and

the human operators in observation and interpretation, to obtain a

practical solution in an uncontrolled setting of the likes of S&R by

introducing a generic intervention method to influence and control

an autonomous allocation process when desired.

The following driving scenario is therefore proposed to help

illustrate the challenge addressed, the limitations of the existing

methods, and possible applications of our solution:

Example 1 (Driving scenario). In a S&R scenario following
an earthquake, a fleet of 3 robots (A and B, and C) is tasked with
delivering medical supplies (symbolized by ~ ) to survivors at a
specific location (task 𝑇 ): A is a ground robot � , and B and C are
drones Ê . The robots seek to distribute tasks among themselves
through an auction process. A wins the task with a bid 𝑏𝐴 = 10,
calculated based on proximity to the task location, followed by C

with 𝑏𝐶 = 8 and B with 𝑏𝐵 = 6. However, an operator O wishes to
intervene based on additional situational knowledge: The operator
knows the building where survivors are located is unstable due to
aftershocks. While A is closer, its heavier weight could exacerbate the
instability. Additionally, the operator also identifies a downed power
line on the ground (A’s route), which the robots’ sensors missed.

3 BACKGROUND
This section identifies the core problem and related consensus-

based solution methods from the literature, before discussing works

related to human participation in such settings.

3.1 Multi-Robot Task Allocation Problem
The multi-robot assignment problem, also known as the Multi-

Robot Task Allocation [5] (MRTA) problem, refers to the challenge

of assigning 𝑁𝑡 tasks to 𝑁𝑢 agents, to obtain a conflict-free distribu-

tion of tasks to agents that maximize some overall reward (or mini-

mize some overall cost). An allocation is qualified as "conflict-free"

if each distinct task is assigned to at most one agent. A maximum

of 𝐿𝑡 tasks can be assigned to each agent, and the assignment is

considered as completed once 𝑁min ≜ min {𝑁𝑡 , 𝑁𝑢𝐿𝑡 } tasks have
been assigned. This problem has been extensively studied and for

the sake of maintaining consistency with the existing literature,
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Figure 2: Consensus-based Task Allocation: agents alternate
between bundle construction (auction) and conflict resolu-
tion (consensus) (from [14], with permission).

the following integer (possibly non-linear) program formulation

proposed in [3] will be adopted to formalize the problem.

max

∑𝑁𝑢

𝑖=1

(∑𝑁𝑡

𝑗=1
𝑐𝑖 𝑗 (x𝑖 , p𝑖 ) 𝑥𝑖 𝑗

)
(1)

s.t.

∑𝑁𝑡

𝑗=1
𝑥𝑖 𝑗 ≤ 𝐿𝑡 ∀𝑖 ∈ I (2)∑𝑁𝑢

𝑖=1
𝑥𝑖 𝑗 ≤ 1 ∀𝑗 ∈ J (3)∑𝑁𝑢

𝑖=1

∑𝑁𝑖

𝑗=1
𝑥𝑖 𝑗 = 𝑁min ≜ min {𝑁𝑡 , 𝑁𝑢𝐿𝑡 } (4)

𝑥𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ I × J (5)

Here, decision variable x𝑖 𝑗 = 1 if task 𝑗 is assigned to agent

𝑖 , and is set to 0 otherwise. x𝑖 ∈ {0, 1}𝑁𝑡
is then a vector with

x𝑖 𝑗 as 𝑗th element. Index sets are defined as I ≜ {1, . . . , 𝑁𝑢 } for
the agents, and J ≜ {1, . . . , 𝑁𝑡 } for the tasks. Vector p𝑖 ∈ (J ∪
{∅})𝐿𝑡 then represents an ordered sequence of tasks for agent 𝑖;

its 𝑘th element is 𝑗 ∈ J if agent 𝑖 conducts 𝑗 at the 𝑘th point

along the path, and becomes ∅ (denoting an empty task) if agent 𝑖

conducts less than 𝑘 tasks. The local reward for agent 𝑖 is therefore

represented by the summation term in Equation (1). It should be

noted that in this formalization, the allocation operates around a

reward function, resulting in a maximization problem. This score

function is usually assumed to satisfy 𝑐𝑖 𝑗 (x𝑖 , p𝑖 ) ≥ 0 and can be

any (usually non-negative) function of either assignment x𝑖 and/or
path p𝑖 . In the case of mobile autonomous vehicles and robots,

scoring/cost functions often exploit path-dependent properties to

represent the cost/reward of taking on various tasks (e.g. path

length, mission completion time) [17].

