
Learning in Games with Progressive Hiding
Benjamin Heymann

Criteo AI Lab
Paris, France

b.heymann@criteo.com

Marc Lanctot
Google DeepMind
Montreal, Canada

lanctot@google.com

ABSTRACT
When learning to play an imperfect information game, it is often
easier to first start with the basic mechanics of the game rules. For
example, one can play several example rounds with private cards
revealed to all players to better understand the basic actions and their
effects. Building on this intuition, this paper introduces progressive
hiding, an algorithm that balances learning the basic mechanics
of an imperfect information game and satisfying the information
constraints. Progressive hiding is inspired by methods from stochas-
tic multistage optimization, such as scenario decomposition and
progressive hedging. We prove that it enables the adaptation of
counterfactual regret minimization to games where perfect recall
is not satisfied. Numerical experiments illustrate that progressive
hiding produces notable improvements in several settings.

KEYWORDS
Computational Game Theory, Information Relaxation, Counterfac-
tual Regret Minimization
ACM Reference Format:
Benjamin Heymann and Marc Lanctot. 2025. Learning in Games with Pro-
gressive Hiding. In Proc. of the 24th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2025), Detroit, Michigan, USA, May
19 – 23, 2025, IFAAMAS, 9 pages.

1 INTRODUCTION
This paper shows how the learning process in games with imperfect
information can be improved by relaxing the information constraints
with penalty-like methods. For a game theorist, games are mathe-
matical models to describe strategic interactions between agents (the
players of the game). Games, in their standard acceptance, which usu-
ally supports this definition, are often referred to as the “Drosophila
of Artificial Intelligence” [25].1 This comparison with the fruit
fly comes from the fact that games provide Artificial Intelligence
(AI) researchers with standardized, easily reproducible environments
where they can test and benchmark various AI techniques. Games
offer challenges that are complex enough to be interesting for AI
research, but still have well-defined rules. One of the longstanding
AI research questions about games is how to learn good strategies.

The field has advanced significantly due to breakthroughs where
AI algorithms have outperformed human players in strategic games,
illustrating the potent applications of AI in complex decision-making
1The fruit fly is widely used in experiments due to its ease of cultivation in large numbers
outside its natural habitat and its rapid reproduction cycle.

This work is licensed under a Creative Commons Attribution Interna-
tional 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025,
Detroit, Michigan, USA. © 2025 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

environments. Notable examples include Chess, Go, Poker and
Stratego [3, 6, 7, 26, 30, 36, 39].

While Chess and Go are perfect information games, Stratego and
Poker are imperfect information games, in the sense that the state of
the game is not fully observed by the players. Hence players must
account for the private information held by other players, as well
as how their actions reveal their private information. Notably, this
makes room for elements like bluffing [42]. Regret minimization at
scale played a key role in recent achievements in AI for imperfect
information games [6, 7, 26].

The AI community recently identified the card game Hanabi
as a challenge for AI [1]. What differentiates Hanabi from the
previously mentioned games is that it is a cooperative game2: all
players have the same objective. The difficulty comes from the
uncertainty of the draws and from the fact that the players cannot
communicate freely. The problem of pursuing a common objective
with limited communication is not new, and spans several fields,
in particular economic theory, control, game theory, and machine
learning [9, 15, 16, 19, 22, 27, 40, 44, 45]. Witsenhausen showed, with
his landmark counterexample [44], how imposing communication
constraints on a problem drastically changes the nature of the problem.

We present a general framework for dealing with information
in games. The framework is best described with the following real
life observation: when teaching a child how to play a game — like
Poker or Hanabi — with hidden information, one often starts with a
few plays where all the cards are revealed, and then, as the child is
learning, one starts hiding more and more information to make the
game more challenging. This metaphor summarizes the idea of the
main algorithm presented in this paper. Because of this metaphor—
and also as a tribute to Rockafellar and Wets’ progressive hedging
algorithm [35]3— we name the algorithm progressive hiding.

A common assumption in games is that players remember what
they see and what they do in the precise order of occurrence. In
his seminal work [18] on the tree representation of extensive form
games, this assumption is what Kuhn referred to as perfect recall.
One difficulty with a game such as Hanabi is that, if one wants to see
the whole group of players as one player, a team, then this team does
not satisfy the perfect recall assumption because this one (big) player
that constitutes the team is not allowed to remember the private
information from its past. This absence of perfect recall prevents us
from using key learning techniques [19, 21] such as counterfactual
regret minimization (CFR) [46]. As we show, progressive hiding’s
modification of the game allows recovering some notion of perfect
recall, which makes the new problem amenable to CFR. In an effort
to bridge ideas from decentralized control theory and computational
game theory, we depart from the customary tree notations and
introduce a hybrid between product games [15] and games on trees.

2the term same payoff games is also very often used
3See Section 3 for related work.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

969

https://orcid.org/0000-0002-0318-5333
https://orcid.org/0000-0003-4159-2519
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

This new, compact notation reveals quite practical for our purpose.
While product games were fully formalized relatively recently, they
are just the continuation of an idea that was hinted half a century ago
by Witsenhausen [45], specifically as a way to deal with setting such
as ours (communication constraints).

1.1 Contribution
Our main contribution – Theorem 2 – is to show how information
relaxation can be made compatible with learning in games. Informa-
tion relaxation has never been used in imperfect information games,
despite the fact that it is very close to how people discover how to
play games in real life.

While we mostly focus on same payoff settings in this paper, we
believe progressive hiding and information relaxation methods to be
full of potential for the competitive case too (as opposed to same
payoff games). The reason is similar to the one provided in the paper
on progressive hedging [35] for solving stochastic dynamic programs:
take a game for which a large part of the complexity comes from the
hidden information (think Stratego or Poker or Bridge). Without the
hidden information, those games could be amenable to deterministic
methods (dynamic programming, for instance). Progressive hiding
provides a way to navigate between the two worlds (deterministic
and stochastic). In this work, we deliberately focus on same payoff
games because we believe Theorem 2 illustrates well the strength of
the general philosophy of information relaxation.

Section 2 introduces some background, including the product
game notation, that will prove practical for our purpose. Section 3
is an attempt to make a historical connection between algorithmic
game theory and a class of stochastic programming technique called
scenario decomposition (e.g. progressive hedging). Section 4 presents
a penalty method for games that can be analyzed under the lens of the
proximal algorithms. This method is a first step toward our proposal,
and brings the optimization tools that will be assembled with the
learning ones in the second step. We then introduce in Section 5
progressive hiding (Algorithm 2), an algorithm that combines no-
regret learning and information-relaxation. We show, in particular,
how this approach allows us to recover the main property of CFR in
an auxiliary game. We document numerical experiments in Section 6.
Section 7 provides discussion on the limits of Algorithm 2. All proofs
and code are provided in the arXiv version of the paper.

2 PRELIMINARY
This section is dedicated to background material on learning in games.
There are different ways of modeling extensive form games [32],
typically modeled as game trees. In this paper, we borrow ideas from
the product form [15] as it better fits our needs for modeling the
information structure. Games in product form represent information
over a product set.

An important property of product games is that modifying the
information structure of a product game can be done without modi-
fying the product set over which this product game is defined. Such
property is not satisfied by the tree representation (see Appendix
on lumberjacking). Also, the product form provides a common
framework for game theory and causality theory [14].

