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ABSTRACT
Multi-Agent Reinforcement Learning (MARL) faces challenges in

coordinating agents due to complex interdependencies withinmulti-

agent systems.MostMARL algorithms use the simultaneous decision-

making paradigm but ignore the action-level dependencies among

agents, which reduces coordination efficiency. In contrast, the se-

quential decision-making paradigm provides finer-grained supervi-

sion for agent decision order, presenting the potential for handling

dependencies via better decision order management. However, de-

termining the optimal decision order remains a challenge. In this

paper, we introduceActionGenerationwith Plackett-Luce Sam-
pling (AGPS), a novel mechanism for agent decision order opti-

mization. We model the order determination task as a Plackett-Luce

sampling process to address issues such as ranking instability and

vanishing gradient during the network training process. AGPS re-

alizes credit-based decision order determination by establishing a

bridge between the significance of agents’ local observations and

their decision credits, thus facilitating order optimization and de-

pendency management. Integrating AGPS with the Multi-Agent

Transformer, we propose the Prioritized Multi-Agent Trans-
former (PMAT), a sequential decision-making MARL algorithm

with decision order optimization. Experiments on benchmarks in-

cluding StarCraft Multi-Agent Challenge, Google Research Football,

and Multi-Agent MuJoCo show that PMAT outperforms state-of-

the-art algorithms, greatly enhancing coordination efficiency.
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1 INTRODUCTION
In a multi-agent system (MAS), the optimal action of one agent is

often affected by the behavior of others [39], creating complex inter-

agent dependency relationships [4, 12]. Therefore, a key challenge

of Multi-Agent Reinforcement Learning (MARL) [33, 38] algorithms

is handling the inter-agent dependencies to manage coordination

[27, 33]. The dependency relationships among agents necessitate op-

timizing the decision-making order to achieve optimal team strate-

gies in multi-agent cooperation tasks [4]. As illustrated in Figure 1,

MARL algorithms typically employ two decision-making paradigms

that generate agents’ actions either simultaneously [32, 37] or se-

quentially [34]. Although simultaneously generating the actions of

all agents can facilitate collective learning, it overlooks the poten-

tial action-level order dependencies within an MAS. Consequently,

the newly generated action of the concurrent agent may offset the

overall performance improvement established by previous agents,

resulting in degradation of coordination efficiency [1].

Fortunately, the recent incorporation of sequence models (SMs)

in reinforcement learning effectively facilitates sequential decision-

making [6, 13]. InMARL, the utilization of the auto-regressive token

generalization mechanism of SMs allows each agent to leverage

prior agents’ actions during its decision-making process [18, 35],

which enables handling dependencies of agents in a sequential man-

ner. While the sequential paradigm holds the potential for effective

dependency management, identifying the optimal decision order
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Figure 1: The simultaneous action generation paradigm gen-
erates agents’ actions concurrently and interacts with the
environment once. The sequential action generation para-
digm generates agents’ actions in an agent-by-agent manner,
providing finer-grained supervision for the action genera-
tion order. Agents can interact with the environment once
per decision or once per iteration under this paradigm.

presents a formidable challenge. Typically, a fixed or randomized

action generation order [34] is adopted in this paradigm. The fixed-

order decision-making scheme is limited by its inability to adapt

to agents’ dynamically evolving action-level dependencies, which

leads to sub-optimal algorithm performance. For instance, in a foot-

ball match, the possession of the ball frequently shifts between

players as the game progresses. If decisions are made following a

fixed order within the team, players might not respond effectively

to real-time changes, resulting in poor coordination.

Although the randomized-order decision-making scheme en-

ables dynamic ordering, learning algorithms may converge to local

optima due to random sampling that inadequately represents the

solution space or fails to converge to optimal solutions under sub-

optimal settings [29]. Consequently, sequential decision-making

in the MARL domain remains fundamentally constrained and less

effective without a robust mechanism to determine the optimal

decision order. Hence, there is a pressing need to develop an adap-

tive decision-ordering mechanism that can effectively manage the

dynamic action-level order dependencies among agents.

While deep learning-based methods have shown remarkable

progress in addressing ordering issues [8, 22], learning the optimal

agent decision order still faces several key challenges. On the one

hand, directly ordering agents according to their preference scores

learned by deep neural networks presents a vanishing gradient

issue since the variations of network outputs may not alter the

ordering results. On the other hand, when agents declare similar

ranking scores, even minor fluctuations in scoring can significantly

change the final orderings, thus introducing instability issues.

To tackle these challenges, we introduce Action Generation
with Plackett-Luce Sampling (AGPS), a Plackett-Luce (P-L)

model-based sequential decision-making scheme in MARL. Specif-

ically, we formulate the order determination task as an agent-by-

agent sampling process and utilize P-L sampling [17, 23] in decision

order optimization, which facilitates robust and adaptive decision-

ordering in multi-agent cooperation tasks. Facilitated by AGPS,

we propose Prioritized Multi-Agent Transformer (PMAT), a
sequential decision-making MARL algorithm with decision or-

der optimization. We evaluate the proposed algorithm on popular

MARL benchmarks including StarCraft Multi-Agent Challenge [24],

Google Research Football [15], and Multi-Agent MuJoCo [9], where

PMAT consistently demonstrates superior task performance com-

pared with several state-of-the-art MARL algorithms.