3.2 Consensus-based MRTA Algorithms
Consensus-based methods, a subset of market-based methods, lever-

age peer-to-peer exchanges of information combined with auction

logic to determine an allocation in a decentralized and distributed

fashion [3]. Contrary to conventional auctions, such methods de-

centralize the winner determination problem, and thereby avoid a

central single point of failure, as illustrated in Figure 2.

CBBA, the most representative algorithm of this category, deter-

mines the task allocation through each agent locally determining

bids, sharing them with their neighbors, and determining the as-

signment locally from all the information received. Such algorithms

therefore alternate between two phases; an auction phase (during

which bids are computed locally), and a consensus phase (during

which the results of the auction phase, referred to as the winning

bids lists, are shared and conflict resolution is performed to con-

verge to a global allocation of tasks). In CBBA, tasks are evaluated

using their respective added value in a local plan constructed by

each agent.

3.2.1 Phase 1: Auction. In the CBBA algorithm auction phase,

agents construct bundles of tasks b𝑖 . Each agent continuously adds

tasks to its bundle b𝑖 until all tasks it is capable of including have
been integrated. Tasks are added based on their marginal score

improvement 𝑐𝑖 𝑗 , which is determined by comparing the reward

value of performing the tasks at specific locations in the current

path p𝑖 . This path is therefore an ordered list of tasks in the agent’s

bundle b𝑖 , inserted sequentially into p𝑖 at the location that maxi-

mizes the inserted task’s marginal gain. The bundle and path are

recursively updated until the maximum assignment size is reached

or no further tasks are available to be added to the bundle. Upon

having constructed a bundle b𝑖 /path p𝑖 pair, the agents share the
marginal gains obtained from inserting each task in the bundle/path

with the other agents, which then release tasks which contribute

a smaller marginal gain to their bundle. Note that when a task is

released, the agent must then drop all tasks that were added after it

in their respective bundle (all the tasks following the dropped task

in bundle b𝑖 ). The agents then complete their bundle by sequentially

re-computing the new marginal gains obtained from including ad-

ditional tasks in their bundle. This process is repeated until all tasks

have been allocated to the agents that achieve the largest marginal

gain when including them in their respective bundles.

Each agent therefore maintains five vectors: a winning bid list

y𝑖 (of size 𝑁𝑡 , corresponding to the largest marginal gain observed

across the fleet for each task), a winning agent list z𝑖 (of size 𝑁𝑡 ,

tracking the agent corresponding to the marginal gains listed in y𝑖 ),
a timestamp list s𝑖 (of size 𝑁𝑢 , a list of timestamps recording the

last contact with each agent in the fleet used for consensus conflict

resolution), a bundle b𝑖 and corresponding path p𝑖 .
The complete pseudo-code describing this process can be seen

in [3, Algorithm 3].

3.2.2 Phase 2: Consensus. The purpose of this phase is to converge
to a consensus on a single list of winning bids across the agent

collective, which is in turn used to determine the winners and

subsequent task allocation. CBBA defines G(𝜏) as the undirected
communication network at time 𝜏 , represented by the symmetric

adjacency matrix 𝐺 (𝜏). This matrix models the presence of links

between agents, such that 𝑔𝑖 𝑗 (𝜏) = 1 indicates a link between

agents 𝑖 and 𝑗 , and 0 otherwise. Agents 𝑖 and 𝑗 are considered

neighbors if there is a link between them. Moreover, each agent is

self-connected (𝑔𝑖𝑖 (𝜏) = 1 for all 𝑖) by convention. At each time step

𝜏 , the consensus phase performed by each agent is decomposed

into the following steps:

Step 1— Share and receive local states with neighbors: Each
agent 𝑖 sends its local winning bids list yi, list of winning agents 𝑧𝑖 ,
and list last contact timestamp 𝑠𝑖 to its neighbors and receives the

equivalent from each of its neighbors.

Step 2— Update local states using ones received: The con-
sensus process is performed for each received bid list yk for all 𝑘
for which 𝑔𝑖𝑘 (𝜏) = 1. Agent 𝑖 updates 𝑦𝑖 𝑗 values using the values
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obtained from all its neighbors and the rules depicted in [3, Table

1] of the original CBBA paper.

Step 3— Lose assignment if outbid by neighbors: Each agent

loses all the tasks (and subsequent tasks appearing in bundle 𝑏𝑖 ) if

it finds itself outbid by another agent for the tasks currently in its

bundle.