In what follows, if 𝑆 is a set and 𝑠 ∈ 𝑆 , we will use the notation −𝑠
to refer to the set {𝑠′ ∈ 𝑆, 𝑠′ ≠ 𝑠} when it is clear what 𝑆 is from the
context. If 𝑛 is an integer, then we set [𝑛] = {1, 2, . . . , 𝑛}.

2.1 Motivation for using the product form
In an extensive form game (EFG), the order of play is encoded
in a tree structure. This notation originates from [18] and is used
extensively in game theory. In this paper, we use the more general
formalism of product games. Product games shift the focus from the
temporal order of play to the information available at each decision
nodes. The game is supported by a Cartesian product instead of being
supported by a tree. The reason to use this generalization of EFG is
the need for flexibility when we modify the information structure of
the game when doing information relaxation.

For example, suppose we discover at the end of the game if a
coin toss was head or tail. Then we might end-up with a different
tree representation when we allow the player to observe the coin
toss result at the beginning of the game. Similarly, if one consider
a game with hidden actions, and several possible variations where
some of those hidden actions are revealed. Then the resulting trees
will differ in their structures. For instance, if Bob and Alice play
Rock-Paper-Scissors, a tree that represent a modified game where
Bob observes Alice action (Alice plays first, Bob second) will not
be the same as a tree where Alice sees Bob action (Bob plays first,
Alice second).

In this work, the product formalism allows to abstract away from
the order of play encoded in the tree representation. It also allows
defining useful objects such as information maps and projectors in a
very compact manner. Compared to general extensive-form games as
in Osborne and Rubinstein [28, Chapter 11], Nature plays only once
at the very beginning, and the random state is revealed progressively
to the players. The order of play does not need to be known in
advance, as it is the case for games on tree. This choice of formalism
is made without loss of generality and based on convenience for the
problem considered in this paper.

2.2 Extensive Game in Product Form
We first introduce a minimalistic version of the product form 4 for
extensive form games, which is an alternative to the tree representa-
tion. The appendix contains more comprehensive information on the
product game formalism. In what follows, 𝑃 is the set of players in
the game, 𝐿 is a positive integer that represents the maximum number
of turns in the game (i.e., maximum length of any game), and𝑊

is a positive integer that represents the maximum number of legal
actions at any time. We denote by Δ the𝑊 -dimensional simplex. We
encode the available information to a player with an abstract, finite
set G. Otherwise said, G is a finite set that is used to encode the
players’ information as the game proceeds. The randomness owned
by the game itself (as opposed to the randomness controlled by the
players), sometimes referred to as Nature’s moves, is encoded with
a discrete probability space (Ω, P). The set Ω represents the space
where random events take place. For example, in a card game, Ω
would be the set of all possible orders of cards in the deck. In a
dice game, it would be the set of all possible sequences of dice rolls
during the game. There is a probability measure on Ω, denoted by
4without explicit references to the information algebras and the solution map

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

970

https://www.arxiv.org/pdf/2409.03875

P. For instance, in Poker, all possible orders of cards are equally
probable. Last we define the product set as H = Ω × [𝑊]𝐿 .

Given the primitives already introduced, a game in product form
consists of a tuple (P,A,X, 𝑟) where: P : [𝐿] → 𝑃 is a map that
indicates which player needs to play at stage 𝑖 ∈ [𝐿]; A : G→ [𝑊]
is a map that encodes the number of available actions at each stage
of the game; for all 𝑖 ∈ [𝐿], a map X𝑖 : H → G that encodes the
available information at each stage of the game, and that only depends
on the first 𝑖 components of H (Nature’s move and the predecessors);5
the map 𝑟 : H→ R𝑃 encodes the reward of the game, more precisely,
𝑟𝑝 is the reward of player 𝑝. For any element in H, we denote by ℎ∅
its first component (associated with Nature’s moves) and by ℎ𝑖 the
(𝑖 + 1)𝑡ℎ component, associated with the 𝑖𝑡ℎ move of the players.

2.3 Example of game in product form
The product form for Cooperative Matching Pennies (Figure 2)
involves one (team)-player represented by Alice and Bob. Nature
has two equiprobable moves in Ω = (=,≠). Alice and Bob pick their
decisions in (𝐻,𝑇) and (𝐻,𝑇 , 𝑃), respectively. So the product of
Nature’s set and the action sets is H = (=,≠) × (𝐻,𝑇) × (𝐻,𝑇 , 𝑃).
Bob only observes Alice’s move. Formally, for

ℎ1 =

(
𝜔1, 𝑑1

Alice , 𝑑
1
Bob

)
and ℎ2 =

(
𝜔2, 𝑑2

Alice , 𝑑
2
Bob

)
,

we have XBob (ℎ1) = XBob (ℎ2) if 𝑑1
Alice = 𝑑2

Alice , and since
Alice only sees Nature’s decision: XAlice (ℎ1) = XAlice (ℎ2) ⇐⇒
𝜔1 = 𝜔2. We do not care about the codomain of X as long as we
can encode this type of relation. The seminal paper on product
games [15] does not use the information map X, but this requires
manipulating more abstract objects (e.g., 𝜎-fields). Alice’s policy
on H can be reduced to a function on Ω via the information map.
Similarly, Bob’s policy can be represented by a function whose
domain is Alice’s decision set. Given such policies, sampling from
(=,≠), Alice’s policy, and Bob’s policy produces a sequence in H
with distribution 𝑄𝜇 that we present in Section 2.4.

2.4 Policies and Push-Forward Probability
Next, building on the primitives we introduced in Section 2.2, we
can now describe how a product game is played by specifying the
policies and the resulting push-forward probability. For a decision
time 𝑖 ∈ [𝐿], we denote by Λ̄𝑖 the set of (admissible) policies 𝜇𝑖 ,
where 𝜇𝑖 : Ω × [𝑊]𝑖−1 → Δ and supp 𝜇𝑖 (ℎ) ⊂ [A ◦ X𝑖 (ℎ)], that
is, the policy only selects admissible actions. Using a canonical
extension, we can identify 𝜇𝑖 with a map from H→ Δ that depends
at most on Nature’s move and the first 𝑖 − 1 decisions. For 𝑖 ∈ [𝐿], an
implementable policy 𝜇𝑖 ∈ Λ̄𝑖 should also satisfy, for any histories
ℎ and ℎ′ in the product space H

X𝑖 (ℎ) = X𝑖 (ℎ′) =⇒ 𝜇𝑖 (ℎ) = 𝜇𝑖 (ℎ′) . (1)

In words, an implementable policy depends solely on what player
P(𝑖) is supposed to know at the time of the decision. Relation (1)
is the non-anticipativity constraint [37], and indicates that the
policy 𝜇𝑖 should only depend on the information given by X𝑖 to
player P(𝑖) at step 𝑖. If a policy is not implementable, it means that
it needs some pieces of information that are not available at the time
5this assumption can be weakened, but helps the presentation

of the decision. We denote by Λ𝑖 the subset of policies from Λ̄𝑖

that are implementable. Also, we denote by Λ𝑝 and Λ̄𝑝 the sets of
implementable and admissible policy profiles of player 𝑝 for 𝑝 ∈ [𝑃]:
Λ𝑝 = ×𝑖,P(𝑖)=𝑝Λ𝑖 . We similarly define Λ and Λ̄ to refer to policy
profiles of all the players: Λ = ×𝑝Λ𝑝 .