2 RELATEDWORK
In this section, we introduce several representative state-of-the-art

MARL algorithms, covering both the simultaneous and the sequen-

tial decision-making paradigms. We also discuss the difference

between several types of order optimization in MARL.

Simultaneous Decision-Making MARL Algorithms. The vast
majority of Centralized Training Decentralized Execution (CTDE)

[10, 19, 20] algorithms in MARL adopt a simultaneous decision-

making paradigm. Here we introduce two representative ones.

MAPPO [37] is a straightforward policy-based approach that en-

dows the policy network of all agents with a shared set of param-

eters and utilizes agents’ aggregated trajectories to facilitate policy

optimization. HAPPO [14] is a heterogeneous-agent trust-region

method that employs a sequential policy update paradigm. During

an update in HAPPO, the agents randomly choose an update order

and update their own policies over the newly updated policies of

previous agents. Due to the adoption of the simultaneous decision-

making paradigm, both MAPPO and HAPPO suffer from potential

action conflicts and lack coordination efficiency guarantee.

Sequential Decision-Making MARL Algorithm. To alleviate

potential action conflicts and further enhance multi-agent coordi-

nation, Wen et al. [34] proposed Multi-Agent Transformer (MAT),

which presents an auto-regressive sequential decision-makingMARL

algorithm based on the Transformer [31] architecture. MAT suc-

cessfully transforms multi-agent joint policy optimization into a

sequential decision-making process by generating actions in an

agent-by-agent manner, which holds the potential for finer-grained

supervision and management of inter-agent dependencies.

Different Order Optimization in MARL. The current MARL

algorithms have started to focus on the impact of “order” on agent-

level or batch-level updates, and several solutions have been pro-

posed. Wang et al. [32] proposed an agent-by-agent policy optimiza-

tion method, A2PO, which adopts a semi-greedy agent selection

rule to determine agent update order within a single rollout. Further-

more, B2MAPO [40] establishes update batches, further enhancing

algorithm efficiency to facilitate joint policy optimization in larger-

scale agent clusters. These studies on sequential update MARL

algorithms offer valuable insights, suggesting that decision order

optimization can be achieved incrementally on an item-by-item

basis. Unlike these works, this paper focuses on optimizing agent

decision order under the sequential decision-making paradigm,

which remains an underexplored area in MARL.

3 PRELIMINARIES & BACKGROUND
3.1 Cooperative MARL Problem Formulation
Cooperative MARL problems can usually be modeled as Markov
games < N , O,A, 𝑅, 𝑃,𝛾 > [16], whereN = {1, . . . , 𝑛} is the set of
agents, O =

∏𝑛
𝑖=1

O𝑖
is the joint observation space, A =

∏𝑛
𝑖=1

A𝑖

is the joint action space, 𝑅 : O × A −→ R is the joint reward

function, 𝑃 : O × A × O −→ [0, 1] is the transition probability

function and 𝛾 ∈ [0, 1) is the discount factor. Within each time
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step, all agents act simultaneously based on their observations. At

time step 𝑡 ∈ N, each agent 𝑖 (𝑖 ∈ N ) obtains its individual local

observation o
𝑖
𝑡 ∈ O𝑖

and takes an action a
𝑖
𝑡 ∈ A𝑖

according to its

own policy 𝜋𝑖 , which represents a component of the joint policy 𝝅 .
We consider a fully cooperative setting where all agents share

the same reward function. When time step 𝑡 ends, the whole team

receives a joint reward 𝑅(o𝑡 , a𝑡 ) and observes o𝑡+1 whose prob-

ability distribution is 𝑃 (·|o𝑡 , a𝑡 ). Following infinitely long times

of this process, the multi-agent team finally gains a cumulative

return of 𝑅𝛾 ≜
∑∞
𝑡=0

𝛾𝑡𝑅(o𝑡 , a𝑡 ). The observation value and the

observation-action value can then be defined as

𝑉𝝅 (𝒐) ≜ Eo1:∞∼𝑃,a0:∞∼𝝅 [𝑅
𝛾 |o0 = 𝒐] (1)

and

𝑄𝝅 (𝒐, 𝒂) ≜ Eo1:∞∼𝑃,a1:∞∼𝝅 [𝑅
𝛾 |o0 = 𝒐, a0 = 𝒂] (2)

respectively. And the advantage value is defined as

𝐴𝝅 (𝒐, 𝒂) ≜ 𝑄𝝅 (𝒐, 𝒂) −𝑉𝝅 (𝒐) . (3)

3.2 Multi-Agent Advantage Decomposition
In this work, we pay close attention to the impact of action gener-

ation order on multi-agent joint advantage improvement in MARL.

Before proceeding to our methods, in this section we first introduce

existing definitions and theorems as follows:

Definition 1 (Multi-Agent Advantage Function [14]). Let
𝑖1:𝑚 denote an ordered subset {𝑖1, . . . , 𝑖𝑚} of N and −𝑖1:𝑚 denote its
complement. The multi-agent observation-action value function is
defined as

𝑄
𝑖1:𝑚
𝝅 (𝒐, 𝒂𝑖1:𝑚 ) ≜ E𝒂−𝑖

1:𝑚∼𝝅−𝑖
1:𝑚

[
𝑄𝝅 (𝒐, 𝒂𝑖1:𝑚 , 𝒂−𝑖1:𝑚 )

]
.