3.3 Related Works
When putting CBBA and similar approaches in the context of our

driving scenario, it can be observed that the operator has no control

over the allocation process online. It is therefore unable to assist

or contribute to the process, and must entirely take back control

of the robots to leverage the additional information it has at its

disposal. We therefore propose a solution seeking to do so while

also allowing for modulating the level of control the operator ex-

erts on the allocation process. Our direction is close to the shared
autonomy notion which is defined as "the autonomous control of

the majority of degrees of freedom in a system while designing a

control interface for human operators to control a reduced number

of parameters defining the global behavior of the system" [13]. This

may be done to enable controlling robots through packaging com-

plex action sequences into abstract sequences [16], or controlling

a large number of robots with few operators [18]. Additionally, a

lot of research may be found on autonomous allocation of tasks

for a team made up of both humans and robots [9, 19], and human

monitoring of mission execution [4].

Human-robot interaction may furthermore be broken down into

two key paradigms [12]: complementary interaction (where the hu-

man and the robots control different subsets of tasks, and the robots

plan "around" the human instructions), and overlapping interaction
(where both the human and robots control the same set of tasks).

While a number of approaches exist for the former [12], little work

has been done on the latter, which our work seeks to address. We

therefore propose a solution for the challenge of combining human

and autonomous control in a task allocation problem through the

introduction of a novel mechanism in decentralised auction-based

methods: bid intercession. Our approach seeks to retain underlying

convergence and robustness guarantees while enabling the injec-

tion of additional expertise in the allocation process to optimise

desired metrics.

4 CBBAWITH INTERCESSION
We propose a novel mechanism, called bid intercession, to enable

control over consensus-based algorithms during execution. This

section is broken down into four sub-sections: Section 4.1 provides

an overview of the mechanism and illustrates it with a few elemen-

tary examples highlighting its application to our driving scenario.
Section 4.2 and Section 4.3 detail respectively the functioning of

I-CBBA’s auction phase and consensus phase.

4.1 Mechanism Explanation and Illustration
Bid intercession is the process of emitting a bid on behalf of another
agent for a given task, with the goal of increasing or reducing its

weight (and consequently odds of winning) in an auction frame-

work. In our case, an operator will emit bids on behalf of agents,

who may have already placed bids based on local information and

analysis. This will result in the local bids bring overridden by the

operator’s. This is possible given all agents in the fleet have a clear

and consistent way of determining which bid to account for when

conflicting bids are present for a specific agent/task combination.

This is achieved here through the introduction of a priority hier-

archy. Each agent bids with a specific priority level, and the bid with

the largest priority level is always adopted over other conflicting

bids for a given agent and task. An additional information vector

must therefore be introduced, 𝑃𝜌 , defining a fixed hierarchy be-

tween agents in𝑁𝑢 . 𝑃𝜌 is therefore a vector of length𝑁𝑢 containing

integers representing the priority level associated with each agent

𝑖 . In turn, all bids emitted will now include the priority level of the

bid emitter, and additional logic (described in the later sections) is

introduced to account for the bids with the largest priority level in

the event of conflicts. This approach allows for influencing auction

outcomes without altering the fundamental allocation protocol. It
preserves the algorithm’s complete freedom and control over the

allocation process while allowing for steering bids in a specific

direction to achieve a desired result. Although any agent may per-

form this, it will be leveraged here specifically for human control

and intervention in the coordination process. Example 1 and 2 are
provided next to showcase the application of the mechanism to

address the driving scenario defined earlier in Section 2.

Example 2 (Single Agent Intercession). The operator wishes
to reallocate the task to a specific drone Ê , B, which is lighter and
safer for this situation to prevent a potential collision. To achieve this,
the operator overrides B’s original bid of 𝑏𝐵 = 6 with a higher bid
of 𝑏𝐵′ = 11, surpassing A’s original bid of 𝑏𝐴 = 10 in the auction.
This new bid, 𝑏𝐵′ , takes precedence over 𝑏𝐵 because it is placed by
the operator with a higher priority level 𝑝𝑂 = 1, compared to B’s
original priority level of 𝑝𝐵 = 0. Initially shared with any robot in
the fleet, the bid is then automatically propagated to other members
via the CBBA mechanism. The higher priority level 𝑝𝑂 ensures that
the interceded bid replaces B’s local bid, and the CBBA mechanism
reassigns the task, ultimately allocating it to B.