The detail of the construction of a game in product form goes back
to Witsenhausen’s seminal paper, and was then clarified in Heymann
et al. [15], Witsenhausen [45]. We recognize that the construction
might feel uneasy for readers used to the tree formulation. We refer
to [15, 45] for more details on this construction.

How do we play a game in product form? Given a deterministic
policy profile 𝜇 and an element 𝜔 of Ω, there is a unique element ℎ
of H that satisfies (𝜔, 𝜇 (ℎ)) = ℎ. We pinpoint that this relation is on
the full strategy profile (on all the players, not only on a player of
interest). The relation states that if we look at a realization of a game
(all the decisions), and replay the decisions along the path using
the strategies that were used for this realization, we should recover
the realization itself. It is a well-posedness condition. Typically, one
wants to exclude temporal paradoxes. In a game on tree, one usually
first describes the game with deterministic policies and then specifies
a way for the players to randomize. Here it is the same, the well-
posedness of the game is checked on a deterministic specification.
Then [15] provide constructions to extend the space of pure strategies
to randomized strategies.

Given a policy profile (𝜇𝑖)𝑖∈[𝐿] , we can therefore construct the
associated push-forward probability6, denoted by Q𝜇 , on the product
spaceH. It is a probability on the realizations of the game. It obviously
depends on the strategies of the players 𝜇. We then denote by E𝜇
the associated expectation operator. Last, we define a notation
for modifying policies that allows for easy adjustment of specific
components. Let 𝜇 be a base policy, and consider the operation of
altering its 𝑖-th component to a new value 𝑘. This modification is
denoted by 𝜇 (𝑖 → 𝑘). 7

An 𝜖-Nash equilibrium is an admissible strategy profile 𝜇 so
that no player can improve her outcome by more than 𝜖 from an
unilateral deviation, that is, for any player 𝑝 and any other admissible
strategy profile 𝜇′𝑝 , E𝜇𝑝 ,𝜇−𝑝 [𝑟𝑝 (h)] + 𝜖 ≥ E𝜇′𝑝 ,𝜇−𝑝 [𝑟𝑝 (h)] . A Nash
equilibrium is a 0-Nash equilibrium.

2.5 Perfect Recall and Information Maps
Perfect recall is a standard assumption in extensive-form games [38,
46]. An important property of perfect recall is that it implies the
equivalence between mixed and behavioral strategies [15, 18]. In
words, perfect recall means that the player has perfect memory of what
they see and do and the precise order that information was revealed
over the turns. In our context, perfect recall for player 𝑝 corresponds

6The term push-forward comes from probability theory.
7Formally, the modified policy 𝜇 (𝑖 → 𝑘) is given by

𝜇 (𝑖 → 𝑘) 𝑗 =
{
𝑘 if 𝑗 = 𝑖,

𝜇 𝑗 otherwise.

This notation can be extended to accommodate multiple simultaneous modifications.
For instance, changing the 𝑖-th component to 𝑘 and the 𝑗 -th component to 𝑙 in 𝜇 is
expressed as 𝜇 (𝑖 → 𝑘) (𝑗 → 𝑙) = 𝜇 (𝑖 → 𝑘, 𝑗 → 𝑙) .

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

971

to the two conditions, for any 𝑖 < 𝑗 such that P(𝑖) = P(𝑗) = 𝑝(
X𝑖 (ℎ) ≠ X𝑖 (ℎ′) =⇒ X𝑗 (ℎ) ≠ X𝑗 (ℎ′)

)
(2)

and
(
ℎ𝑖 ≠ ℎ′𝑖 =⇒ X𝑗 (ℎ) ≠ X𝑗 (ℎ′)

)
. (3)

The first condition states that if the information known about ℎ
and ℎ′ differs on turn 𝑖, then this must remain true at a future turn
𝑗 > 𝑖. The second condition states that if the action taken at turn
𝑖 is different, then the player must remember this information at a
later turn 𝑗 > 𝑖. While the perfect recall assumption is realistic when
the player corresponds to a single agent, this is less so when the
player is used to model a team of several agents. The absence of
perfect recall in a game prevents the use of several tools, for instance,
backward induction, CFR [19, 46], and the equivalence of behavioral
and mixed policies [18].

We say that an information map X+
𝑖

is finer than an information
map X𝑖 if for any ℎ ∈ H X𝑖 (ℎ) ≠ X𝑖 (ℎ′) =⇒ X+

𝑖
(ℎ) ≠ X+

𝑖
(ℎ′). If

X+
𝑖

is finer than X𝑖 , we can also say equivalently that X𝑖 is coarser
thanX+

𝑖
. We say thatΛ+ ⊂ Λ̄ is induced by an information map profile

X+ if it is the set of policy profiles from Λ̄ that are implementable
with respect to X+. When we take a finer information map, the game
become in some sense easier, because there is less uncertainty. The
idea of information relaxation is to take a finer information map to
help the learning process, and then penalize the usage of the free
information provided. An important tool to do so is the projector,
which we define next.

2.6 Projector
Let 𝜇 be any full support implementable policy profile, and H̃ be the
support of Q𝜇 . For 𝜇0 ∈ Λ̄ of full support, we define Proj𝜇0 (𝜇) as the
element 𝛾 of Λ̄ such that

𝛾𝑖 (ℎ) = E𝜇0 [𝜇𝑖 (h’) |X𝑖 (h’) = X𝑖 (ℎ)] ∀𝑖 ∈ [𝐿] ∀ℎ ∈ H̃. (4)

Suppose 𝜇𝑖 was defined using an information map finer than X, then,
by property of the condition expectation, the projector transforms 𝜇𝑖
into an implementable policy for X𝑖 .

We have the following key properties (adapted from [35]):

Proposition 1. ∀𝜇 ∈ Λ̄, 𝜇 ∈ Λ ⇐⇒ Proj𝜇0 (𝜇) = 𝜇.

Proposition 2. Proj𝜇0 ◦ Proj𝜇0 = Proj𝜇0 .

Notably, proposition 1 provides an alternative representation of
the non-anticipativity constraint (1).

2.7 No-regret learning in games
No-regret learning. The theory of online learning envision a

decision maker that makes sequential decisions 𝑥𝑡 in a convex,
compact set X at each epoch 𝑡 = 1 . . .𝑇 , afterwhat the (possibly
adversarial) environment outputs a concave reward ℓ𝑡 . An impor-
tant metric of success for an algorithm is the regret, defined as
max𝑥∈X

∑𝑇
𝑡=1 ℓ𝑡 (𝑥) −

∑𝑇
𝑡=1 ℓ𝑡 (𝑥𝑡) . A regret minimization algorithm

is one where this regret grows at a rate of 𝑜 (𝑇). An algorithm with
this property is called Hannan-consistent. Regret minimization algo-
rithms play a central role in optimization and game theory, because
they can be used to maximize a function or find approximate Nash
equilibrium [2]. For example, in the zero-sum two-player setting,

one can find 𝜖-Nash equilibrium by repeating the game with two
Hannan-consistent learners.