Let 𝑗
1:𝑘 denote another ordered subset ofN , such that 𝑖1:𝑚 ∩ 𝑗

1:𝑘 = ∅.
Then, the multi-agent advantage function is defined as

𝐴
𝑖1:𝑚
𝝅 (𝒐, 𝒂 𝑗1:𝑘 , 𝒂𝑖1:𝑚 ) ≜ 𝑄

𝑗1:𝑘 ,𝑖1:𝑚
𝝅 (𝒐, 𝒂 𝑗1:𝑘 , 𝒂𝑖1:𝑚 ) −𝑄

𝑗1:𝑘
𝝅 (𝒐, 𝒂 𝑗1:𝑘 ) .

Definition 1 describes the contribution of agents 𝑖1:𝑚 taking actions

𝒂𝑖1:𝑚
once agents 𝑗

1:𝑘 have taken actions 𝒂 𝑗1:𝑘
, thus facilitating

multi-agent joint policy optimization via the following theorem of

Theorem 3.1 (Multi-Agent Advantage Decomposition [34]).

Let 𝑖1:𝑚 be a permutation of agents and 𝑖𝑘 denote the 𝑘𝑡ℎ agent
within 𝑖1:𝑚 . Then, for joint observation 𝒐 = 𝒐 ∈ O and joint action
𝒂 = 𝒂𝑖1:𝑚 ∈ A, the following equation always holds,

𝐴
𝑖1:𝑚
𝝅 (𝒐, 𝒂𝑖1:𝑚 ) =

𝑚∑︁
𝑘=1

𝐴
𝑖𝑘
𝝅 (𝒐, 𝒂𝑖1:𝑘−1 , 𝑎𝑖𝑘 ).

Theorem 3.1 provides an intuitive guide for joint policy optimiza-

tion within a multi-agent team. It suggests that a sequential op-

timization of each agent’s action contingent upon the actions of

preceding agents can finally improve the joint advantage. Hence,

one major strength of MARL algorithms adopting the sequential

action generation paradigm lies in the potential to ensure that each

agent 𝑖 𝑗 achieves a positive advantage upon the actions 𝒂𝑖1:𝑗−1
of

its predecessors via sequential decision-making. As an example,

MAT [34] utilizes an auto-regressive token generation mechanism

to ensure that each agent achieves a positive advantage based on

previous agents’ actions during the decision-making process.

3.3 Multi-Agent Transformer
Multi-Agent Transformer (MAT) [34] is a successful implementa-

tion of the encoder-decoder architecture of the Transformer [31]
in MARL. The attention mechanism of MAT first encodes agents’

observations and actions with a weight matrix calculated by mul-

tiplying the embedded queries and keys. Subsequently, represen-

tations are calculated by multiplying the weight matrix with the

embedded values. In general, the encoder of MAT takes a sequence

of observations (𝑜𝑖1 , . . . , 𝑜𝑖𝑛 ) as input and passes them through

several computational blocks to generate the corresponding obser-

vation representations (𝑜𝑖1 , . . . , 𝑜𝑖𝑛 ). Each of these computational

blocks consists of an unmasked self-attention mechanism and a

multi-layer perceptron (MLP) to extract the interrelationship among

agents. The encoder is trained to approximate the value functions

by minimizing the empirical Bellman error of

𝐿
Encoder

(𝜙) = 1

𝑇𝑛

𝑛∑︁
𝑚=1

𝑇−1∑︁
𝑡=0

[
𝑅(o𝑡 , a𝑡 ) + 𝛾𝑉 ¯𝜙 (ô

𝑖𝑚
𝑡+1

) −𝑉𝜙 (ô𝑖𝑚𝑡 )
]

2

,

(4)

where 𝜙 denotes the network parameter and
¯𝜙 denotes the target

network parameter. The decoder of MAT receives the observation

representations output by the encoder. It sequentially generates

and passes the embedded actions of agents 𝒂𝑖0:𝑚−1
(𝑚 = 1, . . . 𝑛)

through a sequence of decoding blocks, where 𝑎𝑖0 is an arbitrary

symbol indicating the start of decoding. Every decoding block is

equipped with a masked self-attention mechanism utilizing triangu-

lar matrices to ensure that for each agent 𝑖 𝑗 attention is computed

between the 𝑖𝑡ℎ𝑟 and the 𝑖𝑡ℎ
𝑗

action heads (𝑟 < 𝑗 ) so that the sequen-

tial scheme can be maintained. The decoding block finally finishes

with an MLP and skipping connections, generating a sequence of

multi-agent joint action. Parameterized by 𝜃 , the decoder is trained

to minimize the following clipping PPO [26] objective of

𝐿
Decoder

(𝜃 ) = − 1

𝑇𝑛

𝑛∑︁
𝑚=1

𝑇−1∑︁
𝑡=0

min

(
r
𝑖𝑚
𝑡 (𝜃 )𝐴𝑡 , clip(r𝑖𝑚𝑡 (𝜃 ), 1 ± 𝜖)𝐴𝑡

)
,

(5)

where

r
𝑖𝑚
𝑡 (𝜃 ) =

𝜋
𝑖𝑚
𝜃

(a𝑖𝑚𝑡 |ô𝑖1:𝑛

𝑡 , â𝑖1:𝑚−1

𝑡 )