Example 3 (Agent Subset Intercession). The operator aims
to ensure that a specific type of robot—in this case, the drones (B
and C)—completes the task. This intervention enables the drones to
retain flexibility in assigning task 𝑇 among themselves. The opera-
tor monitors the bids generated by the fleet and intercedes by either
magnifying the drones’ bids (by a factor of 10, in this example) or
scaling down those of ground robots (though not applied here), as-
signing to the interceded bids a priority of 𝑝𝑂 = 1. In this scenario,
the operator overrides B’s bid of 𝑏𝐵 = 6 with 𝑏𝐵′ = 60 and C’s bid of
𝑏𝐶 = 8 with 𝑏𝐶′ = 80 (both possessing a bid priority of 𝑝𝐴/𝐵 = 0).
The winner of the auction is determined using the CBBA mechanism,
with C securing the task since 𝑏𝐶′ = 80 exceeds both 𝑏𝐵′ = 60 and
A’s 𝑏𝐴 = 10. This process is repeated each time the robots update
their local bids, provided they remain in contact with the operator.
If contact is lost, the last interceded bid remains active, as the robots
lack the priority levels to override it. This situation could be further
refined with mechanisms such as weighted or conditional intercession
rules (not covered in this paper).

The behavior described in the group intercession example is used
as main test case study in the next sections.
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Algorithm 1: I-CBBA Auction Phase

1 Procedure BUILD BUNDLE
2 (y𝑖 (𝑡 − 1), z𝑖 (𝑡 − 1), b𝑖 (𝑡 − 1), p𝑖 (𝑡 − 1), f𝑖 (𝑡 − 1), 𝜙𝑖 (𝑡 − 1)
3 y𝑖 (𝑡 ) = y𝑖 (𝑡 − 1) ; z𝑖 (𝑡 ) = z𝑖 (𝑡 − 1)
4 b𝑖 (𝑡 ) = b𝑖 (𝑡 − 1) ; p𝑖 (𝑡 ) = p𝑖 (𝑡 − 1)
5 f𝑖 (𝑡 ) = f𝑖 (𝑡 − 1) ; 𝜙𝑖 (𝑡 ) = 𝜙𝑖 (𝑡 − 1) ;
6 while |b𝑖 | < 𝐿𝑡 do // while there are tasks not in

bundle

7 𝑐𝑖 𝑗 = max𝑛≤|p𝑖 | 𝑆
p𝑖⊕𝑛 { 𝑗 }
𝑖

− 𝑆p𝑖
𝑖
, ∀ 𝑗 ∈ J\b𝑖 // compute

largest marginal scores

8 merge(𝑓𝑖 𝑗𝑖 (𝑡 ), 𝑐𝑖 𝑗 , 𝜙𝑖 𝑗𝑖 (𝑡 ), 𝑁𝜌 (𝑖 )), ∀ 𝑗 ∈ J\b𝑖 // merge

computed marginal scores into f

9 ℎ𝑖 𝑗 = I
(
𝑓𝑖 𝑗𝑖 (𝑡 ) > 𝑦𝑖 𝑗

)
, ∀ 𝑗 ∈ J\b𝑖 // determine

v.tasks

10 if |h𝑖 | = 0 then // if there are no v.tasks
11 terminate process

12 𝐽𝑖 = argmax𝑗 ℎ𝑖 𝑗 · 𝑓𝑖 𝑗𝑖 (𝑡 ), ∀ 𝑗 ∈ J\b𝑖 // get v.task

with largest local bid

13 𝑛𝑖,𝐽𝑖 = argmax𝑛 𝑆
p𝑖⊕𝑛 {𝐽𝑖 }
𝑖

// determine insertion

loc.

14 b𝑖 ← b𝑖 ⊕end { 𝐽𝑖 } // update bundle

15 p𝑖 ← p𝑖 ⊕𝑛𝑖,𝐽𝑖 { 𝐽𝑖 } // update path

16 y𝑖,𝐽𝑖 (𝑡 ) ← 𝑓𝑖 𝐽𝑖 𝑖 // update winning bids

17 z𝑖,𝐽𝑖 (𝑡 ) ← 𝑖 // update winning agents

4.2 Phase 1: Auction Process
In order to enable bid intercession, the algorithm described in Sec-

tion 3.2 needs to be extended as follows.