CFR. We next describe counterfactual regret minimization (CFR),
which was introduced in [46] and extended in many papers, in
particular [17, 19, 21, 23]. For 𝑘 ∈ [𝑊] denote by 𝛿𝑘 the constant
policy that always select action 𝑘. The CFR algorithm keeps a
collection of local regret minimizers indexed by {(𝑖, 𝑔) ∈ [𝐿] ×
G;𝑔 ∈ X𝑖 (H̃)}. Then at each step, the regret minimizer (𝑖, 𝑔) is
fed with the reward vector of size [A(𝑔)] and of kth component
E𝛿𝑘 ,𝜇𝑡−𝑖 [𝑟P(𝑖) (h) |X𝑖 (h) = 𝑔] for 𝑘 ∈ [A(𝑔)]. The strength of CFR
is that when a player satisfies the perfect recall assumption 2, their
overall regret is upper-bounded by the sum of the regrets of the local
regret minimizers.

3 RELATED WORKS
In this section, we attempt to draw a connection between algorith-
mic game theory and a stochastic programming technique called
scenario decomposition. As argued in [35] a common methodology
for addressing uncertainty involves initially adopting a deterministic
simplification. Practitioners first solve the problem for some known
scenarios, thereby establishing a baseline of deterministic solutions.
Subsequently, these solutions are aggregated to incorporate uncer-
tainty. This approach simplifies complex problems by breaking them
down into more manageable components.

In game theory, this type of approach is sometimes branded
as Perfect Information Monte Carlo search (PIMC search [24]).
Motivated by the unexpected success of the methods in Bridge [12],
Skat [8] and Hearts [43], the authors of [24], discuss conditions for
PIMC to work. While the theoretical limit of the PIMC approach
has been recognized very early [10], it still achieves state of the art
performance in games such Skat and Bridge. Further improvements
of PIMC are proposed in [11, 41].

Paraphrasing the authors of [35], the aim of progressive hedging
is to provide "a rigorous algorithmic procedure for determining
(...) a policy in response to any weighting of the scenarios". The
algorithm iteratively tweaks the rewards in each scenarios so that
at some point, the procedure finds a policy that is adapted to the
uncertainty filtration. The algorithm leverages the ideas of augmented
Lagrangian and proximal algorithms, and enjoys theoretical guar-
anties under some convexity assumptions. Progressive hedging was
recently adapted to variational inequalities [34]. In the same vein,
the recent monograph [37] presents Lagrangian methods applied to
non-anticipativity constraints in the context of stochastic program-
ming. The discretization of the random space and the introduction
of stochastic dual variables allows decomposing stochastic programs
per scenarios. The dual interpretation comes with important results
from convex analysis [33].

Crucially, with these stochastic programming techniques, the
decomposition is done per scenario, not per agent. To apply online
learning techniques, we would prefer to obtain a decomposition
per agent. Furthermore, in stochastic optimization, a sole decision
maker optimizes jointly all the decisions. By contrast, in games with
imperfect information, players do not observe the same information,
and the action of a player can influence what the other players
observe.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

972

4 INFORMATION RELAXATION
In this section, we combine the penalty method and proximal algo-
rithms [29] to produce a player best response, that is, a policy that
is optimal given the policy of the other players. While the resulting
Algorithm 1 might be of independent interest, it serves as a guiding
principle for the design of progressive hiding, presented in the next
section. We first reduce to the case where |𝑃 | = 1 by fixing the poli-
cies of all players but one. Let Λ̃ ⊂ Λ̄ induced by an information map
profile X̃ such that Λ ⊂ Λ̃. Instead of restricting our search to imple-
mentable policies, we could optimize over Λ̃. However, the optimal
policy would very likely not satisfy the non-anticipativity constraint.
Using Proposition 1, we suggest to favorize implementability through
a penalty term −𝜆 | |𝜇 − Proj(𝜇) | |2, where Proj is a projector as intro-
duced in Section 2.6 induced by a policy 𝜇0 and | | · | | is the reweighted
𝐿2 norm associated with 𝜇0. This idea drives us to a relaxed version
of the problem of finding an implementable best response. Indeed,
setting L(𝜇, 𝜆) = E𝜇 [𝑟𝑝 (h)] −𝜆 | |𝜇 − Proj(𝜇) | |2, we propose to solve
the relaxed problem

max
𝜇∈Λ̃
L(𝜇, 𝜆) . (5)

Observe that, because of the penalty, the criterion is unusual and
might be impractical for many game solving approaches. A first
step to address this difficulty is Theorem 1, which states that one
can produce a local optimum by composing two proximal steps,
which can be analyzed under the lens of the Majorize-Minimization
Algorithm (Algorithm 1). Progressive hiding builds on this idea by
adding a linearization step as in [47] for online convex problems.

Algorithm 1: Resolution by Information Relaxation

Input: 𝜆 > 0, 𝜇 (0) ∈ Λ̄, 𝑇 ∈ N
Initialization: 𝜇 = 𝜇 (0)

for 𝑡 ← 1 to 𝑇 do
𝛾 ← Proj(𝜇) // projection step

𝜇 ← arg max
𝜇∈Λ̃ E𝜇 [𝑟𝑝 (h)] − 𝜆 | |𝜇 − 𝛾 | |2 // proximal

step

endfor
return (𝜇,𝛾)

Theorem 1. Fix 𝜆 > 0, 𝜇0 ∈ Λ̄ and denote by (𝜇𝑇 , 𝛾𝑇) the output
of Algorithm 1, then L(𝜇𝑇 , 𝜆) is non-decreasing and admits a limit.

Proposition 3. We have the relation

max
𝜇∈Λ

E𝜇 [𝑟𝑝 (h)] ≤ max
𝜇∈Λ̄

E𝜇 [𝑟𝑝 (h)] − 𝜆 | |𝜇 − Proj(𝜇) | |2 . (6)

The type of upper bound of Proposition 3 is often used to estimate
duality gap in operations research [4]. Observe that when 𝜆 is small,
Problem (5) becomes closer to the problem of finding an optimal
policy in Λ̃, so the couple (𝜇,𝛾) produced by Algorithm 1 might not
satisfy 𝜇 being close to 𝛾 , which means that 𝜇 might be far from
implementable. By contrast, if 𝜆 is large, one expects 𝜇 and 𝛾 to be
close, however, because of the proximal term, in each iteration only
solutions very close to the previous steps will be considered, and

we might get stuck with a local optima. In practice, many strategies
could be used to solve the arg max step in Algorithm 1. In particular,
if the auxiliary game (with Λ̃ instead of Λ) satisfies perfect recall,
then one can rely on backward induction. The next section, which
presents our main contribution, is guided by the idea of combining
the philosophy of Algorithm 1 with regret minimization approaches.

5 PROGRESSIVE HIDING
We next present an algorithm — progressive hiding — that replicates
the philosophy of information relaxation in the framework of no-
regret learning by introducing an auxiliary game. This section also
contains the article principal contribution, which is Theorem 2. We
suppose the players in −𝑝 = 𝑃 \ {𝑝} play according to a policy profile
𝜇𝑡−𝑝 at stage 𝑡 .