𝜋
𝑖𝑚
𝜃

old

(a𝑖𝑚𝑡 |ô𝑖1:𝑛

𝑡 , â𝑖1:𝑚−1

𝑡 )
, (6)

and 𝐴𝑡 represents an estimate of the joint advantage function. To

estimate the joint value function, generalized advantage estimation
(GAE) [25] can be applied with 𝑉𝑡 =

1

𝑛

∑𝑛
𝑚=1

𝑉 (ô𝑖𝑚𝑡 ).

4 DECISION ORDER MATTERS
Although the positive-advantage decision-making scheme confers a

monotonic improvement guarantee upon MAT, it fails to maximize

the joint advantage achieved in each iteration. This stems from lack-

ing effective management of the action-level dependencies among

agents. Specifically, if the optimal action of agent 𝑖 𝑗 depends upon

the action of agent 𝑖𝑘 who plays a pivotal role, enabling 𝑖𝑘 to decide

prior to 𝑖 𝑗 provides essential decision-making information for 𝑖 𝑗 ,

thus holding the potential to enhance the overall team performance

(which can also be evidenced by Example 3, [1]).
As an illustrative example, in Figure 2, we take two frames from

the academy pass and shoot with keeper scenario of Google Research
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JOHNSON

TURING

TURING

Figure 2: A multi-agent cooperation scenario taken from
Google Research Football. Player JOHNSON passes the ball
to his partner TURING who has a favorable shooting angle
(left), and TURING converts the shot into a goal (right).
Football [15], where the local observation of Player TURING ex-

hibits prior significance due to his advantageous positioning for

scoring a goal. In this case, TURING is allowed to decide first and

he decides to take a shot as illustrated in Figure 2, where decisions

are specially plotted in dashed arrows. Subsequently, TURING’s

teammate JOHNSON decides to pass the ball, considering both TUR-

ING’s decision (shoot) and his own observation (the position of

TURING and the opponent player etc.). In such a prioritized sequen-

tial decision-making manner, subsequent players hold the potential

to recognize the intentions of preceding players who possess more

significant local observations and align their actions with these

predecessors in an efficient way, thus facilitating the emergence

of collaborative behavior among agents and enhancing the overall

task performance of the whole team. Later, we will build upon this

insight to introduce a sequential action generation scheme that

optimizes the agent decision order according to the significance of

their local observations to the joint advantage.

To further discuss the impact of decision order, we define the

action generation order 𝜎 as a permutation ofN , which induces the

multi-agent joint policy (contingent upon this order) as

𝝅𝜎
𝑖1:𝑛

= 𝜋𝑖1 (𝑎𝑖1 |𝒐, 𝜎)·𝜋𝑖2 (𝑎𝑖2 |𝒐, 𝜎, 𝑎𝑖1 )·. . .·𝜋𝑖𝑛 (𝑎𝑖𝑛 |𝒐, 𝜎, 𝑎𝑖1 , . . . , 𝑎𝑖𝑛−1 ).
(7)

Then, we define the optimal action generation order as

Definition 2 (Optimal Action Generation Order). Given a
group of agents marked as {1, . . . , 𝑛}, if an action generation order
𝜎∗ = {𝑖1, 𝑖2, . . . , 𝑖𝑛} satisfies 𝐴1:𝑛

𝝅𝜎∗ (𝒐, 𝒂1:𝑛
𝜎∗ ) ≥ 𝐴1:𝑛

𝝅𝜎 (𝒐, 𝒂1:𝑛
𝜎 ) for any

𝜎 ≠ 𝜎∗, then we define 𝜎∗ as the Optimal Action Generation Order.

Applying different action generation orders can result in distinct

joint action, ultimately affecting the multi-agent joint advantage

achieved in each iteration. Hence, optimizing agent decision order

is significant to joint advantage optimization in MARL. Definition 2

defines the optimal agent decision order, utilizing the joint advan-

tage value as feedback signal. Our goal is to identify and utilize an

optimized decision-making order as the action generation order in

each round of the multi-agent sequential decision-making process.

By utilizing this refined order, we aim to optimize the joint advan-

tage achieved in each iteration of multi-agent joint action, thereby

enhancing the efficiency and task performance of MARL algorithms.

5 DECISION ORDER OPTIMIZATION
In this section, we first discuss the challenges of learning the op-

timal decision order and highlight the advantages of utilizing the

Plackett-Luce (P-L) model for decision order optimization. We then

introduce AGPS, a P-L model-based sequential decision-making

mechanism. Additionally, we also present a practical MARL algo-

rithm that serves as an application instantiation of AGPS.