The base vectors y𝑖 , z𝑖 , s𝑖 , b𝑖 , and p𝑖 remain the same, and two

new matrices are introduced. The current fleet bids matrix f𝑖 of
size 𝑁𝑡 × 𝑁𝑢 is used to store the most up-to-date estimation of the

highest priority/value bids made across the fleet for each task and each
agent. In other words, 𝑓𝑖 𝑗𝑟 is the highest priority/value bid known

by agent 𝑖 to have been placed for task 𝑗 for agent 𝑟 across the fleet.

The 𝜙𝑖 matrix, also of size 𝑁𝑡 × 𝑁𝑢 , corresponds to the priority

level associated with each bid figuring in f𝑖 . It is used in priority

merging processes to decide which values to keep when updating

the b𝑖 matrix. Note that similarly to the original CBBA algorithm,

it is assumed that all ties (such as when the priority levels are

not sufficient to determine the winner (𝑃𝜌 (𝑖) = 𝛽𝑖 𝑗𝑟 )) are resolved

systematically. The auction phase can be seen in Algorithm 1, and

operates as follows:

While the length of bundle b𝑖 is less than the number of tasks

currently available, do: Step 1 [l7] — Computes the largest mar-
ginal score 𝑐𝑖 𝑗 achieved by inserting each remaining task 𝑗

not present in bundle b𝑖 in the path p𝑖 position yielding the
largest marginal gain:

This step remains unchanged compared to the base CBBA al-

gorithm. A vector c𝑖 representing the marginal gain contributed

from inserting each task 𝑗 individually in the existing path p𝑖 at a
position maximizing the gain magnitude is computed.

Step 2 [l8] — The computed c𝑖 vector is priority merged
(Algorithm 2) into the f𝑖 matrix using the agent’s priority

Algorithm 2: Merging two values (𝑣 and𝑤 ) depending on

their priorities (𝑝 and 𝑞)

1 Procedure merge(𝑣, 𝑤, 𝑝,𝑞)

2 𝑣 ←

𝑤 if 𝑞 > 𝑝, 𝑤 ≠ 0

𝑣 if 𝑞 < 𝑝

apply tie-breaker if 𝑞 = 𝑝

3 𝑝 ←

𝑞 if 𝑞 > 𝑝, 𝑤 ≠ 0

𝑝 if 𝑞 < 𝑝

apply tie-breaker if 𝑞 = 𝑝

level 𝑁𝜌 (𝑖) with the priority matrix 𝜙𝑖 associated with the f𝑖
matrix.

Step 3 [l9] — The current bids matrix f𝑖 is compared to
the winning bids y𝑖 to generate the list of valid tasks h𝑖 : The
valid tasks h𝑖 are generated using ℎ𝑖 𝑗 = I

(
𝑓𝑖 𝑗𝑖 > 𝑦𝑖 𝑗

)
,∀𝑗 ∈ J . It

is important to note here that 𝑓𝑖 𝑗𝑖 is considered and not 𝑐𝑖 . This is

necessary to ensure that the bid intercessions performed by other

agents with larger priorities (than that of agent 𝑖) are the ones

considered in the auction process.

Step 4 [l10-11]— The process is terminated if no valid tasks
remain to be added to the bundle: If the agent is unable to outbid
any other agents (|h𝑖 | = 0), either by being unable to produce larger

marginal gains (if no intercession with a larger priority is present)

or the current intercession value forces the agent to be outbid, the

process is terminated.

Step 5 [l12-17] — The valid task with the highest bid 𝑓𝑖 𝑗𝑖 is
selected. It is inserted in the path at the location 𝑛𝑖,𝐽𝑖 yielding
the largest marginal gain and the winning bids are updated.
The task is added at the end of the bundle b𝑖 and inserted at the

most optimal location in the path p𝑖 , and the winning bids list y𝑖
and winning agent list z𝑖 are updated the same way as it is done in

the base CBBA algorithm.