5.1 Algorithm
We suppose we have access to a class of low-regret algorithms
that implements two functions: Observe (to get the realization
of vector of linear reward) and Decide (to output a probability
distribution on the decision). Progressive hiding requires at each time
𝑡 a non-negative penalty parameter 𝜆𝑡 for the non-anticipativity
constraint violation. This sequence of parameters 𝜆𝑡 might be time
adaptive to allow for more flexibility at the beginning, but still
shift toward implementability at the end of the learning process.
Progressive hiding also requires an information map X̃, which
is a refinement (cf. Section 2.5) over the information map X. For
example, X̃ can inform the player about the hands of its opponents,
or about what other teammates saw in the previous turns. The
finer the information map X̃, the more additional information is
provided in the auxiliary game. Notably, ensuring that perfect recall
is satisfied in the auxiliary game seems to be a fruitful direction,
as indicated by Theorem 2. Last, progressive hiding also requires
a sequence of projectors Proj𝑡 as defined in Section 2.6. We set
Proj𝑡 = Proj𝜇𝑡𝑝 ,𝜇𝑡−𝑝 . We denote by 𝐼𝑝 the elements 𝑖 of [𝐿] such

that P(𝑖) = 𝑝, and we set 𝐺𝑖 = X̃𝑖 (H), for 𝑖 ∈ 𝐼𝑝 . We introduce
the notation E𝜇 [r𝑝 |𝑔] = E𝜇 [𝑟𝑝 (h) |𝑔 ∈ {X̃𝑖 (h), 𝑖 ∈ 𝐼𝑝 }]. Last, we
introduce the time-dependent, random penalty, for 𝑖 ∈ 𝐼𝑝 and ℎ ∈ H̃

ℓ𝑡𝑖 (𝜇𝑖 (ℎ), X̃𝑖 (ℎ)) = 𝜆𝑡 | |𝜇𝑖 (X̃𝑖 (ℎ)) − Proj𝑡 (𝜇𝑡𝑝)𝑖 (X̃𝑖 (ℎ)) | |2 . (7)

The right-hand side of Equation (7) makes sense because (1) 𝜇𝑖 is
a function of X̃𝑖 (ℎ), (2) Proj𝑡 (𝜇𝑡𝑝) is a function of X𝑖 (ℎ) and X̃ is
finer than X. Equation 7 corresponds to a penalization of the lack of
implementability of the current solution.

Let 𝜇𝑡 be the iterates of progressive hiding defined in Algorithm 2.
We denote respectively by

𝜚𝑡 (𝜇𝑝) = E𝜇𝑝 ,𝜇𝑡−𝑝

[
𝑟𝑝 (h) −

∑︁
𝑖∈𝐼𝑝

ℓ𝑡𝑖 (𝜇𝑖 (h), X̃𝑖 (h))
]
,

𝑅𝑇 = 1/𝑇 max
𝜇∈Λ̃

𝑇∑︁
𝑡=1

𝜚𝑡 (𝜇𝑝) − 𝜚𝑡 (𝜇𝑡𝑝),

the new criteria for the player of interest at a given time step 𝑡 , and
the average regret 𝑅𝑇 in the auxiliary game with relaxed information
constraints and penalty for violation. Also, for 𝑖 ∈ 𝐼𝑝 and 𝑔 ∈ 𝐺𝑖 , we

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

973

set

𝜚𝑡 [𝑖, 𝑔] [𝜇𝑖] = E𝜇𝑡𝑝 (𝑖→𝜇𝑖),𝜇−𝑝

[
𝑟𝑝 (h)

−𝜆𝑡
(
2⟨𝜇𝑡𝑖 (h) − Proj𝑡 (𝜇𝑡𝑝)𝑖 (h) | 𝜇𝑖 ⟩

)
−

∑︁
𝑖′>𝑝𝑖

ℓ𝑡𝑖′ (𝜇
𝑡
𝑖′ (h), X̃𝑖′ (h))

����𝑔],
which corresponds to the local criterion optimized by progressive
hiding, and𝑅𝑇

𝑙𝑜𝑐
(𝑖, 𝑔) = 1/𝑇 max

𝜇𝑖 ∈Λ̃𝑖

∑𝑇
𝑡=1 𝜚𝑡 [𝑖, 𝑔] (𝜇𝑖)−𝜚𝑡 [𝑖, 𝑔] (𝜇𝑡𝑖)

the local regret associated with this local criterion. Remember that
the projection can also be regarded as a weighted average or a
conditional expectation. The last term corresponds to the future
quadratic penalties the player will incur on the current scenario if
policy 𝜇𝑖 is chosen and the other policy components are kept fixed.
We also set 𝑅𝑇,+

𝑙𝑜𝑐
(𝑖, 𝑔) = max

(
𝑅𝑇
𝑙𝑜𝑐
(𝑖, 𝑔), 0

)
.

Progressive hiding is displayed in Algorithm 2.

Algorithm 2: Progressive Hiding
Initialization: Initialize RegrMin[𝑖, 𝑔] for (𝑖, 𝑔) ∈ 𝐼𝑝 ×𝐺𝑖

for 𝑡 ← 1 to 𝑇 do
foreach (𝑖, 𝑔) ∈ 𝐼𝑝 ×𝐺𝑖 do

𝜇𝑡
𝑖
(𝑔) ← RegrMin[𝑖, 𝑔] .Decide() // local

no-regret decisions

end
𝛾 ← Proj𝑡 (𝜇𝑡𝑝) // Projection step

foreach (𝑖, 𝑔) ∈ 𝐼𝑝 ×𝐺𝑖 do
𝜃𝑖,𝑔 ← (𝜚𝑡 [𝑖, 𝑔] [𝛿𝑑])𝑑∈[A𝑖 (𝑔)] // reward in the

auxiliary game

RegrMin[𝑖, 𝑔] .Observe
(
𝜃𝑖,𝑔

)
// feed the local

learners

end
endfor
return 𝛾

Interpretation of Algorithm 2. Suppose that at stage 𝑡 of the
algorithm, the policy is 𝜇𝑡

𝑖
for 𝑖 ∈ 𝐼𝑝 . Then for 𝑖 ∈ 𝐼𝑝 and 𝑔 ∈

𝐺𝑖 , the local reward vector that is fed to the regret minimizer is
E𝛿𝑘 ,𝜇𝑡−𝑖 ,𝜇𝑡−𝑝 [𝑟𝑝 (h) |X̃𝑖 (h) = 𝑔] with 𝑘 in [A(𝑔)]. We add a term
proportional to the gradient of −||𝛾𝑖 (𝑔) −𝜇𝑡𝑖 (𝑔) | |

2 so that we optimize
for the penalized criterion (5). It should be noted that thanks to the
projection step, the algorithm output an implementable policy no
matter the choice of 𝜆 and X̃. While the rational is different, we still
note that the modification of a game payoff with a proximal term that
makes the full criterion policy-dependent is also observed in [31]. In
our case, however, the proximal term contains a projection, and is
used to push the solution toward implementability.

5.2 Properties
Theorem 2. Suppose X̃ satisfies the perfect recall condition 2.

Then the overall regret is bounded according to the relation 𝑅𝑇 ≤∑
𝑖∈𝐼𝑝

∑
𝑔∈𝐺𝑖

𝑅
𝑇,+
𝑙𝑜𝑐
(𝑖, 𝑔).