5.1 Decision Ordering as a Ranking Task
A straightforward approach to optimizing the agent decision order

involves evaluating all permutations of 𝑛 agents within each itera-

tion of the sequential action generation process, with the objective

of identifying the specific permutation that can maximize the joint

advantage value. While this method exhibits favorable interpretabil-

ity and can guarantee optimal orderings, the primary limitation

stems from its factorial search complexity (O(𝑛!)), which signifi-

cantly increases the computational cost and limits its applicability

in large-scale multi-agent systems. Inspired by the football case

depicted in Section 4, we propose to leverage the potential correla-

tion between the optimal decision order and the preference scoring

of agents’ local observations to address this challenge. Specifically,

we model the decision-ordering task as a label ranking problem,

enabling the application of parametric probabilistic models [7] and

deep learning-based optimization techniques.

Learning to rank is a fundamental problem in the domain of

machine learning [3, 36], where deep learning-based methods have

witnessed widespread applications [28]. By establishing a scoring

network to evaluate the preference scores of agents’ local observa-

tions and ranking them accordingly, an optimized decision sequence

can be derived in a computationally efficient manner. However, this

approach also exhibits several limitations when implemented in

multi-agent systems. Firstly, the output variations of the scoring net-

work do not necessarily convert into adjustments in the final rank-

ings, which can potentially induce the vanishing gradient issue dur-

ing the neural network training process. Secondly, generating agent

decision order in a deterministic manner can introduce instability

in that, when the individual scores are similar, minor discrepancies

in scoring can produce substantial alterations in the final rankings.

To address these challenges, we model the decision-ordering task

as a multi-step sampling process and propose a P-L model-based ap-

proach that facilitates decision-credit allocation and decision-order

optimization in multi-agent sequential decision-making.

5.2 Plackett-Luce Sampling
The Plackett-Luce model derives its name from independent work

by Plackett [23] and Luce [17], which has found extensive applica-

tions in various real-world tasks like horse-racing [23], document

ranking [3] and information retrieval [11], etc. A P-L model is pa-

rameterized by an𝑛-length vector 𝒗 = (𝑣1, . . . , 𝑣𝑛) where 𝑣𝑖 > 0 rep-

resents the preference score associated with each object 𝑖 . The prob-

ability of sampling an ordered permutation 𝜎 (𝑛) = (𝜎 (1), . . . , 𝜎 (𝑛))
from a P-L distribution can be written as

P(𝜎 (𝑛) | 𝒗) =
𝑛∏
𝑖=1

𝑣𝜎 (𝑖 )
𝑣𝜎 (𝑖 ) + 𝑣𝜎 (𝑖+1) + . . . + 𝑣𝜎 (𝑛)

. (8)

The P-L model extends the Bradley-Terry (BT) model suggested

by Bradley and Terry [2], which is renowned for its application in

the domain of pairwise comparisons, to model item preferences

as sampling probabilities. Specifically, the BT model specifies the

probability that “𝜎 (𝑖) wins against 𝜎 ( 𝑗)” in terms of

P(𝜎 (𝑖) ≻ 𝜎 ( 𝑗)) =
𝑣𝜎 (𝑖 )

𝑣𝜎 (𝑖 ) + 𝑣𝜎 ( 𝑗 )
, (9)

where ≻ denotes the asymmetric relation which indicates that 𝜎 (𝑖)
precedes 𝜎 ( 𝑗) in ordering. Derived from the BT model, the expected
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ordering generated from a P-L sampling process satisfies

𝜎 (𝑛) = [𝜎 (1), 𝜎 (2), . . . , 𝜎 (𝑛)],
s.t. ∀(𝜎 (𝑖), 𝜎 ( 𝑗)), 𝑖 < 𝑗 ⇒ 𝑣𝑖 ≥ 𝑣 𝑗 .

(10)

P-L sampling provides a probabilistic understanding of preference

structures, addressing key challenges such as instability and vanish-

ing gradient associated with the ordering process. Specifically, P-L

sampling decomposes the ranking task of 𝑛 objects as a sequence

of 𝑛 − 1 independent selection stages, wherein each stage involves

choosing the next top-scoring item from the remaining alterna-

tives. This sequential mechanism ensures that objects with similar

preference scores are assigned comparable selection probabilities,

thereby reducing the sensitivity to minor score fluctuations and

enhancing the robustness of ranking. Additionally, this method

effectively converts the variations in preference scores output by

neural networks into adjustments in the final rankings, thus mit-

igating the vanishing gradient issue in the neural network training

process. Furthermore, P-L sampling has been shown to be computa-

tionally efficient [21] and offers various optimization opportunities,

indicating potential scalability in large-scale multi-agent systems.