4.3 Phase 2: Consensus Process
Two modifications are necessary here to adapt the original consen-

sus phase to support bid intercession. First, 𝑓𝑖 and 𝜙𝑖 matrices are

shared alongside the 𝑦𝑖 , 𝑧𝑖 and 𝑠𝑖 . The updating process must then

be extended to first merge the received 𝑓𝑘 and 𝜙𝑘 matrices with lo-

cal 𝑓𝑖 and 𝜙𝑖 matrices following the prioritization logic (mentioned

previously in the auction phase section). This must be performed

before applying the consensus rules depicted in [3, Table 1]. Ad-

ditionally, unlike in the base merge function, an agent also drops

task 𝑗 and all the subsequent ones appearing in its bundle 𝑏𝑖 from

both its bundle 𝑏𝑖 and path 𝑝𝑖 if its local current bids matrix 𝑓𝑖 is

updated for a task 𝑗 :

𝑏𝑖 , 𝑝𝑖 ← 𝑏𝑖,:𝑗−1, 𝑝𝑖 \ 𝑏𝑖, 𝑗 : if 𝑞 > 𝑝 and 𝑞 ≠ 0 (6)

This is necessary to ensure that in the event of an intercession

with a smaller bid, the agent correctly releases the task (and con-

sequently all the ones that follow since their marginal gains were

calculated on the basis of the presence of task 𝑗 in the bundle). This

procedure is referred to as merge_r, which consists in merge with
equation (6) before line 2.
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Finally, and similarly to the base CBBA paper and the prioritisa-

tion logic, it is assumed that all ties occurring in the determination

of either 𝐽𝑖 in the auction phase, or 𝑧𝑖,𝐽𝑖 in the consensus phase are

resolved systematically.

4.4 Convergence
The algorithm’s convergence is unaffected by the introduction of

bid intercession, as its nature allows for it to inherit the underly-

ing decentralized method’s existing guarantees [3, section V-D].

Bid intercession simply adjusts the agents’ scoring process with-

out altering the core consensus mechanism, ensuring consistent

convergence across all agents.

5 EXPERIMENTAL EVALUATION
To evaluate the validity and applicability of bid intercession, a few

synthetic test cases are considered. We seek through this repre-

sentation to evaluate scenarios where one human operator with

higher context awareness seeks to steer the allocation process in a

specific direction to ensure a more efficient outcome. The dynamic

implemented here is the one described in Example 3.

5.1 Experimental Setup
We consider 4 robots and 50 tasks, positioned in a 20x20 grid, from

which we removed 10% of the edges (Figure 1). The goto c tasks

may be performed by any agent, and completing them can lead to

discovering a new action task. Those are either 𝑎1 tasks (observa-

tions 4 ), which may only be performed by agents equipped with

skill 𝑠1, or 𝑎2 tasks (resupply ~ ), which equivalently require the

skill 𝑠2. It is possible that no action task is found upon completing a

goto, which is denoted by 𝑎∅ . Agents are then created with different

skill sets (common goto skill, and one from {𝑎1, 𝑎2}), resulting in
two types of agents, � and Ê .

The robot agents possess a priority of 0, and evaluate their own

bids as the inverse of the shortest path length between their cur-

rent locations and a given task’s location. Note that if any agent

is not equipped with the required skill for performing a task, its

bid defaults to 0 (it is not possible to win a task with a bid of 0, this

ensures only agents capable of performing a task are considered

in the auction). The interceding agent possesses a priority of 1, and

unlike robots, it is capable of anticipating some action tasks (if any)

at a given goto task destination. For a given task, the interceding

agent will bid for all robots capable of performing a task and its

subsequent action task (if any), and produce bids magnitude larger

than the largest possible ones computed by all other agents (1/40
for a 20 × 20 grid). This agent represents a human operator inject-

ing higher situation awareness into the allocation process. During

each run, all robots start at the same location (bottom left of the

grid), and after an initial announcement of 5 tasks, the 45 others are

announced gradually throughout the run, from closest to farthest

from the starting point (note that agents have a vision radius of

1, and will detect/discover all tasks falling within it). Upon having

reached a consensus on an allocation, robots move to the corre-

sponding tasks’ locations (taking the shortest path), where they

possibly discover an action task. The simulation runs in epochs,

with tasks having a specific release epoch, and agents being able to

perform one action per epoch (move one step towards a goto task

destination, or perform an action).

We consider scenario configurations with different task require-

ments and fleet compositions: task requirements are defined by

the number 𝑎∅ of 𝑎∅ tasks, the number 𝑎1 (resp. 𝑎2) of 𝑎1 (resp. 𝑎2)

tasks; fleet compositions are defined by the number 𝑠1 of robots

equipped with 𝑠1 and the number of 𝑠2 robots equipped with 𝑠2.