Otherwise said, Theorem 2 states that CFR can be applied in
the auxiliary game. However, note that the regret 𝑅𝑇 is defined
with respect to the auxiliary game payoff. Mirroring Theorem 1
for Algorithm 1, Theorem 2, with this bound on the regret in the
auxiliary game, quantifies what Algorithm 2 seeks.

Proof Sketch for Theorem 2. The inductive proof borrows some
aspects of [46] with the additional penalty terms that need to be
accounted for.

The next property (which does not require perfect recall to hold)
allows sizing the distance between 𝜇𝑡 and the implementable set.

Proposition 4.

1/𝑇
𝑇∑︁
𝑡=1

©«𝜆𝑡E𝜇𝑡𝑝 ,𝜇𝑡−𝑝
∑︁
𝑖∈𝐼𝑝

[
| |𝜇𝑡𝑖 (h) − Proj𝑡 (𝜇𝑡𝑝)𝑖 (h) | |2

]ª®¬ ≤ 𝑅𝑇 + 2.| |𝑟 | |∞ .

While we leave the choice of 𝜆𝑡 open, we report from our prelimi-
nary experiments that selecting a constant value with a grid search
seems a viable strategy.

An important assumption to guarantee low-regret with counter-
factual regret minimization is that the player (or the group of player)
satisfies perfect recall. In practice, to cope with games of large size,
the algorithm is often applied with an approximation of the game
representation, which implies that perfect recall might not hold.
Similarly, here, while we can provide guaranty when the relaxation
induces perfect recall to hold, we also believe that for applications,
an approximation of the perfect recall could also be envisioned for
scalability concerns.

6 EXPERIMENTS
This paper focuses on games without perfect recall because we
identify this setting as a relevant use case, since the method allows
recovering Counterfactual Regret Minimization (CFR). In the com-
petitive setting, a modified game can similarly be defined using
either static information (hidden cards in the deck, dice results)
or dynamic information (actions of the opponents) to improve the
learning process, but this is left for future work.

This section reports on preliminary numerical experiments that
complement the theoretical findings. We tested three implementations
of Progressive Hiding on three different (team) games.

6.1 Trade Comm
We run two versions of progressive hiding on Trade Comm [20]
because the game is elementary to solve for a human, but appears
to be quite challenging for learning algorithms [40]. Furthermore,
the game is parametrized by two parameters, which allows us to
test different settings. The code is provided in the Supplementary
Material. Of independent interest, the code closely aligns with the
product game description, hence despite their equivalence in our
context, the tree, and product representations lead to distinct coding
paradigms. The no-regret learner we used for this game is FTRL
with entropic regularization.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

974

Figure 1: Learning outcomes (E𝛾𝑡 [𝑟𝑡 (h)]) distribution for the three information map baseline, recall and cheated on Trade Comm
with parameter (𝑚,𝑛) = (2, 2) (left) and (𝑚,𝑛) = (3, 2) (right).

Trade Comm is a common-payoff communication game. Each of
the two players randomly receives one of several items in [𝑛] (𝑠1 and
𝑠2). The first player communicates by choosing one out of several
possible messages in [𝑚], denoted by𝑚1, which the second player
observes. Then, the second player also selects a message (in [𝑚]),
denoted by𝑚2, for the first player to see. Both players then secretly
request a trade involving one of the possible item combinations
((𝑑1

1 , 𝑑
1
2) and (𝑑2

1 , 𝑑
2
2)). A trade is successful if both players request

to exchange their items for each other’s. They both earn a point
if the trade works out, and none if it doesn’t. Despite seeming
straightforward, Trade Comm effectively highlights the challenges in
same payoff games. We showcase that information relaxation offers
a range of strategies through the choice of the information map X̃
and the penalty schedule 𝜆𝑡 .

Formally, 𝑃 = 1, (𝑠1, 𝑠2) ∈ Ω = [𝑛] × [𝑛], P is the uniform
distribution on Ω, the product space H is

([𝑛] × [𝑛])︸ ︷︷ ︸
Ω

× [𝑚]︸︷︷︸
message 1

× [𝑚]︸︷︷︸
message 2

× ([𝑛] × [𝑛])︸ ︷︷ ︸
trade request 1

× ([𝑛] × [𝑛])︸ ︷︷ ︸
trade request 2

.

The information map X is X1 (ℎ) = 𝑠1, X2 (ℎ) = 𝑠2, X3 (ℎ) =

(𝑠1,𝑚1,𝑚2), X4 (ℎ) = (𝑠2,𝑚2,𝑚1), the available actions map A is
A1 (ℎ) = [𝑚],A2 (ℎ) = [𝑚],A3 (ℎ) = [𝑛] × [𝑛],A4 (ℎ) = [𝑛] × [𝑛],
and, last, the reward is 𝑟𝑝 (ℎ) = [𝑑1

1 = 𝑠1] · [𝑑2
2 = 𝑠1] · [𝑑2

1 = 𝑠2] · [𝑑1
2 =

𝑠2]. We can check that perfect recall is not satisfied for 𝑛 > 1.
We envision three possible information maps: the "original" in-

formation map X, the "cheater" information map that reveals the
private information, but does not record the message sent. This
type of imperfect recall can be desired for computational efficiency
in the same spirit as game abstractions are used: X𝑐ℎ𝑒𝑎𝑡1 (ℎ) =

(𝑠1, 𝑠2), X𝑐ℎ𝑒𝑎𝑡2 (ℎ) = (𝑠2, 𝑠1), X𝑐ℎ𝑒𝑎𝑡3 (ℎ) = (𝑠1, 𝑠2,𝑚2), X𝑐ℎ𝑒𝑎𝑡4 (ℎ) =
(𝑠2, 𝑠1,𝑚1), and a perfect recall information map, that, as it names sug-
gest, ensures perfect recall: X𝑃𝑅

1 (ℎ) = (𝑠1), X𝑃𝑅
2 (ℎ) = (𝑠1, 𝑠2,𝑚1),

X𝑃𝑅
3 (ℎ) = (𝑠1, 𝑠2,𝑚1,𝑚2), X𝑃𝑅

4 (ℎ) = (𝑠1, 𝑠2,𝑚1,𝑚2, 𝑑1
1 , 𝑑

1
2). We in-

sist that the information maps remain static during training. Progres-
sive hiding is achieved entirely by adjusting the penalty parameter
sequence. Both the cheater map and the perfect recall map could be
used. The paper does not address which map is theoretically better,
as this is beyond the scope of the current work. However, Theorem 2
suggests that ensuring perfect recall is a reasonable approach.

A

B

1

−10

0

B

−10

1

0

A

B

−10

1

0

B

1

−10

0

=

T

T
H
P

H
T
H
P

̸=
T

T
H
P

H T
H
P

Figure 2: Tree representation of Cooperative Matching Pennies,
introduced in Section 6.2. First a random state is sampled among
SAME or DIFFERENT. Alice, the first player, observes the
outcome of this random event and then chooses between TAIL
and HEAD. Bob, the second player, knows Alice’s choice but
does not know the state of nature. Bob then makes his decision,
choosing either TAIL, HEAD, or PASS. The payoff, indicated in
the leaves, is the same for both player.