5.3 Action Generation with P-L Sampling
We utilize P-L sampling to optimize the action generation order

within an MAS. To handle non-negative constraints, we parameter-

ize the multi-agent P-L distribution using logarithmic parameters

𝒛 = (𝑧1, . . . , 𝑧𝑛). The probability of obtaining the optimal action

generation order 𝜎∗ can then be derived as

𝑃 (𝜎∗ |𝒛) =
𝑛−1∏
𝑖=1

exp 𝑧𝜎∗ (𝑖 )∑𝑛
𝑗=𝑖 exp 𝑧𝜎∗ ( 𝑗 )

. (11)

Utilizing the sequence-related joint advantage value 𝐴
𝑖1:𝑛

𝝅𝜎 (abbre-

viated as 𝐴(𝜎)) as feedback signal, the parameters 𝒛 are learned

through a scoring network that outputs the preference scores asso-

ciated with agents’ local observations. Specifically, let SN denote

the space of 𝑛-agent permutations, the expectation-form objective

function of the agent decision order optimization problem can be

formulated as

𝐽 (𝒛) = E𝜎∈SN
[
𝐴(𝜎)

]
=

∑︁
𝜎∈SN

𝐴(𝜎)𝑃 (𝜎 |𝒛) . (12)

For numerical computation, the gradient of Equation (12) can be

estimated via Monte Carlo approximation as

∇𝒛 𝐽 (𝒛) = E𝜎∈SN [𝐴(𝜎)∇𝒛 log 𝑃 (𝜎 |𝒛)] ≈ 1

𝑁

𝑁∑︁
𝑖=1

𝐴(𝜎𝑖 )∇𝒛 log 𝑃 (𝜎𝑖 |𝒛) .

(13)

The 𝑖𝑡ℎ partial derivative of the log-likelihood log 𝑃 (𝜎 |𝒛) with re-

spect to 𝑧𝜎 (𝑖 ) in Equation (13) can be calculated by

𝜕 log 𝑃 (𝜎 |𝒛)
𝜕𝑧𝜎 (𝑖 )

= 1 − exp(𝑧𝜎 (𝑖 ) )
𝑖∑︁

𝑘=1

1∑𝑛
𝑗=𝑘

exp(𝑧𝜎 ( 𝑗 ) )
, (14)

and the full gradient ∇𝒛 log 𝑃 (𝜎 |𝒛) can be generated within O(𝑛)
timesteps [5], thus demonstrating superior efficiency.

We designate the proposed sequential action generation mech-

anism as Action Generation with P-L Sampling (AGPS). AGPS
allows agents whose observations contribute more significantly

to the multi-agent joint advantage to be granted higher decision-

making priority. In this manner, subsequent agents can effectively

perceive the decisions of their predecessors and offer proactive co-

operation during their decision-making process, thereby enhancing

the overall coordination within a multi-agent team.

5.4 Practical Algorithm
As illustrated in Figure 1, sequential decision-making MARL algo-

rithms can be implemented via single or multiple interactions with

the environment. While the latter paradigm benefits from timely

feedback, it suffers from degradation in computational efficiency

due to numerous interactions within each iteration of multi-agent

joint action. Fortunately, recent advancements in auto-regressive

SMs have provided fresh insights into the single-interaction par-

adigm, facilitating efficient sequential decision-making MARL al-

gorithms based on the Transformer [31] architecture.

Prioritized Multi-Agent Transformer. We demonstrate that

AGPS can be effectively integrated with MAT for performance

enhancement. On the one hand, the observation representations

output by the encoder of MAT synthesize not only the local ob-

servations of individual agents but also the high-level inter-agent

relationships [34], thus providing informative signals for preference

scoring. On the other hand, the masked self-attention mechanism

of MAT’s decoder inherently promotes efficient sequential action

generation. Hence, via integrating P-L sampling with the encoder-

decoder architecture of MAT, an effective bridge between the local

observation representations (as outputs of the encoder) and the

decision orderings (as inputs of the decoder) can be established,

which facilitates auto-regressive sequential action generation and

ultimately leads to the proposed Prioritized Multi-Agent Trans-
former (PMAT) as illustrated in Figure 3.

As shown in Figure 3, the scoring block consists of an MLP

Φ parameterized by 𝜑 , which takes agents’ local observation rep-

resentations (𝑜𝑖1 , . . . , 𝑜𝑖𝑛 ) as input and yields the corresponding

preference scores (𝑐𝑖1 , . . . , 𝑐𝑖𝑛 ). Specifically, the scoring network is

trained to minimize the following clipping objective of

𝐿
Ranking

(𝜑) = − 1

𝑇

𝑇−1∑︁
𝑡=0

min

(
r
𝜎
𝑡 (𝜑)𝐴𝑡 , clip(r𝜎𝑡 (𝜑), 1 ± 𝜖)𝐴𝑡

)
, (15)

where

r
𝜎
𝑡 (𝜑) =

𝑃 (𝜎 |Φ𝜑 (ô𝑖1:𝑛

𝑡 ))
𝑃 (𝜎 |Φ𝜑𝑜𝑙𝑑

(ô𝑖1:𝑛

𝑡 ))
, (16)

𝐴𝑡 estimates the sequence-related joint advantage, and 𝑃 (𝜎 |·) repre-
sents the probability of obtaining the current order 𝜎 = ( 𝑗1, . . . , 𝑗𝑛)
via P-L sampling. Before being passed into the decoder, the original

observation representations (𝑜𝑖1 , . . . , 𝑜𝑖𝑛 ) are reordered according

to this order as (𝑜 𝑗1 , . . . , 𝑜 𝑗𝑛 ). Meanwhile, 𝜎 = ( 𝑗1, . . . , 𝑗𝑛) also
serves as the auto-regressive action generation order within the

decoder, thus realizing agent decision order optimization.