We evaluate I-CBBA, our implementation of I-CBBA, where in-

tercession is applied to bids for tasks a robot can perform, and for

goto tasks followed by an action task a robot can perform. Here the

human operator predicts (or just acquired extra knowledge to know)

which action tasks will appear after goto tasks, and thus intercedes
for compatible robots. We evaluate I-CBBA at different rates of

interventionism. We define interventionism as the rate of interven-

tion of the operator in providing additional information through

intercession. The scenarios are tested at intervals of 10%, from 0

(no intervention, equivalent to pure CBBA) all the way to 100%,

where the operator intervenes for every single task encountered.

Finally, five key metrics are defined: total step count is the fleet’s
overall distance travelled, total tardiness measures the elapsed time

between task discovery and completion, and total goto tardiness and
total action tardiness track the accumulated delays for respective

task types. Lastly, total message count is the cumulative number

of messages exchanged during operations. The % match allocation
(ratio of instances where an agent undertook a goto task and its

subsequent action task) is also tracked to better observe and under-

stand the influence of bid intercession on the allocation process.

5.2 Results Analysis
The results from running simulated experiments using ROS 2 [10]

across 10 different task schedules for all configurations (totaling 880

individual runs) are presented in Figure 3. Each data point in the

plots represents the mean across all runs for a given scenario, with

corresponding min/max observed for given metric/interventionism

combinations. The following observations can be made.

Focusing on Figure 3a, a direct linear correlation can be observed

between the interventionism rate and the % matched allocation.

This metric is at its lowest at the 0% interventionism mark, with the

more unbalanced scenarios scoring the lowest (scenario (10, 39, 1)
scoring as little as 3% matched allocation initially). All scenario

results significantly improve with interventionism, with the low-

est mean reached being 76.25% matched allocation for (10, 39, 1),
and the largest being 89% for the (10, 39, 1). This relation can be

attributed to the fact that each operator intervention contributes

additional information specifically aimed at improving this metric.

Focusing on Figure 3d, a clear negative correlation can be ob-

served between interventionism and cumulated action tardiness.

This is easily explained by the fact that the additional information

provided through operator intervention allows for more effective

task allocation. It ensures that an agent only completes a goto task if
it is capable of completing the action task that follows. This results

in a drop in action tardiness to as little as 34 at 100% interven-

tionism (representing a drop of 84.9% from 0% interventionism).

Non-zero action tardiness may be attributed to two factors: oppor-

tunity completions (when a goto task is on the way), or a shortage

of one specific type of action task (in such scenario, and although
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Figure 3: Mean over 10 runs of our reference metrics vs. interventionism, for each of the four considered scenario configurations
using I-CBBA. Note that an interventionism rate of 0 is equivalent to using pure CBBA.

unlikely, an incorrectly skilled agent may get assigned a task it

is not specialized for as it does not have other tasks to prioritize).

With the exception of the most unbalanced scenario, the % matched

allocation achieved was lowest at 100% interventionism and does

not fluctuate majorly as interventionism increases. These results

demonstrate that the underlying consensus process is able to effec-

tively leverage this additional information in the allocation process

and enables the operator to target a specific aspect of the allocation

if desired, without refactoring the whole consensus process.

Intercession encourages the construction of bundles prioritizing

minimization of action tardiness over distance when possible. Con-

sequently, the improvements in action tardiness seen in Figure 3d

are a direct result of the trade-off of higher goto tardiness, resulting
in the positive linear correlations observed in some of the scenarios

in Figure 3e. This is a consequence of agents favoring the closest

goto tasks which are followed by action tasks they are capable of im-

mediately completing, as opposed to solely the closest tasks. Runs

with 0% interventionism (equivalent to pure CBBA) therefore often
achieved the lowest goto tardiness. It is also noted that this gap

grows as scenarios become more unbalanced, with the (10, 39, 1)
scenario resulting in an increase of 460% in goto tardiness.

Looking at Figure 3f, the results show that in such trade-offs, the

reduction in action tardiness generally effectively outweighs the

resulting increase in goto tardiness (with the reductions in total

tardiness going from 23.6% for the (0, 25, 25) scenario to as much as

30% for the (10, 20, 20) scenario), with the largest interventionism

rates consistently minimizing the total tardiness across all instances

but the last extreme case (where pure CBBA generated a total

tardiness 17.2% smaller on average). This may be attributed to

the under-utilization of available resources, and consequently a

significant degradation of goto tardiness occurs when solely a

single agent is capable of taking on the majority of tasks –limiting

the fleet to operate as if it was composed of a single agent. Note that

re-balancing the ratio of action tardiness to goto tardiness through

limiting bundle sizes could enable unskilled agents to complete

goto tasks, but would not improve total tardiness, as savings in

goto tardiness would directly transfer to action tardiness.