The Appendix in the supplementary material contains more details
on the experiments. We compare the three information maps for
(𝑛,𝑚) = (2, 2) and (𝑛,𝑚) = (3, 2) in Figure 1. The dashed lines
correspond to the 10% quantiles, and the full line to the average
value, over 100 runs with randomized initial policy. We see that the
methods relying on progressive hiding beat the baseline on the two
examples. Progressive hiding reaches the optimal payoff more often
and faster than the baseline. It is notable that even cheated, which
consists in an information relaxation not big enough to satisfy perfect
recall, still induces a clear improvement over the baseline.

6.2 Cooperative Matching Pennies
The game is described in Figure 2. We designed this game so that it is
a difficult game for the agents, but the solution is easy to see. Indeed,
Bob is incentivized to pass in the early learning stages, so that the
learning stops. We pitted a Monte-Carlo version of CFR versus its

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

975

Figure 3: Distribution of the best maximal payoff obtained along
the learning for each of the 50 training for Abstracted Tiny
Bridge. According to [40], 20.32 is the performance of the best
joint policy that does not requires coordination.

progressive hiding equivalent. We used a penalty parameter of 0.05
for progressive hiding. We considered the learning successful if,
after 400 episodes, the algorithms reached an expected payoff greater
than 0.95. We repeated the experiment 1000 times. While CFR never
succeeded, progressive hiding succeeded 48% of the time.

6.3 Abstracted Tiny Bridge
This game is available in Open Spiel [20]8. Abstracted Tiny Bridge
is a simplified, cooperative version of contract bridge that preserves
key strategic aspects. In this game, each player privately receives one
of 12 possible hands. The players then engage in bidding to set the
contract. The overall payoff is determined by the selected contract, the
hand of the player who chose the contract, and the hand of the other
player. The game’s challenge lies in using bids to both communicate
hand information and establish the contract, with fewer choices
remaining as bidding progresses. We tested progressive hiding with
regret matching. Instead of setting a value for the penalty parameter,
we used a dynamic penalty parameter to control the expected payoff
of the relaxed policy. The result of this experiment is summarized in
Figure 3. It is notable that we were able to achieve those results using
only 75 episodes, while the authors in [40] used 10 million episodes
for their baselines, and 100 thousands for their algorithm (CAPI).
We were unable to achieve the payoff of CAPI (close to 21, while our
peak is at 20.76) though, still progressive hiding enjoys performance
comparable to the other methods but with a microscopic budget of
episodes.

7 DISCUSSION
In this article, we show how information relaxation can be made
compatible with learning in games. We build on no-regret learners to

8see https://github.com/google-deepmind/open_spiel/blob/master/open_spiel/games/
tiny_bridge/tiny_bridge.h for a brief explanation by the developers of the library

propose progressive hiding. We show that the algorithm is principled
and showcase promising experimental results.

Limitation. The main limitation of progressive hiding is its local
nature, which stems from our definition of regret. Another limitation
of progressive hiding is its scalability, but we can be optimistic in the
possibility to combine the method with Monte Carlo sampling [21]
and deep learning approaches [5, 13]. Last, a question that is not
addressed in this work is how to choose 𝜆𝑡 .

Further work. A question that is not fully answered in this work is
the choice of information map to perform the information relaxation.
It seems intuitive that this question relates to the literature on game
abstractions. Also, while we introduced information maps (i.e.,
functions) to encode the player’s knowledge for the sake of simplicity,
it seems that information fields [9] because they have a lattice and
algebraic structure, would be a better mathematical tool if one wants
to go further. Typically, an information field of interest is the smallest
field greater than the original field that ensures that perfect recall is
satisfied. In this direction, it would be interesting to know if there
exist informational properties other than perfect recall that allow for
decomposition results.

ACKNOWLEDGMENTS
BH would like to thank Michel De Lara for introducing him to
Witsenhausen’s model. We thank the anonymous reviewers and the
area chair for their constructive feedback.

REFERENCES
[1] Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Fran-

cis Song, Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes,
Iain Dunning, Shibl Mourad, Hugo Larochelle, Marc G. Bellemare, and Michael
Bowling. 2020. The Hanabi challenge: A new frontier for AI research. Artificial
Intelligence 280 (2020), 103216. https://doi.org/10.1016/j.artint.2019.103216

[2] Avrim Blum and Yishay Mansour. 2007. Learning, Regret Minimization, and
Equilibria. Cambridge University Press, 79–102.

[3] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. 2015.
Heads-up limit hold’em poker is solved. Science 347, 6218 (2015), 145–149.

[4] David B Brown, James E Smith, et al. 2022. Information relaxations and duality
in stochastic dynamic programs: A review and tutorial. Foundations and Trends®
in Optimization 5, 3 (2022), 246–339.

[5] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. 2019. Deep
Counterfactual Regret Minimization. In Proceedings of the 36th International
Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 793–802.
https://proceedings.mlr.press/v97/brown19b.html

[6] Noam Brown and Tuomas Sandholm. 2018. Superhuman AI for heads-up no-limit
poker: Libratus beats top professionals. Science 359, 6374 (2018), 418–424.

[7] Noam Brown and Tuomas Sandholm. 2019. Superhuman AI for multiplayer poker.
Science 365, 6456 (2019), 885–890.

[8] Michael Buro, Jeffrey Richard Long, Timothy Furtak, and Nathan Sturtevant. 2009.
Improving state evaluation, inference, and search in trick-based card games. In
Twenty-First International Joint Conference on Artificial Intelligence.

[9] Pierre Carpentier, Jean-Philippe Chancelier, Guy Cohen, and Michel De Lara.
2015. Stochastic multi-stage optimization. Probability Theory and Stochastic
Modelling 75 (2015).

[10] Ian Frank and David Basin. 1998. Search in games with incomplete information: A
case study using bridge card play. Artificial Intelligence 100, 1-2 (1998), 87–123.

[11] Timothy Furtak and Michael Buro. 2013. Recursive Monte Carlo search for imper-
fect information games. In 2013 IEEE Conference on Computational Inteligence
in Games (CIG). IEEE, 1–8.

[12] Matthew L Ginsberg. 2001. GIB: Imperfect information in a computationally
challenging game. Journal of Artificial Intelligence Research 14 (2001), 303–358.

[13] Daniel Hennes, Dustin Morrill, Shayegan Omidshafiei, Rémi Munos, Julien Perolat,
Marc Lanctot, Audrunas Gruslys, Jean-Baptiste Lespiau, Paavo Parmas, Edgar
Duéñez-Guzmán, et al. 2020. Neural replicator dynamics: Multiagent learning via
hedging policy gradients. In Proceedings of the 19th international conference on
autonomous agents and multiagent systems. 492–501.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

976

https://github.com/google-deepmind/open_spiel/blob/master/open_spiel/games/tiny_bridge/tiny_bridge.h
https://github.com/google-deepmind/open_spiel/blob/master/open_spiel/games/tiny_bridge/tiny_bridge.h
https://doi.org/10.1016/j.artint.2019.103216
https://proceedings.mlr.press/v97/brown19b.html

[14] Benjamin Heymann, Michel De Lara, and Jean-Philippe Chancelier. 2021.
Causal inference theory with information dependency models. arXiv preprint
arXiv:2108.03099 (2021).