Notably, the sampling paradigm differs slightly between the

training and inference stages. During the training stage, P-L sam-

pling is carried out in a non-deterministic manner since introducing

randomness can facilitate generalization capability and mitigate the

risk of overfitting specific training instances. During the inference
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MLPEmb

MLP Emb

Figure 3: The overall framework of the proposed Prioritized Multi-Agent Transformer. The encoder processes agents’ local
observations at each time step, transforming them into high-level representations. The observation representations are
subsequently fed into the scoring block to generate individual preference scores, referred to as decision credits. P-L sampling
is then conducted based on the scoring to compute the action generation order. The representations are reordered prior to
being fed into the decoder which sequentially generates agents’ actions in accordance with this reordered sequence.

stage, however, deterministic sampling is carried out for perfor-

mance enhancement. Besides, in the training stage, the output of all

actions 𝒂𝑖1:𝑛
can be computed with parallel acceleration in the sense

that 𝒂𝑖1:𝑛−1
have already been collected and stored in the replay

buffer. In contrast, during the inference stage, each action 𝑎𝑖𝑚 has

to be inserted back into the decoder auto-regressively to generate

the following action 𝑎𝑖𝑚+1
in a sequential manner.

6 EXPERIMENTS
In this section, we evaluate the effectiveness of the proposed AGPS

and its application instantiation, PMAT, within popular MARL

benchmarks. We compare PMAT with advanced MARL methods

including MAT [34], MAPPO [37], and HAPPO [14].

6.1 Experimental Environments
In this work, we evaluate our method within the following three

MARL benchmarks: StarCraft Multi-Agent Challenge (referred to

as SMAC) [24], Google Research Football (referred to as GRF) [15]

and Multi-Agent MuJoCo (referred to as MA MuJoCo) [9].

StarCraft Multi-Agent Challenge. SMAC [24] is an open-source

research environment designed to evaluate MARL algorithms based

on the StarCraft II game engine. SMAC simulates complex scenar-

ios and varying unit types with real-time multi-agent interactions,

enabling comprehensive benchmarking of cooperation strategies.

Specifically, we conduct comparison experiments on two challeng-

ing maps, 10m vs 11m (Hard, homogeneous and asymmetric) and
MMM2 (Super Hard, heterogeneous and asymmetric).
Google Research Football. GRF [15] is an open-source research

environment designed for MARL algorithm evaluation in a sim-

ulated football setting. In GRF, agents play different roles within

a football team (e.g., forwards, wingers, etc.), demonstrating evi-

dent role heterogeneity. We utilize the academy pass and shoot with

keeper, academy counterattack easy, and academy 3 vs 1 with keeper
scenarios for algorithm evaluation.

Multi-Agent MuJoCo. MAMuJoCo [9] contains a variety of multi-

agent continuous control tasks where individual agents control

the joints of biomimetic robot entities and coordinate to facilitate

specific behavior. Built on the MuJoCo physics engine [30], MA

MuJoCo’s modular architecture allows for easy customization of

the environments and agents’ behavior, facilitating the simulation

of complex interactions among agents trained by MARL algorithms.

We evaluate the proposed method using the Ant-v2 scenario with

two different configurations: 8×1 agent Ant and 4×2 agent Ant.

6.2 Experimental Results
StarCraft Multi-Agent Challenge. The comparison results of all

methods in the SMAC domain are shown in Figure 4a and Figure 4d.

Specifically, for the 10m vs 11m map, PMAT achieves a winrate of

99.4%, outperforming the baseline methods MAT (97.5%), MAPPO

(75.0%), and HAPPO (93.1%). For the MMM2 map, PMAT achieves

a winrate of 85.0%, consistently surpassing the baseline methods

MAT (75.0%), MAPPO (58.8%), and HAPPO (61.9%). The experimen-

tal results indicate that the performance enhancement of PMAT

over MAT tends to be more pronounced in heterogeneous scenarios

(e.g., MMM2) than in homogeneous scenarios (e.g., 10m vs 11m).

This observation broadly corroborates our hypothesis in Section 1.

Specifically, as the heterogeneity intensifies the sequential depen-

dencies among agents within such tasks, effective management of

these dependencies significantly improves the coordination effi-

ciency. In addition, given that both of the selected maps contain

ten ally agents, the experimental results in the SMAC domain can

also validate the scalability of the proposed method.

Google Research Football. The comparison results of all methods

in the GRF domain are illustrated in Figure 4b and Figure 4e. PMAT
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(b) academy pass and shoot with keeper (GRF)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment steps 1e6

1000

1200

1400

1600

1800

re
wa

rd

Ant-v2

pmat
mat
mappo
happo

(c) 8×1 agent Ant (MA MuJoCo)
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(d) MMM2 (SMAC)
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(e) academy counterattack easy (GRF)
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(f) 4×2 agent Ant (MA MuJoCo)

Figure 4: Experimental results in StarCraft Multi-Agent Challenge, Google Research Football, and Multi-Agent MuJoCo.
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Figure 5: Ablation results in StarCraft Multi-Agent Challenge, Google Research Football, and Multi-Agent MuJoCo.

demonstrates 0.964 in average episode scores in the academy pass
and shoot with keeper scenario, which outperforms MAT (0.947),