Despite shifting optimization goals, the results seen in Figure 3b

suggest that the algorithm is still able to optimize the base metric of

distance. The difference in performance here is limited, with most

case study variants falling within the margin of error from each

other. It is important to note however that while the total move

count is maintained and often improved, it is achieved while also

optimizing for tardiness (e.g. the results of the full intercession con-

figuration for scenario (10, 35, 5) suggesting a reduction of 7.3% in

step count in addition to the reduction of 80.6% in action tardiness).

This is a direct result of the choice of bid method more than the

process of intercession itself, but it nevertheless demonstrates that

intercession effectively provides the ability to adjust the evalua-

tion when worthwhile while maintaining overall performance to

achieve a general improvement over specific target metrics.

These improvements however come at the cost of additional

communication, as seen in Figure 3c. Intercession increases message

count, with 0% interventionism (pure CBBA) consistently resulting

in the lowest message exchanges. Higher intercession generally

linearly relates to an increase in message count.

Figures 4 and 5 represent two instances timelines for the scenario

(10, 20, 20). The top half of each plots graphs the various tardiness

and their evolution across the run, and the bottom visualize the

tasks backlog at each time step. The figure’s analysis demonstrate

that they effectively support the observations made in Figure 3.

Focusing on the aggregated tardiness per epoch plots, the effect

of intercession can be directly observed, with the action tardiness

values being almost completely flattened out when interceded on.
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Figure 4: Instance of scenario (𝑎∅ = 10, 𝑎1 = 20, 𝑎2 = 20), with 𝑠1 = 2, 𝑠2 = 2, 0% interventionism (base CBBA).
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Figure 5: Instance of scenarios (𝑎∅ = 10, 𝑎1 = 20, 𝑎2 = 20), with 𝑠1 = 2, 𝑠2 = 2, 100% interventionism.

This can be well observed by looking at the action tardiness curves,

with both 𝑎1 and 𝑎2 tardiness being flattened out in the 100% inter-

ventionism configuration.

The increase in action tardiness despite intercession (observed

at epoch 84 in Figure 5) can be attributed to two key factors: the

goto tasks location separation increase due to the circular release of

tasks and the un-even task load ratio of type 𝑎1 and 𝑎2. The uneven

ratio means that agents with no tasks matching their skillsets are

more likely to take on other tasks (this specific scenario presenting

a denser schedule of tasks 𝑎1 around the middle of the run, whereas

the 𝑎2 tasks are more clustered around the beginning, where the

distances are smaller), and the larger task spread further increases

the possibility of an agent incorrectly completing a goto task. Fur-

thermore increasing in distance means that agents require more

timesteps to move to the target locations, directly translating into

larger consequences for an incorrect goto completion.

6 CONCLUSIONS
We have introduced a new mechanism, intercession, to enable over-

lapping control in decentralized auction-based methods while pre-

serving the robustness and convergence guarantees of the original

method. Given a simplified MRTA problem of goto and subsequent

action tasks for a fleet of agents (all heterogeneous in nature), the

findings demonstrate the injection of enhanced situational aware-

ness by the operator, resulting in a consistent reduction of at least

66.6% in total action tardiness across all tests, albeit with increased

communication load. Those results were achieved with minimal

degradation to our goto tardiness in the exception of some specific

extreme edge cases, and while retaining similar performance in

total distance traveled compared to original CBBA.
These results lead us to conclude that bid intercession is a viable

and compelling method for effectively enabling agents to integrate

and leverage additional information provided by the interceding

agent (our operator) to enhance their autonomous allocation pro-

cess while retaining the robustness guarantees of the underlying

mechanism. This opening in mixed-initiative presents new collabo-

ration possibilities between humans and autonomous teams, and

provides a powerful tool for constructing complex yet seamless

coordination architectures effectively leveraging the strengths of

the respective actors. Understanding well these possibilities and

the associated limitations may prove crucial to best take advan-

tage of such mechanisms. Additionally, testing the performance,

dynamics, and resilience of such mechanisms on additional sce-

narios, such as ones tailored to investigate communication failure

or different intercession architectures would help further enhance

our understanding and understand when, where, and how to best

take advantage of such methods. The initial findings presented

here, generated using ROS2, lay the groundwork for future on-

ground experiments and contribute to the advancement of MRTA

for operational applications.
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