[15] Benjamin Heymann, Michel De Lara, and Jean-Philippe Chancelier. 2022. Kuhn’s
equivalence theorem for games in product form. Games and Economic Behavior
135 (2022), 220–240.

[16] Hengyuan Hu and Jakob N Foerster. 2019. Simplified action decoder for deep
multi-agent reinforcement learning. arXiv preprint arXiv:1912.02288 (2019).

[17] Michael Johanson, Nolan Bard, Marc Lanctot, Richard G Gibson, and Michael
Bowling. 2012. Efficient Nash equilibrium approximation through Monte Carlo
counterfactual regret minimization.. In Aamas. 837–846.

[18] Harold W Kuhn. 1953. Extensive games and the problem of information. Contri-
butions to the Theory of Games 2, 28 (1953), 193–216.

[19] Marc Lanctot, Richard Gibson, Neil Burch, Martin Zinkevich, and Michael Bowling.
2012. No-regret learning in extensive-form games with imperfect recall. arXiv
preprint arXiv:1205.0622 (2012).

[20] Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki
Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan
Omidshafiei, et al. 2019. OpenSpiel: A framework for reinforcement learning in
games. arXiv preprint arXiv:1908.09453 (2019).

[21] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. 2009.
Monte Carlo Sampling for Regret Minimization in Extensive Games. In
Advances in Neural Information Processing Systems, Y. Bengio, D. Schu-
urmans, J. Lafferty, C. Williams, and A. Culotta (Eds.), Vol. 22. Curran
Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2009/file/
00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf

[22] Na Li, Jason R Marden, and Jeff S Shamma. 2009. Learning approaches to the
Witsenhausen counterexample from a view of potential games. In Proceedings of
the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009
28th Chinese Control Conference. IEEE, 157–162.

[23] Viliam Lisỳ, Marc Lanctot, and Michael H Bowling. 2015. Online Monte Carlo
Counterfactual Regret Minimization for Search in Imperfect Information Games..
In AAMAS. 27–36.

[24] Jeffrey Long, Nathan Sturtevant, Michael Buro, and Timothy Furtak. 2010. Un-
derstanding the success of perfect information monte carlo sampling in game tree
search. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 24.
134–140.

[25] J. McCarthy. 1990. Chess as the Drosophila of AI. In Computers, Chess, and
Cognition, T. Anthony Marsland and Jonathan Schaeffer (Eds.). Springer New
York, New York, NY, 227–237.

[26] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan
Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. 2017.
Deepstack: Expert-level artificial intelligence in heads-up no-limit poker. Science
356, 6337 (2017), 508–513.

[27] Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis. 2013. Decen-
tralized stochastic control with partial history sharing: A common information
approach. IEEE Trans. Automat. Control 58, 7 (2013), 1644–1658.

[28] Martin J. Osborne and Ariel Rubinstein. 1994. A course in game theory. The MIT
Press, Cambridge, USA. electronic edition.

[29] Neal Parikh, Stephen Boyd, et al. 2014. Proximal algorithms. Foundations and
trends® in Optimization 1, 3 (2014), 127–239.

[30] Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub,
Vincent de Boer, Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al.
2022. Mastering the game of stratego with model-free multiagent reinforcement
learning. Science 378, 6623 (2022), 990–996.

[31] Julien Perolat, Remi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark
Rowland, Pedro Ortega, Neil Burch, Thomas Anthony, David Balduzzi, Bart
De Vylder, et al. 2021. From poincaré recurrence to convergence in imperfect infor-
mation games: Finding equilibrium via regularization. In International Conference
on Machine Learning. PMLR, 8525–8535.

[32] Klaus Ritzberger et al. 2016. The theory of extensive form games. Springer.
[33] R. Tyrrell Rockafellar. 1970. Convex Analysis. Princeton University Press.
[34] R. Tyrrell Rockafellar and Jie Sun. 2019. Solving monotone stochastic variational

inequalities and complementarity problems by progressive hedging. Mathematical
Programming 174, 1 (2019), 453–471.

[35] R. Tyrrell Rockafellar and Roger J-B Wets. 1991. Scenarios and policy aggregation
in optimization under uncertainty. Mathematics of operations research 16, 1
(1991), 119–147.

[36] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. 2020. Mastering Atari, Go, chess and shogi by planning with
a learned model. Nature 588, 7839 (2020), 604–609.

[37] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. 2021. Lectures
on stochastic programming: modeling and theory. SIAM.

[38] Y. Shoham and K. Leyton-Brown. 2009. Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press.

[39] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. 2018. A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 362, 6419 (2018), 1140–1144.

[40] Samuel Sokota, Edward Lockhart, Finbarr Timbers, Elnaz Davoodi, Ryan D’Orazio,
Neil Burch, Martin Schmid, Michael Bowling, and Marc Lanctot. 2021. Solving
Common-Payoff Games with Approximate Policy Iteration. Proceedings of
the AAAI Conference on Artificial Intelligence 35, 11 (May 2021), 9695–9703.
https://doi.org/10.1609/aaai.v35i11.17166

[41] Christopher Solinas, Douglas Rebstock, and Michael Buro. 2019. Improving
search with supervised learning in trick-based card games. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 33. 1158–1165.

[42] Finnegan Southey, Michael P Bowling, Bryce Larson, Carmelo Piccione, Neil
Burch, Darse Billings, and Chris Rayner. 2012. Bayes’ bluff: Opponent modelling
in poker. arXiv preprint arXiv:1207.1411 (2012).

[43] Nathan Sturtevant. 2008. An analysis of UCT in multi-player games. ICGA Journal
31, 4 (2008), 195–208.

[44] Hans S. Witsenhausen. 1968. A counterexample in stochastic optimum control.
SIAM Journal on Control 6, 1 (1968), 131–147.

[45] Hans S. Witsenhausen. 1971. On Information Structures, Feedback and Causality.
SIAM Journal on Control 9, 2 (1971), 149–160. https://doi.org/10.1137/0309013
arXiv:https://doi.org/10.1137/0309013

[46] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione.
2007. Regret minimization in games with incomplete information. Advances in
neural information processing systems 20 (2007).

[47] Martin Zinkevirch. 2003. Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of the 20th international conference on machine
learning (icml-03). 928–936.

Research Paper Track AAMAS 2025, May 19 – 23, 2025, Detroit, Michigan, USA

977

https://proceedings.neurips.cc/paper_files/paper/2009/file/00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf
https://doi.org/10.1609/aaai.v35i11.17166
https://doi.org/10.1137/0309013
https://arxiv.org/abs/https://doi.org/10.1137/0309013

	Abstract
	1 Introduction
	1.1 Contribution

	2 Preliminary
	2.1 Motivation for using the product form
	2.2 Extensive Game in Product Form
	2.3 Example of game in product form
	2.4 Policies and Push-Forward Probability
	2.5 Perfect Recall and Information Maps
	2.6 Projector
	2.7 No-regret learning in games

	3 Related Works
	4 Information Relaxation
	5 Progressive Hiding
	5.1 Algorithm
	5.2 Properties

	6 Experiments
	6.1 Trade Comm
	6.2 Cooperative Matching Pennies
	6.3 Abstracted Tiny Bridge

	7 Discussion
	Acknowledgments
	References