MAPPO (0.948), and HAPPO (0.890). In the academy counterattack
easy scenario, PMAT demonstrates 0.899 in average episode scores,

consistently surpassing MAT (0.780), MAPPO (0.588), and HAPPO

(0.533). As illustrated in Figure 4, while introducing the scoring

network elevates the training cost and marginally degrades its per-

formance in the early stages, PMAT ultimately surpasses MAT with

the advancement of training. The experimental results in the GRF

domain demonstrate that PMAT achieves superior performance

in cooperation tasks that exhibit evident role heterogeneity. More-

over, the performance curve of MAT exhibits more pronounced

fluctuations than PMAT in some scenarios (e.g., academy counter-
attack easy), further validating the efficacy of the proposed AGPS

mechanism in enhancing the stability of MARL algorithms.

Multi-Agent MuJoCo. The comparison results of all methods in

the MA MuJoCo domain are presented in Figure 4c and Figure 4f.

It can be observed that, equipped with AGPS, PMAT consistently

outperforms the baselines in both the 8×1 agent Ant and the 4×2
agent Ant scenarios. As illustrated in Figure 4, while PMAT initially

exhibits comparable task performance to MAT, it progressively

outperforms MAT as training proceeds, which demonstrates the ef-

fectiveness of the proposed method. Additionally, it can be observed

that in both of the Ant-v2 scenarios, the sequential decision-making

MARL algorithms like MAT and PMAT exhibit distinct advantages

in task performance over the simultaneous decision-making MARL

algorithms like MAPPO and HAPPO. We attribute this phenome-

non to the lack of essential information regarding previous agents’

decisions, which exacerbates coordination challenges as the torques
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Figure 6: Different cooperation strategies of agents trained by MAT and PMAT in a Google Research Football setting. Figures 6a
to 6c illustrate the behavior of agents trained by MAT. Figures 6d to 6f illustrate the behavior of agents trained by PMAT. The
solid lines represent the current action, whereas the dashed lines denote the predicted intention of the following action.

applied by different agents may counteract each other, thus leading

to degradation in overall task performance.

6.3 Ablation Study
In this section, we present an ablation study to further evaluate the

advantage-based scoring mechanism adopted in AGPS across the

SMAC, GRF, and MA MuJoCo benchmarks. Specifically, in addition

to MAT, we introduce another baseline, namely the randomized

MAT (abbreviated as rMAT in this section), which adopts a fully

randomized ordering strategy to determine the action generation

order based on MAT. We summarize the experimental results in

Figure 5, where PMAT exhibits superior performance compared

with both MAT and rMAT in all displayed tasks. It can be observed

that the randomized ordering strategy introduces instability since

rMAT exhibits pronounced variance in some scenarios (e.g., acad-
emy counterattack easy), resulting in performance degradation. In

contrast, the integration of AGPS effectively enhances both stability

and monotonicity in task performance improvement, validating the

effectiveness of the advantage-based scoring mechanism.

6.4 Case Study
In this section, we aim to analyze the distinct coordination strate-

gies of agents trained by MAT and PMAT. Specifically, we conduct

a fine-grained case study on agents’ coordination behavior in the

academy 3 vs 1 with keeper scenario of GRF, as illustrated in Figure 6.
It can be observed that given identical initial conditions (our player

TURING holds the ball, directly facing the defense of the oppo-

nent player EINSTEIN), agents trained by MAT adopt a strategy

wherein TURING attempts to dribble past EINSTEIN and shoot (Fig-

ures 6a to 6c). In contrast, agents trained by PMAT adopt a different

strategy (Figures 6d to 6f), wherein TURING directly awaits an op-

portune moment to pass the ball to his teammate DA VINCI, who

enjoys a superior shooting angle unimpeded by direct opposition.

Compared with the former strategy wherein agents make decisions

more based on their own observations, the latter strategy evaluates

the significance of local observations within a multi-agent team

and allows agents who hold advantageous observations to make de-

cisions first (DA VINCI, shoot), followed by proactive coordination

of other agents (TURING, pass the ball to DA VINCI). Generally,

the comparison between the aforementioned coordination strate-

gies in this section offers an intuitive validation for the necessity

of agent decision order optimization in MARL, demonstrating its

effectiveness in promoting cooperative behavior among agents.

7 CONCLUSION
In this work, we propose Action Generation with Plackett-Luce
Sampling (AGPS), a sequential decision-making mechanism in

MARL. AGPS assigns decision credits to individual agents within

a multi-agent team and significantly facilitates joint policy im-

provement by providing finer-grained supervision for decision or-

der optimization. Integrating AGPS with the Multi-Agent Trans-

former, we propose the Prioritized Multi-Agent Transformer
(PMAT), a sequential decision-making MARL algorithm with op-

timized decision-ordering. Extensive experiments across various

benchmarks showcase the effectiveness of AGPS as well as the su-

periority of PMAT in learning efficiency and task performance over

several strong baselines. For future work, we plan to further inves-

tigate the effectiveness of AGPS by integrating it with a broader

context of MARL algorithms. Besides, we will also evaluate the

applicability of P-L sampling in larger-scale multi-agent systems.
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